UPTOWN, NORTH PARK AND GOLDEN HILL CPU

Traffic Impact Study

JUNE 2015 \| DRAFT VERSION 3

Prepared By:
Kimley»"Horn

EXECUTIVE SUMMARY

This study, prepared by Kimley-Horn and Associates, Inc., evaluates the potential traffic-related impacts associated with the Uptown, North Park and Golden Hill Community Plan Updates (CPU). One preferred land use alternative was presented and analyzed as part of this study. The preferred land use alternative will be used to regulate and guide the strategic growth within the three communities. In addition to the land use alternative, a Mobility Element was prepared based on the existing roadway conditions, potential future transportation deficiencies and improvement recommendations based on an extensive input from the community stakeholders.

The analysis concluded that the land use for the Uptown community would have cumulative traffic related impact at the following locations:

Intersections

- Washington Street \& Fourth Avenue
- Washington Street \& Eighth Avenue/ SR-163 Off-Ramp
- Washington Street/ Normal Street \& Campus Avenue/ Polk Avenue
- University Avenue \& Sixth Avenue
- Elm Street \& Sixth Avenue
- Cedar Street \& Second Avenue

Segments

- First Avenue: Washington Street to University Avenue
- First Avenue: University Avenue to Robinson Avenue
- First Avenue: Robinson Avenue to Grape Street
- Fourth Avenue: Arbor Drive to Washington Street
- Fourth Avenue: Walnut Avenue to Laurel Street
- Fifth Avenue: Robinson Avenue to Walnut Avenue
- Sixth Avenue: Washington Street to University Avenue
- Sixth Avenue: University Avenue to Laurel Street
- Sixth Avenue: Laurel Street to Elm Street
- Ninth Avenue: Washington Street to University Avenue
- Campus Avenue/ Polk Avenue: Washington Street to Park Boulevard
- Cleveland Avenue: Tyler Street to Richmond Street
- Fort Stockton Drive: Sunset Boulevard to Goldfinch Street
- Grape Street: First Avenue to Third Avenue
- Grape Street: Third Avenue to Sixth Avenue
- Hawthorn Street: First Avenue to Third Avenue
- Hawthorn Street: Third Avenue to Sixth Avenue
- India Street: Washington Street to Winder Street
- India Street: Glenwood Drive to Sassafrass Street
- India Street: Sassafrass Street to Redwood Street
- Laurel Street: Columbia Street to Sixth Avenue
- Lincoln Avenue: Washington Street to Park Boulevard
- Park Boulevard: Mission Avenue to Upas Street
- Richmond Street: Cleveland Avenue to Upas Street
- Robinson Avenue: First Avenue to Third Ave
- Robinson Avenue: Third to Eighth Avenue
- San Diego Avenue: Hortensia Street to Pringle Street
- State Street: Laurel Street to Juniper Street
- University Avenue: Ibis Street to Fifth Avenue
- University Avenue: Sixth Avenue to Eighth Avenue
- University Avenue: Normal Street to Park Boulevard
- Washington Street: Fourth Avenue to Sixth Avenue
- Washington Street: Richmond Street to Normal Street

Freeway Mainline Segments

- I-5 NB: Old Town Avenue to Imperial Avenue
- I-5 SB: Old Town Avenue to Imperial Avenue
- I-8 WB: Hotel Circle (W) to SR-15
- I-8 EB: Hotel Circle (W) to SR-15
- SR-163 NB: I-8 to Robinson Avenue
- SR-163: SB: I-8 to I-5

Freeway Interchange Ramps

- Hancock St to l-5 SB
- Kettner Boulevard to I-5 SB
- Fifth Avenue to I-5 SB

Mitigation proposals for the impacted intersections and segments are provided in Chapter 5. In addition, it is noted that the following corridors would benefit from ITS technology:

- Sixth Avenue
- University Avenue
- Washington Street

The analysis concluded that the land use for the North Park community would have cumulative traffic related impact at the following locations:

Intersections

- Madison Avenue \& Texas Street
- El Cajon Boulevard \& 30 ${ }^{\text {th }}$ Street
- El Cajon Boulevard \& I-805 SB Ramps
- University Avenue \& $30^{\text {th }}$ Street
- University Avenue \& I-805 NB Ramps
- North Park Way/ I-805 SB Ramps \& Boundary Street/33rd Street
- Upas Street \& $30^{\text {th }}$ Street (W)

Segments

- $30^{\text {th }}$ Street: Meade Avenue to El Cajon Boulevard
- $30^{\text {th }}$ Street: Howard Avenue to University Avenue
- $30^{\text {th }}$ Street: North Park Way to Upas Street
- $30^{\text {th }}$ Street: Upas Street to Juniper Street
- $32^{\text {nd }}$ Street: University Avenue to Upas Street
- Adams Avenue: Texas Street to $30^{\text {th }}$ Street
- Boundary Street: University Avenue to North Park Way
- El Cajon Boulevard: $30^{\text {th }}$ Street to I-805 Ramps
- Florida Street: El Cajon Boulevard to Upas Street
- Howard Avenue: Texas Street to 32nd Street
- Madison Avenue: Texas Street to Ohio Street
- Meade Avenue: Park Boulevard to lowa Street
- North Park Way: 32 ${ }^{\text {nd }}$ Street to Boundary Street
- Redwood Street: $28^{\text {th }}$ Street to $30^{\text {th }}$ Street
- Texas Street: Adams Avenue to El Cajon Boulevard
- Texas Street: Howard Avenue to University Avenue
- University Avenue: Park Boulevard to Florida Street
- University Avenue: Texas Street to $32^{\text {nd }}$ Street
- University Avenue: $32^{\text {nd }}$ Street to Boundary Street
- Upas Street: Alabama Street to Pershing Road
- Upas Street: Pershing Road to 30 ${ }^{\text {th }}$ Street
- Utah Street: Howard Avenue to Lincoln Avenue
- Utah Street: North Park Way to Upas Street

Freeway Mainline Segments

- SR15 NB: I-805 to SR-94
- SR-15 SB: I-805 to SR-94
- I-805 NB: I-8 to SR-15
- I-805 SB: I-8 to SR-15
- SR-163 NB: I-8 to Robinson Avenue
- SR-163: SB: I-8 to I-5

Mitigation proposals for the impacted intersections and segments are provided in Chapter 5. In addition, it is noted that the following corridors would benefit from ITS technology:

- University Avenue
- El Cajon Boulevard

The analysis concluded that the land use for the Golden Hill community would have cumulative traffic related impact at the following locations:

Intersections

- B Street \& $17^{\text {th }}$ Street/ I-5 SB Off-Ramp
- SR-94 WB Ramps \& Broadway
- SR-94 WB Ramp \& $28^{\text {th }}$ Street
- SR-94 EB Ramp \& $28^{\text {th }}$ Street
- F Street \& $25^{\text {th }}$ Street
- \quad G Street $\& 25^{\text {th }}$ Street

Segments

- $25^{\text {th }}$ Street: Broadway to F Street
- $28^{\text {th }}$ Street: Russ Boulevard to SR-94
- $30^{\text {th }}$ Street: Grape Street to SR-94
- B Street: $25^{\text {th }}$ Street to $28^{\text {th }}$ Street
- C Street: $30^{\text {th }}$ Street to $34^{\text {th }}$ Street
- Fern Street: Juniper Street to A Street
- Grape Street: $30^{\text {th }}$ Street to $31^{\text {st }}$ Street

Freeway Mainline Segments

- SR-94 WB: 25th Street to SR-15
- SR-94 EB: 25th Street to SR-15

Mitigation proposals for the impacted intersections and segments are provided in Chapter 5.
Contents
EXECUTIVE SUMMARY 2
1 INTRODUCTION 1-1
1.1 Project Description 1-1
1.2 Analysis Scenarios 1-1
2 METHODOLOGY 2-1
2.1 Study Intersections 2-1
2.2 Analysis Process 2-5
2.3 Significance Determination 2-9
3 EXISTING CONDITIONS 3-1
3.1 Road Network 3-1
3.2 Traffic Volumes 3-16
3.3 Intersection Analysis 3-24
3.4 Roadway Segment Analysis 3-29
3.5 Freeway Segment Analysis 3-38
3.6 Freeway Ramp Metering Analysis 3-38
4 FUTURE COMMUNITY BUILDOUT CONDITIONS 4-1
4.1 Road Network 4-1
4.2 Traffic Volumes 4-1
4.3 Intersection Analysis 4-10
4.4 Roadway Segment Analysis 4-10
4.5 Freeway Segment Analysis 4-10
4.6 Freeway Ramp Metering Analysis 4-10
5 SIGNIFICANCE OF IMPACTS AND MITIGATION MEASURES. 5-1
5.1 Uptown 5-1
5.2 North Park 5-6
5.3 Golden Hill 5-9
5.4 Freeways 5-12
6 POST-MITIGATION ANALYSIS 6-15
6.1 Intersection Analysis 6-15
6.2 Roadway Segment Analysis 6-15
6.3 Freeway Segment and Ramp Meter Analysis 6-15

Figures

Figure 1-1 Regional Vicinity Map 1-2
Figure 1-2 Project Area Boundary 1-3
Figure 1-3 Propose Land Use: Uptown 1-11
Figure 1-4 Propose Land Use: North Park 1-12
Figure 1-5 Propose Land Use: Golden Hill 1-13
Figure 2-1 Study Intersections 2-4
Figure 3-1 Existing Roadway Functional Classification: Uptown 3-13
Figure 3-2 Existing Roadway Functional Classification: North Park 3-14
Figure 3-3 Existing Roadway Functional Classification: Golden Hill. 3-15
Figure 3-4 Existing Peak-Hour Intersection Volumes: Uptown 3-17
Figure 3-5 Existing Peak-Hour Intersection Volumes: Uptown (Cont.) 3-18
Figure 3-6 Existing Peak-Hour Intersection Volumes: North Park 3-19
Figure 3-7 Existing Peak-Hour Intersection Volumes: Golden Hill 3-20
Figure 3-8 Existing Roadway Segment ADT Volumes: Uptown 3-21
Figure 3-9 Existing Roadway Segment ADT Volumes: North Park 3-22
Figure 3-10 Existing Roadway Segment ADT Volumes: Golden Hill 3-23
Figure 4-1 Year 2035 Proposed Land Use Roadway Segment ADT Volumes: Uptown 4-2
Figure 4-2 Year 2035 Proposed Land Use Roadway Segment ADT Volumes: North Park 4-3
Figure 4-3 Year 2035 Proposed Land Use Roadway Segment ADT Volumes: Golden Hill 4-4
Figure 4-4 Year 2035 Proposed Land Use Peak-Hour Intersection Volumes: Uptown 4-6
Figure 4-5 Year 2035 Proposed Land Use Peak-Hour Intersection Volumes: Uptown (Cont.) 4-7
Figure 4-6 Year 2035 Proposed Land Use Peak-Hour Intersection Volumes: North Park. 4-8
Figure 4-7 Year 2035 Proposed Land Use Peak-Hour Intersection Volumes: Golden Hill 4-9
Tables
Table 1-1 Trip Generation Comparison: Uptown 1-4
Table 1-2 Trip Generation Comparison: Uptown (cont.) 1-5
Table 1-3 Trip Generation Comparison: Uptown (cont.) 1-6
Table 1-4 Trip Generation Comparison: North Park 1-7
Table 1-5 Trip Generation Comparison: North Park (cont.) 1-8
Table 1-6 Trip Generation Comparison: Golden Hill 1-9
Table 1-7 Trip Generation Comparison: Golden Hill (cont.) 1-10
Table 2-1 Study Intersections: Uptown 2-1
Table 2-1.2 Study Intersections: North Park 2-2
Table 2-1.3 Study Intersections: Golden Hill 2-3
Table 2-2 Level of Service (LOS) Criteria for Intersections 2-6
Table 2-3 City of San Diego Roadway Segment Capacity and Level of Service 2-7
Table 2-4 LOS Criteria For Freeway Segment Analysis 2-8
Table 2-5 Significance Criteria For Facilities in Study Area 2-10
Table 3-1 Existing Conditions Summary of Intersection Analysis 3-26
Table 3-2 Existing Conditions Summary of Intersection Analysis (Cont.) 3-27
Table 3-3 Existing Conditions Summary of Intersection Analysis (Cont.) 3-28
Table 3-4 Existing Conditions Roadway Segment LOS Summary 3-31
Table 3-5 Existing Conditions Roadway Segment LOS Summary (cont.) 3-32
Table 3-6 Existing Conditions Roadway Segment LOS Summary (cont.) 3-33
Table 3-7 Existing Conditions Roadway Segment LOS Summary (cont.) 3-34
Table 3-8 Existing Conditions Roadway Segment LOS Summary (cont.) 3-35
Table 3-9 Existing Conditions Roadway Segment LOS Summary (cont.) 3-36
Table 3-10 Existing Conditions Roadway Segment LOS Summary (cont.). 3-37
Table 3-11 Existing Conditions Freeway Segment Analysis Summary 3-39
Table 3-12 Existing Conditions Freeway Segment Analysis Summary (cont.) 3-40
Table 3-13 Existing Conditions Freeway Segment Analysis Summary (cont.) 3-41
Table 3-14 Existing Conditions Freeway Segment Analysis Summary (cont.) 3-42
Table 3-15 Existing Conditions Summary of Freeway Ramp Metering 3-43
Table 4-2 Horizon Year (2035) Summary of Intersection Analysis 4-11
Table 4-3 Horizon Year (2035) Summary of Intersection Analysis (cont.) 4-12
Table 4-4 Horizon Year (2035) Summary of Intersection Analysis (cont.) 4-13
Table 4-5 Horizon Year (2035) Summary of Roadway Segment Analysis 4-14
Table 4-6 Horizon Year (2035) Summary of Roadway Segment Analysis (cont.) 4-15
Table 4-7 Horizon Year (2035) Summary of Roadway Segment Analysis (cont.) 4-16
Table 4-8 Horizon Year (2035) Summary of Roadway Segment Analysis (cont.) 4-17
Table 4-9 Horizon Year (2035) Summary of Roadway Segment Analysis (cont.) 4-18
Table 4-10 Horizon Year (2035) Summary of Roadway Segment Analysis (cont.) 4-19
Table 4-11 Horizon Year (2035) Summary of Roadway Segment Analysis (cont.) 4-20
Table 4-12 Horizon Year (2035) Freeway Segment Analysis Summary 4-21
Table 4-13 Horizon Year (2035) Freeway Segment Analysis Summary (cont.) 4-22
Table 4-14 Horizon Year (2035) Summary of Ramp Metering Analysis 4-23
Table 6-1 Post Mitigation Summary of Intersection Analysis 6-16
Table 6-2 Post Mitigation Summary of Roadway Segment Analysis 6-17
Table 6-3 Post Mitigation Summary of Roadway Segment Analysis 6-18
Table 6-4 Post Mitigation Summary of Roadway Segment Analysis 6-19
Table 6-5 Post Mitigation Summary of Roadway Segment Analysis 6-20
Table 6-6 Post Mitigation Summary of Roadway Segment Analysis 6-21
Table 6-7 Post Mitigation Summary of Roadway Segment Analysis 6-22
Appendices
Appendix A Existing Traffic Signal Timing Sheets
Appendix B Existing Intersection Geometrics
Appendix C Traffic Count Sheets
Appendix D Synchro Peak-Hour Intersection Analysis Sheets
Appendix E Ramp Meter Rates
Appendix F Post-Model Volume Adjustments
Appendix G Peak-Hour Volumes Forecast Worksheets

1 INTRODUCTION

The following traffic study has been prepared to determine and evaluate the traffic impacts associated with the Uptown, North Park and Golden Hill Community Plans Updates. This evaluation assesses the impacts of the proposed Land Use and Mobility Elements.

1.1 PROJECT DESCRIPTION

One preferred land use alternative was presented and analyzed as part of this study. The preferred land use alternative will be used to regulate and guide the strategic growth within the three communities. In addition to the land use alternative, a Mobility Element was prepared based on the existing roadway conditions, potential future transportation deficiencies and improvement recommendations based on an extensive input from the community stakeholders. Figure 1-1 depicts the location of the Uptown, North Park, and Golden Hill Communities within the regional context. Figure 1-2 shows the overall project boundary study area for the Community Plan Update and each individual community boundary. Tables 11 through $1-7$ show the trip generation comparison for base year 2008, adopted community plan, and proposed Land Use plan for each of the communities. Figures 1-3, 1-4 and 1-5 illustrate the proposed Land Use for each community.

1.2 ANALYSIS SCENARIOS

A total of two scenarios were analyzed as part of the project, which are listed below:

Existing Conditions

1) Existing Conditions: Represents the traffic conditions of the existing street network.

Horizon Year Conditions (2035)

2) Horizon Year (2035) Conditions: Represents the traffic conditions of the street network assumed to be in place under Horizon Year conditions with the implementation of the land use changes per the Land Use Element of each plan.

Regional Vicinity Map
Uptown, North Park, Golden Hill | Draft Report June 2015 | Version 3

FIGURE 1-2

Table 1-1 Trip Generation Comparison: Uptown

Land Use	2008			Adopted			Proposed		
	Amount		Vehicle	Amount		Vehicle	Amount		Vehicle
ACTIVE PARK (AC)	27.7	acre	1382	27.7	acre	1381	47.7 a	acre	2378
ARTERIAL COMMERCIAL	869.6	ksf	34620	791.2	ksf	31499	752.5 k	ksf	29954
AUTO DEALERSHIP $\{$ KSF)		ksf	346	0	ksf	0	0	ksf	0
AUTO RENTAL SERV (LSKSF)		Is-ksf	57	0	ls-ksf	0	0 Is	s-ksf	0
AUTO REPAIR (KSF)	48.7		1007	12.5	ksf	257	12.5	ksf	257
Carwash (F service-site)			922	0	site	0	0 s	site	0
$\begin{aligned} & \text { CHURCH (NO DAY-CARE } \\ & \text { KSF) } \\ & \hline \end{aligned}$	345.4	ksf	1724	343.1	ksf	1712	343.1	ksf	1712
$\begin{aligned} & \text { CHURCH (W/DAY-CARE } \\ & \text { KSF) } \end{aligned}$	114.3	ksf	1713	80.5	ksf	1207	80.5	ksf	1207
CHURCH (W/O DAYCAREAC)			32	1	acre	30		acre	30
COMMUNICATION OR UTILITY			8	2.9	ksf	7	2.9	ksf	7
COMMUNITY COMMERCIAL (KSF)	107.6	ksf	7513	1829	ksf	127713	1833.9	ksf	128093
$\begin{aligned} & \text { CONVALESCENT/NURSING } \\ & \text { (BED) } \end{aligned}$	23.0		67	23	bed	67	23	bed	67
CONVALESCENT/NURSING (BED)	105.0		304	104	bed	301	104 b	bed	301
CORPORATE HEADQTRS/SING(KSF)	19.9	ksf	199	0	ksf	0		ksf	0
DAY CARE/PRE-SCHOOL (STU)	70.0	stu	352	0	stu	0		stu	0
DMV (KSF)	15.5	ksf	2678	15.5	ksf	2678	15.5	ksf	2678
DRINKING PLACE (KSF)	20.3	ksf	2646	5.8	ksf	758	5.8	ksf	758
DRUG STORE (KSF)	58.7	ksf	5288	58.7	ksf	5288	58.7		5288
ELEMENTARY SCHOOL (STU)	2519.0	stu	7319	3062	stu	8897	3062	stu	8897
FINAN INST(W/O-DR/THRKSF)	24.0	ksf	3392	24	ksf	3392	24		3392
FINANCIAL INST(W DR/THR-KSF)	49.0	ksf	9252	49	ksf	9252	49		9252
FIRE OR POLICE STATION	3.0	site	684	3	site	684	3	site	684
FURNITURE STORE (KSF)	56.5	ksf	340	8.1		49	8.1		49
GAS STA W MART/CARWASH(PUMP)	12.0	pump	1856		pump	1856	12 p	pump	1856

Table 1-2 Trip Generation Comparison: Uptown (cont.)

Land Use	2008			Adopted			Proposed		
	Amount		Vehicle	Amount		Vehicle	Amount		Vehicle
GAS STATION W FMART (PUMP)	52.0	pump	7782		pump	7782	52 pump		7782
GOV'T OFFICE/CENTER(KSF)	11.1		341	0	ksf	0	0 ksf $\quad 0$		
HIGH RISE OFFICE (KSF)	140.8	ksf	2255	140.8	ksf	2255	140.8	ksf	2255
HIGH-RISE HOTEL (ROOM)	74.0	room	739		room	739	74 room		739
HOSPITAL-GENERAL (KSF)	499.5	ksf	10308	499.5	ksf	10308	499.5	ksf	10308
INACTIVE USE	438.9	0	0	413.5	0	0	408.5	0	0
LIBRARY (KSF)		ksf	226	4.5	ksf	226	4.5	ksf	226
LIGHT INDUSTRY (KSF)	1.2		18	0		0	0	ksf	0
LOW-RISE HOTEL/MOTELROOM	795.0	room	7145	146	room	1313	146 r	oom	1313
LR OFFICE (10.1k-20k-KSF)	439.6	ksf	11741	398.1	ksf	11535	398.1	ksf	10633
LR OFFICE (20.1k-35k-KSF)	321.7	ksf	7431	321.7	ksf	7431	321.7	ksf	7431
LR OFFICE (35.1K-75K KSF)	158.3	ksf	3291	158.3	ksf	3291	158.3	ksf	3291
LR OFFICE ($50.1 \mathrm{k}-75 \mathrm{k}$-KSF)	163.8	ksf	3102	111.8	ksf	2117	111.8	ksf	2117
LR OFFICE (5K-10K KSF)	383.9	ksf	12142	123.1	ksf	3715	93.1	ksf	2944
LR OFFICE (U 5K KSF)	474.3	ksf	18513	96.4	ksf	3715	90.1	ksf	3517
MARKET OPEN 16HR/DAY (KSF)	5.6	ksf	2811	5.6	ksf	2811	5.6	ksf	2811
MARKET OPEN 24HR/DAY (KSF)	4.8	ksf	3360	4.8	ksf	3360	4.8	ksf	3360
MEDICAL OFFICE (KSF)	206.8	ksf	10661	236.1	ksf	12178	294.1	ksf	14911
MONASTERY (ksf)	3.6	ksf	5	0		0	0	ksf	0
MOVIE THEATER (KSF)	15.6	ksf	1218	15.6	ksf	1218	15.6	ksf	1218
MULTI-FAMILY (O 20DU/AC)	14329.0	du	86510	28504	du	172097	26379	du	159265
MULTI-FAMILY (U 20DU/AC)	549.0	du	4392	466	du	3728	473	du	3784
NEIGHBORHOOD COMM (KSF)	65.4	ksf	7838	39.4	ksf	4718	39.4	ksf	4718
NURSERY (KSF)	5.3		211	4.5		178	4.5		178
OTHER CHILD SCHOOL(KSF)	13.4	ksf	519	13.4	ksf	519	13.4	ksf	519

Table 1-3 Trip Generation Comparison: Uptown (cont.)

Land Use	2008			Adopted			Proposed		
	Amount		Vehicle	Amount		Vehicle	Amount		Vehicle
OTHER GROUP QUARTERS	4.3	acre	13		acre	3		acre	3
OTHER GROUP QUARTERS (DU)	1.0	du	4	0	du	0	0	du	0
OTHER HEALTH CARE (KSF)	603.3	ksf	30192	541.7	ksf	27109	541.7	ksf	27109
OTHER PUBLIC SERVICE	0.7	ksf	208	0	ksf	0		ksf	0
OTHER RECREATION-LOW	2.9	ksf	13	2.4	ksf	11	0	ksf	0
OTHER RETAIL COMM. (KSF)	52.5	ksf	2090	8.2	ksf	326	8.2	ksf	326
OTHER SCHOOL (STU)	125.0	stu	361	125	stu	361	125	stu	361
OTHER UNIV./COLLEGE (KSF)	850.0	ksf	1382	0	ksf	0	0	ksf	0
PARKING	28.5	acre	0	9.3	acre	0	3.4	acre	0
POST OFFICE W/MAIL DROP(KSF)	15.9	ksf	4783	15.9	ksf	4783	15.9	ksf	4783
$\begin{aligned} & \text { RBALL/TENNIS/HEALTH(KS } \\ & \text { F) } \\ & \hline \end{aligned}$	18.0	ksf	703	18	ksf	703	18	ksf	703
RESTAURANT (FAST-FOOD KSF)	22.2	ksf	15627	22.2	ksf	15627	22.2	ksf	15627
RESTAURANT (SIT-DOWN KSF)	127.8	ksf	16644	103.7	ksf	13506	103.7	ksf	13506
RESTUARANT (QUALITYKSF)	195.7	ksf	19593	183.1	ksf	18337	168.1	ksf	16837
RETIREMENT/SENIOR HOME (DU)	0.0	du	0	84	du	336	84		336
RETIREMENT/SENIOR HOME(DU)	140.0	du	560	154	du	616	154		616
RIGHT-OF-WAY	756.9	ksf	0	732.1	ksf	0	740	ksf	0
$\begin{aligned} & \text { SCHOOL DISTRICT OFF } \\ & \text { (ksf) } \end{aligned}$	139.9	ksf	4387	139.9	ksf	4387	139.9	ksf	4387
SINGLE FAMILY (DETACHED)	4762.0	du	42536	4252	du	37981	4284	du	38264
SINGLE-MULTI UNIT	2770.0	du	22039	1286	du	10234	1155	du	9193
SPECIALTY COMMERCIAL(KSF)	46.5	ksf	1822	2.5	ksf	100	19	ksf	1656
SPORT FACILITY-IN (AC)	0.2	acre	7	0	acre	0	0	acre	0
SUPERMARKET (KSF)	63.8	ksf	9597	19.3	ksf	2905	19.3	ksf	2905
UCSD Hospital (ksf)	183.9	ksf	3659	183.9	ksf	3659	368		7320
UNDER CONTRUCTION	2.4	acre	11		acre	0		acre	0
WAREHOUSING (KSF)	18.5	ksf	93	0	ksf	0	0	ksf	0
Grand Total	34594.6	0.0	462584	46166	0	593246	44137	0	584112

Table 1-4 Trip Generation Comparison: North Park

Land Use	2008			Adopted			Proposed		
	Amount		Vehicle	Amount		Vehicle	Amount		Vehicle
ACTIVE PARK (AC)	15.5	acre	773	15.5	acre	773	16	acre	798
ARTERIAL COMMERCIAL (KSF)	1163.9	ksf	46126	608.3	ksf	24213	608.3	ksf	24213
AUTO DEALERSHIP \{KSF)	32.3	ksf	1621	0.6	ksf	30	0.6	ksf	30
AUTO PART SALE (KSF)	18.7	ksf	1198	0	ksf	0	0	ksf	0
AUTO RENTAL SERV (LS-KSF)	2.8	Is-ksf	36	0	Is-ksf	0	0	Is-ksf	0
AUTO REPAIR (KSF)	82.6	ksf	1703	14.4	ksf	296	14.4	ksf	296
CAR-WASH (SELF-WASH STALL)	8	stalls	797	0	stalls	0	0	stalls	0
CASINO (ksf)	0.3	ksf	3	0	ksf	0	0	ksf	0
CHURCH (NO DAY-CARE KSF)	358.2	ksf	1791	358.2	ksf	1791	358.2	ksf	1791
CLINIC (KSF)	0	ksf	0	1	ksf	33	1	ksf	33
COMMUNICATION OR UTILITY	1	acre	3	1	acre	2	1	acre	2
COMMUNITY COMMERCIAL (KSF)	12.6	ksf	879	637.5	ksf	44531	613.8	ksf	42876
$\begin{aligned} & \text { CONVALESCENT/NURSING } \\ & \text { (BED) } \end{aligned}$	12	bed	35	12	bed	35	12	bed	35
$\begin{aligned} & \text { DAY CARE/PRE-SCHOOL } \\ & \text { (STU) } \end{aligned}$	250	stu	1259	250	stu	1259	250	stu	1259
DRINKING PLACE (KSF)	29.6	ksf	3838	10.7	ksf	1384	10.7	ksf	1384
DRUG STORE (KSF)	37.7	ksf	3397	37.7	ksf	3397	37.7	ksf	3397
ELEMENTARY SCHOOL (STU)	1282	stu	3725	1897	stu	5512	1897	stu	5512
FINAN INST(W/O-DR/THR- KSF)	20.3	ksf	2870	20.3	ksf	2870	20.3	ksf	2870
FINANCIAL INST(W DR/THRKSF)	11.7	ksf	2207	11.7	ksf	2207	11.7	ksf	2207
FIRE OR POLICE STATION	0	site	0	1	site	228	1	site	228
FURNITURE STORE (KSF)	47.1	ksf	283	2	ksf	12	2	ksf	12
GAS STATION W FMART (PUMP)	56	pump	8379	56	pump	8379	56	pump	8379
GOV'T OFFICE/CENTER(KSF)	15.5	ksf	475	0	ksf	0	0	ksf	0
HIGH RISE OFFICE (KSF)	2.8	ksf	45	0	ksf	0	0	ksf	0
HOSPITAL-GENERAL (KSF)	75.7	ksf	1562	75.7	ksf	1562	75.7	ksf	1562
INACTIVE USE	175.3	acre	0	167.6	acre	0	165.4	acre	0
LIBRARY (KSF)	18.8	ksf	939	18.8	ksf	939	18.8	ksf	939
LIGHT INDUSTRY (KSF)	17.4	ksf	263	0	ksf	0	0	ksf	0
LOW-RISE HOTEL/MOTELROOM	217	room	1950	205	room	1842	205	room	1842
LR OFFICE (10.1k-20k-KSF)	97.2	ksf	2598	97.2	ksf	2598	83.6	ksf	2234
LR OFFICE (20.1k-35k-KSF)	25.2	ksf	582	25.2	ksf	582	25.2	ksf	582
LR OFFICE (35.1K-75K KSF)	44.6	ksf	927	44.6	ksf	927	44.6	ksf	927
LR OFFICE (5K-10K KSF)	81	ksf	2568	81	ksf	2568	81	ksf	2568

Table 1-5 Trip Generation Comparison: North Park (cont.)

Land Use	2008			Adopted			Proposed		
	Amount		Vehicle	Amount		Vehicle	Amount		Vehicle
LR OFFICE (U 5K KSF)	73.4	ksf	2869	73.4	ksf	2869	73.4	ksf	2869
$\begin{aligned} & \text { MARKET OPEN 16HR/DAY } \\ & \text { (KSF) } \end{aligned}$	78.5	ksf	39395	78.5	ksf	39395	78.5	ksf	39395
$\begin{aligned} & \text { MARKET OPEN 24HR/DAY } \\ & \text { (KSF) } \end{aligned}$	9.8	ksf	6843	9.8	ksf	6843	9.8	ksf	6843
MEDICAL OFFICE (KSF)	33	ksf	1707	32	ksf	1653	32	ksf	1653
MOVIE THEATER (KSF)	23	ksf	1796	23	ksf	1796	23	ksf	1796
MULTI-FAMILY (O 20DU/AC)	17330	du/acre	104633	26946	du/acre	162689	27947	du/acre	168735
MULTI-FAMILY (U 20DU/AC)	1908	du/acre	15264	2276	du/acre	18209	2451	du/acre	19609
$\begin{array}{\|l} \hline \text { NEIGHBORHOOD COMM } \\ \text { (KSF) } \\ \hline \end{array}$	45.2	ksf	5411	45.2	ksf	5411	45.2	ksf	5411
NURSERY (KSF)	0.2	ksf	8	0	ksf	0	0	ksf	0
OTHER GROUP QUARTERS (DU)	13	du	48	13	du	48	12	du	44
OTHER HEALTH CARE (KSF)	66.5	ksf	3339	66.5	ksf	3339	66.5	ksf	3339
OTHER PUBLIC SERVICE	0.9	acre	213	0.3	acre	86	0.3	acre	86
OTHER RECREATION-HIGH	2.8	acre	109	2.6	acre	104	2.6	acre	104
OTHER RETAIL COMM. (KSF)	1.5	ksf	59	0	ksf	0	0	ksf	0
PARKING	12.3	acre	0	4.9	acre	0	4.8	acre	0
POST OFFICE W/MAIL DROP(KSF)	6.2	ksf	1865	0	ksf	0	0	ksf	0
PUBLIC STORAGE(KSF)	20.3	ksf	41	0	ksf	0	0	ksf	0
RBALL/TENNIS/HEALTH(KSF)	12.7	ksf	495	12.7	ksf	495	12.7	ksf	495
RESTAURANT (FAST-FOOD KSF)	29.4	ksf	20652	29.4	ksf	20652	29.4	ksf	20652
RESTAURANT (SIT-DOWN KSF)	104.2	ksf	13569	104.2	ksf	13569	104.2	ksf	13569
RESTUARANT (QUALITY-KSF)	76.7	ksf	7709	76.7	ksf	7709	76.7	ksf	7709
RIGHT-OF-WAY	760.4	acre	0	760.4	acre	0	760.4	acre	0
SENIOR HIGH SCHOOL(STU)	1441	stu	2594	1441	stu	2594	1441	stu	2594
SINGLE FAMILY (DETACHED)	5007	du	44721	4633	du	41384	4640	du	41447
SINGLE-MULTI UNIT	961	du	7646	614	du	4885	614	du	4885
$\begin{aligned} & \text { SPECIALTY } \\ & \text { COMMERCIAL(KSF) } \end{aligned}$	3.7	ksf	143	0	ksf	0	0	ksf	0
SPORT FACILITY-IN (AC)	0.3	ksf	10	0.3	ksf	9	0.3	ksf	9
SUPERMARKET (KSF)	86.5	ksf	13011	86.5	ksf	13011	86.5	ksf	13011
TIRE STORE (KSF)	4.8	ksf	124	0	ksf	0	0	ksf	0
UNDER CONTRUCTION	0.7	ksf	3	0	ksf	0	0	ksf	0
WAREHOUSING (KSF)	5	ksf	25	0	ksf	0	0	ksf	0
Grand Total			387134	41979.4		454720			460231

Table 1-6 Trip Generation Comparison: Golden Hill

Land Use	2008			Adopted			Proposed		
	Am	unt	Vehicle	Amount		Vehicle	Amount		Vehicle
ARTERIAL COMMERCIAL (KSF)	124.3	ksf	4942	33.9	ksf	1355	35.9	ksf	1437
AUTO REPAIR (KSF)	6.2	ksf	128	2	ksf	41	2	ksf	41
CHURCH (NO DAY-CARE KSF)	44.5	ksf	222	44.5	ksf	222	44.5	ksf	222
CHURCH (W/DAY-CARE KSF)	21.4	ksf	321	21.4	ksf	321	21.4	ksf	321
COMMUNITY COMMERCIAL (KSF)	0	ksf	0	264	ksf	18439	214.6	ksf	14999
CONVALESCENT/NURSING (KSF)	32	ksf	235	28	ksf	205	28	ksf	205
DRINKING PLACE (KSF)	4.6	ksf	604	4.6	ksf	604	4.6	ksf	604
ELEMENTARY SCHOOL (STU)	949	stu	2758	1226	stu	3563	1226	stu	3563
ESTATE HOUSING (DU)	1	du	12	1	du	12	1	du	12
FIRE OR POLICE STATION	1	site	228	1	site	228	1	site	228
FURNITURE STORE (KSF)	2.1	ksf	13	0	ksf	0	0	ksf	0
GAS STATION W FMART (PUMP)	12	pump	1796	12	pump	1796	12	pump	1796
INACTIVE USE	109.2	acre	0	96.3	acre	0	54.3	acre	0
LIGHT INDUSTRY (KSF)	112.8	ksf	1696	102.6	ksf	1543	102.6	ksf	1543
LR OFFICE (10.1k-20k-KSF)	14	ksf	374	14	ksf	374	14	ksf	374
LR OFFICE (U 5K KSF)	18.7	ksf	729	18.7	ksf	729	18.7	ksf	729
MARKET OPEN 16HR/DAY (KSF)	20.1	ksf	10036	20.1	ksf	10036	20.1	ksf	10036
MEDICAL OFFICE (KSF)	4.5	ksf	231	4.5	ksf	231	4.5	ksf	231
MULTI-FAMILY (O 20DU/AC)	3903	du/acre	23565	6389	du/acre	38574	6365	du/acre	38430
MULTI-FAMILY (U 20DU/AC)	237	du/acre	1896	305	du/acre	2441	305	du/acre	2441
NEIGHBORHOOD COMM (KSF)	12.4	ksf	1489	7.2	ksf	864	17.2	ksf	2062
OTHER CHILD SCHOOL(KSF)	6	ksf	232	0	ksf	0	0	ksf	0
OTHER GROUP QUARTERS	0.8	acre	3	0	acre	0	0	acre	0
OTHER GROUP QUARTERS (DU)	7	du	26	7	du	26	7	du	26
OTHER HEALTH CARE (KSF)	10.7	ksf	534	10.7	ksf	534	10.7	ksf	534
OTHER PUBLIC SERVICE	0.7	ksf	196	0	ksf	0	0	ksf	0
OTHER RETAIL COMM. (KSF)	2.1	ksf	83	2.1	ksf	83	2.1	ksf	83
POST OFFICE W/MAIL DROP(KSF)	3.8	ksf	1126	0	ksf	0	0	ksf	0
$\begin{aligned} & \text { RESTAURANT (FAST-FOOD } \\ & \text { KSF) } \end{aligned}$	2.8	ksf	1930	2.8	ksf	1930	2.8	ksf	1930

Table 1-7 Trip Generation Comparison: Golden Hill (cont.)

Land Use	2008			Adopted			Proposed		
	Amount		Vehicle	Amount		Vehicle	Amount		Vehicle
RESTAURANT (SIT-DOWN KSF)	10.3	ksf	1349	10.3	ksf	1349	10.3	ksf	1349
RESTUARANT (QUALITYKSF)	6.4	ksf	638	6.4	ksf	638	6.4	ksf	638
RETIREMENT/SENIOR HOME(DU)	0	du	0	4	du	16	4	du	16
RIGHT-OF-WAY	227.6	acre	0	228	acre	0	228.2	acre	0
SINGLE FAMILY (DETACHED)	1356	du	12110	1087	du	9709	1114	du	9950
SINGLE-MULTI UNIT	1564	du	12441	844	du	6713	844	du	6713
SPORT FACILITY-IN (AC)	0.1	acre	3	0.1	acre	3	0.1	acre	3
SUPERMARKET (KSF)	36.1	ksf	5433	36.1	ksf	5433	36.1	ksf	5433
Grand Total	8871.4		87900	10840.7		108535	10763.5		106389

FIGURE 1-3

Proposed Land Use: Uptown

FIGURE 1-4

FIGURE 1-5

Proposed Land Use: Golden Hill
Uptown, North Park, Golden Hill \| Draft Report June 2015 | Version 3

2 METHODOLOGY

The following section describes the methodology used to determine study intersections, perform capacity analysis, and determine significant impacts.

2.1 STUDY INTERSECTIONS

Intersections within the project boundary were selected to be studied based on several factors, which included the following:

- Existing circulation element roadways intersecting with other existing circulation element roadways where both roadways function or are classified as a collector or higher
- Intersections that provide access to/from freeways
- Anticipated circulation element roadways intersecting with other existing and/or anticipated circulation element roadway where both roadways function or are classified as a collector or higher
- Key intersections where both intersecting streets meet one of the following conditions:
- 4-lanes (or greater)
- 3-lanes and carries over 15,000 ADT
- 2-lanes and carries over 10,000 ADT
- Additional intersections which the community has expressed concerns

Based on the criteria listed above, a total of 53 intersections have been selected for analyses (30 intersections are located within Uptown; 11 within North Park; and 12 within Golden Hill) and are shown in Table 2-1. Figure 2-1 displays the location of each of the study intersections

Table 2-1 Study Intersections: Uptown

	Intersection	Traffic Control
$\mathbf{1}$	Washington St \& Hancock St	Traffic Signal
$\mathbf{2}$	Washington St \& San Diego Ave	Traffic Signal
$\mathbf{3}$	Washington St \& India St	Traffic Signal
$\mathbf{4}$	Washington St \& Fourth Ave	Traffic Signal
$\mathbf{5}$	Washington St \& Fifth Ave	Traffic Signal
$\mathbf{6}$	Washington St \& Eighth Ave/SR-163 Off-Ramp (Caltrans)	Traffic Signal
$\mathbf{7}$	Washington St \& Richmond St/SR-163 On-Ramp (Caltrans)	Traffic Signal
$\mathbf{8}$	Washington St/Normal St \& Campus Ave/Polk Ave	Traffic Signal
$\mathbf{9}$	Normal St/El Cajon Blvd \& Park Blvd	Traffic Signal
$\mathbf{1 0}$	University Ave \& Fourth Ave	Traffic Signal
$\mathbf{1 1}$	University Ave \& Fifth Ave	Traffic Signal
$\mathbf{1 2}$	University Ave \& Sixth Ave	Traffic Signal
$\mathbf{1 3}$	University Ave \& Tenth St	Traffic Signal
$\mathbf{1 4}$	University Ave \& Normal St	Traffic Signal

$\mathbf{1 5}$	University Ave \& Park Blvd	Traffic Signal
$\mathbf{1 6}$	Robinson Ave \& Fourth Ave	Traffic Signal
$\mathbf{1 7}$	Robinson Ave \& Fifth Ave	Traffic Signal
$\mathbf{1 8}$	Robinson Ave \& Sixth Ave	Traffic Signal
$\mathbf{1 9}$	Vine St \& India St	Traffic Signal
$\mathbf{2 0}$	Sassafras St \& Kettner Blvd	Traffic Signal
$\mathbf{2 1}$	Sassafras St \& India St	Traffic Signal
$\mathbf{2 2}$	Laurel St \& India St/ l-5 NB On-Ramp	Traffic Signal
$\mathbf{2 3}$	Laurel St \& Fourth Ave	Traffic Signal
$\mathbf{2 4}$	Laurel St \& Fifth Ave	Traffic Signal
$\mathbf{2 5}$	Laurel St \& Sixth Ave	Traffic Signal
$\mathbf{2 6}$	Hawthorn St \& Brant St	Two-way stop controlled
$\mathbf{2 7}$	Grape St \& State St	Traffic Signal
$\mathbf{2 8}$	Elm St \& First Ave	Traffic Signal
$\mathbf{2 9}$	Elm St \& Sixth Ave	Traffic Signal
$\mathbf{3 0}$	Cedar St \& Second Ave	Two-way stop controlled

As shown in the table, 28 of the 30 intersections evaluated in the Uptown community are signalized while 2 intersections are unsignalized with vehicles required to stop on two legs of the intersection. The majority of the intersections include at least one of the major roadways within the community, which are Washington Street, University Avenue, Robinson Avenue, Upas Street, and Laurel Street.

Table 2-1.2 Study Intersections: North Park

	Intersection	Traffic Control
$\mathbf{3 1}$	Madison Ave \& Texas St	Traffic Signal
$\mathbf{3 2}$	El Cajon Blvd \& Texas St	Traffic Signal
$\mathbf{3 3}$	El Cajon Blvd \& 30th St	Traffic Signal
$\mathbf{3 4}$	El Cajon Blvd \& I-805 SB Ramps	Traffic Signal
$\mathbf{3 5}$	El Cajon Blvd \& I-805 NB Ramps	Traffic Signal
$\mathbf{3 6}$	University Ave \& Texas St	Traffic Signal
$\mathbf{3 7}$	University Ave \& 30th St	Traffic Signal
$\mathbf{3 8}$	University Ave \& Boundary St	Traffic Signal
$\mathbf{3 9}$	University Ave \& I-805 NB Ramps	Traffic Signal
$\mathbf{4 0}$	North Park Way/I-805 SB Ramps \& Boundary St/33rd St	All-way stop controlled
$\mathbf{4 1}$	Upas St \& 30th St (W)	All-way stop controlled

As shown in the table, 9 of the 11 intersections evaluated in the North Park community are signalized while 2 intersections are all-way stop controlled unsignalized. The majority of the intersections include at least one of the major roadways within the community, which are El Cajon Boulevard, University Avenue, and Upas Street.

Table 2-1.3 Study Intersections: Golden Hill

Intersection		Traffic Control
$\mathbf{4 2}$	B St \& 17th St/I-5 SB Off-Ramp	One-way stop controlled
$\mathbf{4 3}$	B St \& I-5 NB Off-Ramp	None
$\mathbf{4 4}$	B St \& 19th St/l-5 NB On-Ramp	Traffic Signal
$\mathbf{4 5}$	C St \& 17 St	One-way stop controlled
$\mathbf{4 6}$	Broadway \& 30th St	Traffic Signal
$\mathbf{4 7}$	SR-94 WB Ramps \& Broadway	One-way stop controlled
$\mathbf{4 8}$	SR-94 WB Ramps \& 28th St	Two-way stop controlled
$\mathbf{4 9}$	SR-94 EB Ramps \& 28th St	One-way stop controlled
$\mathbf{5 0}$	F St \& 22nd St	All-way stop controlled
$\mathbf{5 1}$	F St \& 25th St	All-way stop controlled
$\mathbf{5 2}$	G St \& 22nd St	All-way stop controlled
$\mathbf{5 3}$	G St \& 25th St	All-way stop controlled

As shown in the table, only 2 of the 12 intersections evaluated in the Golden Hill community are signalized while the other 10 intersections are unsignalized. The intersection of B Street and I-5 Northbound Off-Ramp has no conflicting movements and therefore does not require any traffic control.

FIGURE 2-1

2.2 ANALYSIS PROCESS

The analysis process includes determining the a.m. and p.m. peak-hour operations at the study intersections, freeway segments and freeway ramps, and operations daily along the roadway segments. Intersections were measured and quantified using the Synchro traffic analysis software package. Results will be compared to the City's thresholds to determine if the project has any significant traffic impacts.

2.2.1 ANALYSIS SOFTWARE

To analyze the operations of both signalized and unsignalized intersections, Synchro 8.0 (Trafficware) was used for the analysis. Synchro 8.0 uses the methodologies outlined in the 2000 Highway Capacity Manual (HCM). The existing intersection peak-hour factor (PHF) was used for Existing and Near Term scenarios. A PHF of 0.92 was used for Horizon Year conditions to account for the unknown change in traffic patterns.

Existing traffic signal timing parameters were provided by the City of San Diego and Caltrans and are included in Appendix A.

2.2.2 SIGNALIZED AND UNSIGNALIZED INTERSECTIONS

The 2010 Highway Capacity Manual (HCM) published by the Transportation Research Board establishes a system whereby highway facilities are rated for their ability to process traffic volumes. The terminology "level of service" is used to provide a "qualitative" evaluation based on certain "quantitative" calculations, which are related to empirical values.

Level of service (LOS) for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and loss of travel time. Specifically, LOS criteria are stated in terms of the average control delay per vehicle for the peak 15 -minute period within the hour analyzed. The average control delay includes initial deceleration delay, queue move-up time, and final acceleration time in additional to the stop delay. The level of service for unsignalized intersections is determined by the computed or measured control delay and is defined for each minor movement. The criteria for the various levels of service designations for signalized and unsignalized intersections are given in Table 2-2.

Within the City of San Diego, all signalized and unsignalized intersections are considered deficient if they operate at LOS E or F.

Table 2-2 Level of Service (LOS) Criteria for Intersections

LOS	Signalized (Control Delay) ($\mathrm{sec} / \mathrm{veh})^{(\mathrm{a})}$	Unsignalized (Control Delay) (sec/veh) ${ }^{(b)}$	Description
A	≤ 10.0	≤ 10.0	Operations with very low delay and most vehicles do not stop.
B	>10.0 and ≤ 20.0	>10.0 and ≤ 15.0	Operations with good progression but with some restricted movement.
c	>20.0 and ≤ 35.0	>15.0 and ≤ 25.0	Operations where a significant number of vehicles are stopping with some backup and light congestion.
D	>35.0 and ≤ 55.0	>25.0 and ≤ 35.0	Operations where congestion is noticeable, longer delays occur, and many vehicles stop. The proportion of vehicles not stopping declines.
E	>55.0 and ≤ 80.0	>35.0 and ≤ 50.0	Operations where there is significant delay, extensive queuing, and poor progression.
F	>80.0	>50.0	Operations that are unacceptable to most drivers, when the arrival rates exceed the capacity of the intersection.
Source: (a) 2000 Highway Capacity Manual, Chapter 16, Page 2, Exhibit 16-2 (b) 2000 Highway Capacity Manual, Chapter 17, Page 2, Exhibit 17-2			

2.2.3 ROADWAY SEGMENTS

In order to determine the impacts on the study area roadway segments, Table 2-3 has been developed by the City of San Diego and is used as a reference. The segment traffic volumes under LOS E as shown in this table are considered at capacity because at LOS E the v/c Ratio is equal to 1.0.

Table 2-3 City of San Diego Roadway Segment Capacity and Level of Service

Road Class	Lanes	A	B	C	D	E
Freeway	8	60,000	84,000	120,000	140,000	150,000
Freeway	6	45,000	63,000	90,000	110,000	120,000
Freeway	4	30,000	42,000	60,000	70,000	80,000
Expressway	6	30,000	42,000	60,000	70,000	80,000
Prime Arterial (two-way)	6	25,000	35,000	50,000	55,000	60,000
Major Arterial (two-way)	6	20,000	28,000	40,000	45,000	50,000
Major Arterial (two-way)	4	15,000	21,000	30,000	35,000	40,000
Major Arterial (two-way)	3	11,250	15,750	22,500	26,250	30,000
Major Arterial (one-way)	3	12,500	16,500	22,500	25,000	27,500
Major Arterial (one-way)	2	10,000	13,000	17,500	20,000	22,500
Collector (two-way)	4	10,000	14,000	20,000	25,000	30,000
Collector (No center lane) (Continuous left-turn lane)	4	5,000	7,000	10,000	13,000	15,000
Collector (No fronting property)	2	4,000	5,500	7,500	9,000	10,000
Collector (two-way)	3	7,500	10,500	15,000	17,500	20,000
Collector (no center turn lane)	3	4,000	5,500	7,500	10,000	11,500
Collector (Commercial/Industrial fronting)	2	2,500	3,500	5,000	6,500	8,000
Collector (Multi-family)	2	2,500	3,500	5,000	6,500	8,000
Collector (one-way)	3	11,000	14,000	19,000	22,500	26,000
Collector (one-way with one lane dedicated for bike facility)	3	7,500	9,500	12,500	15,000	17,500
Collector (one-way)	2	7,500	9,500	12,500	15,000	17,500
Collector (one-way)	1	2,500	3,500	5,000	6,250	7,500
Sub-Collector (Single family)	2	-	-	2,200	-	-

Notes:
The volumes and the average daily level of service listed above are only intended as a general planning guideline. Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to roads carrying through traffic between major trip generators and attractors.
Capacities for any classification not identified in the sources noted below were developed based on interpolation from similar classifications.

Sources: City of San Diego Traffic Impact Study Manual, Table 2, Page 8, July 1998.
City of San Diego Planning Department Mobility Section

2.2.4 FREEWAY SEGMENTS

In order to determine the impacts on the study area freeway segments, Table 2-4 has been developed by Caltrans District 11 and is used as a reference. The procedure involves comparing the peak-hour volume of the mainline freeway segment to the theoretical capacity of the segment, which results in a v/c ratio. The calculated v / c ratio is then compared to the accepted ranges of v / c ratio values corresponding to the respective LOS

Table 2-4 LOS Criteria For Freeway Segment Analysis

LOS	v/c Ratio	Congestion/Delay	Traffic Description
A	<0.41	None	Free Flow
B	0.41-0.62	None	Free to stable flow, light to moderate volumes
C	0.63-0.80	None to minimal	Stable flow, moderate volumes, freedom to maneuver noticeably restricted
D	0.81-0.92	Minimal to substantial	Approaches unstable flow, heavy volumes, and very limited freedom to maneuver
E	0.93-1.00	Significant	Extremely unstable flow, maneuverability and psychological comfort extremely poor
F_{0}	1.01-1.25	Considerable 0-1 hour delay	Operations that are unacceptable to most drivers, when the arrival rates exceed the capacity of the intersection
F_{1}	1.26-1.35	Severe 1-2 hour delay	Forced flow, heavy congestion, long queues form behind breakdown points, stop and go
F_{3}	1.36-1.45	Very severe 2-3 hour delay	Extremely heavy congestion, very long queues
F_{4}	>1.46	Extremely severe 3+ hour delay	Gridlock
Notes: Based on the 1992 Caltrans guidelines.			

2.2.5 FREEWAY RAMP METERING

Ramp metering is a means of controlling the volume of traffic entering the freeway with the goal of improving the traffic operations and flow on the freeway main lanes. Freeway ramp meter analysis estimates the peak hour queues and delays at freeway ramps by comparing existing volumes to the meter rate at the given location. The excess demand, if any, forms the basis for calculating the maximum queues and maximum delays anticipated at each location. Substantial queues and delays can form where demand significantly exceeds the meter rate. This approach assumes a static meter rate throughout the course of the peak hour. However, Caltrans has indicated that the meter rates are continually adjusted based on the level of traffic using the on-ramp. To the extent possible, the meter rate is set such that the queue length does not exceed the available storage, smooth flows on the freeway mainline is maintained, and there is no interference to arterial traffic.

2.3 SIGNIFICANCE DETERMINATION

The City of San Diego and Caltrans have developed acceptable threshold standards to determine the significance of project impacts to intersections, roadway segments, freeway segments, and freeway ramp metering. At intersections, the measurement of effectiveness (MOE) is based on allowable increases in delay. Along roadway segments and freeway segments, the MOE is based on allowable increases in the volume-to-capacity (v/c) ratio. At a freeway ramp meter, the MOE is based on allowable increases in delay, measured in minutes.

LOS F is not acceptable for any approach leg except for side streets on an interconnected arterial system. If vehicle trips from a project cause an intersection approach leg to operate at LOS F, except in the cases of side streets on an interconnected arterial system, this would be considered a significant project traffic impact that requires mitigation. At intersections that are expected to operate at LOS E or F without the project, the allowable increase in delay is two seconds at LOS E and one second at LOS F with the addition of the project. If vehicle trips from a project cause the delay at an intersection to increase by more than the allowable threshold, this would be considered a significant project impact that requires mitigation. Also, if the project causes an intersection that was operating at an acceptable LOS to operate at LOS E or F, this would be considered a significant project impact that requires mitigation.

For roadway segments that are forecasted to operate at LOS E or F with the project, the allowable increase in v/c ratio is 0.02 at LOS E and 0.01 at LOS F. If vehicle trips from a project cause the v/c ratio to increase by more than the allowable threshold, this would be considered a significant project traffic impact that requires mitigation. Also, if the project causes a street segment that was operating at an acceptable LOS to operate at LOS E or F, this would be considered a significant impact that requires mitigation.

Where the roadway segment operates at LOS E or F, if the intersections at the ends of the segment are calculated to operate at an acceptable LOS with the project; and a peak hour HCM arterial analysis for the same segment shows that the segment operates at an acceptable LOS with the project; then the project impacts are determined to be less than significant and no mitigation is required. If analysis shows either the intersections or segment under the peak hour HCM analysis do not operate acceptably, the project impacts are considered significant and unmitigated, requiring the adoption of findings of infeasibility and a statement of over-riding considerations before the project may be approved.

In certain instances mitigation may not be required even if a roadway segment operates at LOS E or LOS F. In such cases the following three conditions must all be met:

1. The roadway is built to its ultimate classification per the community plan;
2. The intersections on both ends of the failing segment operate at an acceptable LOS; and
3. An HCM arterial analysis indicates an acceptable LOS on the segment.

For freeway segments that are forecasted to operate at LOS E or F with the project, the allowable increase in v/c ratio is 0.01 at LOS E and 0.005 at LOS F. If vehicle trips from a project cause the v/c ratio to increase by more than the allowable threshold, this would be considered a significant project traffic impact that requires mitigation. Also, if the project causes a freeway segment that was operating at an acceptable LOS to operate at LOS E or F, this would be considered a significant impact that requires mitigation.

If vehicle trips from a project cause a metered ramp with a delay of 15 minutes per vehicle or higher to increase its delay by more than 2 minutes per vehicle, this would be considered a significant project traffic impact that requires mitigation if the freeway segment operates at LOS E or F.

Two classes of impacts are measured for significance: Direct Impacts and Cumulative Impacts. Direct traffic impacts are those projected to occur at the time the proposed study development becomes operational. During this time, other developments not presently operational but which are anticipated to
be operational during the Near Term scenario are included. Cumulative traffic impacts are those projected to occur at some point after the proposed study development becomes operational, such as during subsequent phases of the project, and when additional proposed developments in the area become operational (short-term cumulative) or when the affected community plan area reaches full planned build out (long-term cumulative). The project applicant would be responsible for mitigating direct impacts by improving operation to better than pre-project conditions. The project applicant would provide their fair share contribution toward installing improvements to mitigate cumulative impacts. A fair share contribution is based on the project's proportionate traffic contribution to future increased traffic volumes on a facility.

Table 2-5 shows the criteria for determining levels of significance for the different facilities in the study area.

Table 2-5 Significance Criteria For Facilities in Study Area

Facility	Measures of Effectiveness (MOE)	Significance Threshold ${ }^{(a)}$
Intersection	Seconds of Delay	>2.0 seconds at LOS E or >1.0 second at LOS F
Roadway Segment	ADT, v/c Ratio	>0.02 at LOS E, or >0.01 at LOS F
Freeway Segment	v/c Ratio	>0.01 at LOS E, or >0.005 at LOS F
Freeway Ramp Meter	Minutes of delay per vehicle	>2.0 minutes for freeway segments operating at LOS E, and >1.0 minutes for freeway segments operating at LOS F. The criteria only apply for ramp meters where the delay without project is 15 minutes or higher.
Notes: If a project adds any increment of delay to cause the operations of an intersection to go from LOS D to either LOS E or LOS F, then the project is considered to cause a significant impact. Source: City of San Diego Significance Determination Thresholds, page 72, January 2011. (a) Significance threshold applies only when the type of facility operates at LOS E or F.		

3 EXISTING CONDITIONS

This section summarizes the existing roadway circulation network, daily and peak-hour traffic volumes, and operations at the study intersections and roadway and freeway segments.

3.1 ROAD NETWORK

The following section provides a description of the existing study streets within the communities. Ultimate roadway classifications are taken from the Uptown Community Plan, last updated February 1988, the North Park Community Plan, last updated November 1986, and the Golden Hill Community Plan, last updated June 1990. The portions of the roadways described are intended to reflect the areas within the given community, and may not reflect the entirety of the roadway. Functional classifications are based on field observations performed during preparation of this report. Figures 3-1, 3-2, and 3-3 illustrate the existing roadway classifications for each of the three communities. Appendix B provides the existing intersection geometrics used in this study. The City of San Diego Bicycle Master Plan (City BMP) proposes several bicycle facilities in these communities as noted in the roadway descriptions below.

UPTOWN

First Avenue functions as a north-south, 2-lane collector with a curb to curb width of 50 feet between I-5 and Arbor Avenue. It is two-way for the majority of its length between Grape Street and Washington Street, and one-way northbound otherwise. First Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street for the entire length of the street. The posted speed limit is 30 mph . Access to $\mathrm{I}-5$ northbound is provided at the intersection of First Avenue and Elm Street. The ultimate adopted community plan street classification for First Avenue is a 3-lane collector. The City BMP proposes First Avenue as a Class III (Bike Route) facility between downtown and Lewis Street, with the option of a Class II (Bike Lanes) between Upas Street and Washington Street.

Fourth Avenue functions as a north-south roadway varying between a 2 -lane collector and a 3-lane collector. It is a one-way southbound 3 -lane collector with a curb to curb width of 50 feet between I-5 and Walnut Avenue, a one-way southbound 2-lane collector with a curb to curb width of 45 feet between Walnut Avenue and Washington Street, and a two-way, 2-lane collector with a curb to curb width of 50 feet north of Washington Street. It is currently functioning at its adopted plan ultimate classification. Fourth Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 30 mph . It is currently classified as a Class III bicycle route south of Juniper Street and has a striped enhanced Class II (buffered bicycle lane) between Elm Street and Laurel Street. The City BMP identifies Fourth Avenue as a Class III (Bike Route) facility between downtown and Upas Street, as a Class II (Bike Lanes) facility between Upas Street and Washington Street, and a Class III facility between Washington Street and Lewis Street.

Fifth Avenue functions as a one-way northbound 3-lane collector with a curb to curb width of 50 feet between I-5 and Washington Street. It is currently functioning at its adopted plan ultimate classification. Fifth Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 30 mph . It is classified as a Class III bicycle route south of Laurel Street and has a striped enhanced Class II (buffered bicycle lane) between Elm Street and Laurel Street. The City BMP identifies Fifth Avenue as a Class II (Bike Lanes) facility between downtown and Washington Street, with the option of a Class III (Bike Route) between University Avenue and Washington Street.

Sixth Avenue functions as a north-south 4-lane collector with no center lane and a curb to curb width of 60 feet between I-5 and University Avenue, and provides access to SR-163 north of University Avenue. From Washington Street to University Avenue, it functions as a 3-lane collector with a curb to curb width of 65 feet. It is currently functioning at its adopted plan ultimate classification. Sixth Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. Balboa Park runs along the east side of Sixth Avenue. The posted speed limit is 30 mph , and it is classified as a Class III bicycle route south of Upas Street. The City BMP proposes Sixth Avenue as a Class II (Bike Lanes) facility between downtown and Upas Street.

Ninth Avenue is a short two-way, north-south roadway with a curb to curb width of 50 feet between University Avenue and Washington Street with a SR-163 southbound off-ramp connection. Ninth Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .

Campus Avenue functions as a north-south 2-lane collector with a curb to curb width of 50 feet between Washington Street and Madison Avenue. It is currently functioning at its adopted plan ultimate classification. Campus Avenue is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the west side of the street between Madison Avenue and Monroe Avenue and between Van Buren Avenue and Tyler Avenue. Parallel parking is available along the other sections. The posted speed limit is 25 mph .

Cleveland Avenue functions as a 2-lane collector with bike lanes, parallel parking, and sidewalks on both sides of the street with a curb to curb width of 50 feet between Washington Street and Madison Avenue. South of Washington Street, no bike lanes are provided but parallel parking and sidewalks continue to line the street on both sides. It is currently functioning at its adopted plan ultimate classification. The posted speed limit is 25 mph . The City BMP proposes Cleveland Avenue as a Class II (Bike Lanes) facility between Madison Avenue and Richmond Street.

Curlew Street functions as a 2-lane collector with a curb to curb width of 40 feet between Reynard Way and Robinson Avenue. It is currently functioning at its adopted plan ultimate classification. Curlew Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . The City BMP proposes the entirety of Curlew Street as a Class III (Bike Route) facility.

Elm Street functions as a two-way 3-lane collector with a curb to curb width of 50 feet from First Avenue to Second Avenue, a one-way westbound 2-lane collector with a curb to curb width of 50 feet from Second Avenue to Third Avenue, and a 3-lane collector with a curb to curb width of 50 feet between Third Avenue and Sixth Avenue. It is bounded by an I-5 northbound off-ramp on the east and a northbound I-5 on-ramp on the west. It is currently functioning at its adopted plan ultimate classification. Elm Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .

Fort Stockton Drive functions as a 2-lane collector with a curb to curb width of 40 feet between Ampudia Street and Eagle Street. It is currently functioning at its adopted plan ultimate classification. Fort Stockton Drive is lined with sidewalks and curbs with parallel parking available on both sides of the street. Bike lanes are provided on Fort Stockton Drive between Witherby Street and Hermosa Way. The posted speed limit is 25 mph .

Front Street is not continuous through the Uptown community with breaks between Washington Street and University Avenue, Robinson Avenue and Brookes Avenue, Spruce Street and Maple Street, and Fir Street and Date Street. For areas south of Washington Street, Front Street is a two-lane roadway with parking allowed that serves residential areas and is not studied in this report. However, the portion of Front Street
north of Washington Street provides access to UCSD Medical Center and is a key circulation roadway that is included in the study. This portion of Front Street functions as a north-south two-way 2-lane collector with a curb to curb width of 40 feet between Dickinson Street and Arbor Drive, a one-way southbound 2-lane collector with a curb to curb width of 40 feet between Arbor Drive and Lewis Street, and a one-way southbound 3-lane collector with a curb to curb width of 50 feet between Lewis Street and Washington Street. Its adopted plan ultimate classification is a 3-lane collector between Arbor Drive and Washington Street. The posted speed limit is 25 mph . Front Street is lined with sidewalks and curbs with parallel parking available on both sides of the street.

Grape Street functions as a one-way eastbound, 3-lane collector with a curb to curb width of 50 feet between I-5 and First Avenue, and as a two-way, 2-lane collector with a curb to curb width of 50 feet between First Avenue and Sixth Avenue. Its adopted plan ultimate classification is a 3-lane collector between First Avenue and Sixth Avenue. Grape Street is lined with sidewalks and curbs. Angle parking is available on the north side of the street between First Avenue and Fourth Avenue, on both sides of the street between Fourth Avenue and Fifth Avenue, and on the south side between Fifth Avenue and Sixth Avenue. The posted speed limit is 25 mph . The City BMP proposes Grape Street as a Class III (Bike Route) facility between First Avenue and Sixth Avenue.

Hawthorn Street functions as a one-way westbound 3-lane collector with a curb to curb width of 50 feet from Brant Street to First Avenue and a two-way, 2-lane collector with a curb to curb width of 50 feet from First Avenue to Sixth Avenue. Its adopted plan ultimate classification is a 3-lane collector for its entirety. Hawthorn Street is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the north side of the street between Third Avenue and Sixth Avenue. Parallel Parking is available along the other sections. Access is provided to l-5 northbound from Hawthorn Street. The posted speed limit is 30 mph. The City BMP proposes Hawthorn Street as a Class III (Bike Route) facility between First Avenue and Sixth Avenue.

India Street functions as a one-way northbound collector with a varying classification between 2 lanes and 3 lanes and between two-way and one-way between I-5 to San Diego Avenue. North of San Diego Avenue, India Street is a two-way, 2-lane collector until it terminates at Washington Street. India Street is lined with sidewalks and curbs with parallel parking available on the east side of the street only. It runs parallel to l-5, providing access to $\mathrm{l}-5$ northbound at San Diego Avenue. The posted speed limit is 35 mph . The City BMP proposes India Street as a Class II (Bike Lanes) facility between Laurel Street and Washington Street.

Juan Street functions as a 2-lane collector with a curb to curb width of 35 feet between Witherby Street and the community boundary, providing access into the Old Town community. Juan Street was not included in the adopted community plan future classifications. Juan Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 30 mph . The City BMP proposes Juan Street as a Class III (Bike Route) facility between Sunset Boulevard and Taylor Street in the Old Town community.

Laurel Street functions as an east-west 4-lane collector with a curb to curb width of 50 feet between l-5 and Union Street, as a 2-lane collector with a two-way left-turn lane with a curb to curb width of 50 feet between Union Street and Sixth Avenue. East of Sixth Avenue, Laurel Street enters Balboa Park and changes name to El Prado. Its adopted plan ultimate classification is a 2-lane collector. Laurel Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . The City BMP proposes Laurel Street as a Class III (Bike Route) facility between Reynard Way and Sixth Avenue, joining with the existing bike route in Balboa Park to the east.

Lewis Street functions as an east-west 2-lane collector with a curb to curb width of 50 feet between Fort Stockton Drive and Hawk Street, and a one-way, 2-lane eastbound collector with a curb to curb width of 35 feet between Front Street and Fourth Avenue. Natural terrain severs Lewis Street between Goldfinch Street and Albatross Street. It is currently functioning at its adopted plan ultimate classification. Bike lanes are provided between Fort Stockton Drive and Ibis Street. Lewis Street is lined with sidewalks and curbs with parallel parking available on both sides of the street between Fort Stockton Drive and Ibis Street. Angle parking is available on the south side of the street between lbis Street and Hawk Street. The posted speed limit is 25 mph .

Normal Street functions as a 4-lane major arterial with a curb to curb width of 110 feet between University Avenue and Washington Street, and as a 6-lane major arterial with a curb to curb width of 110 feet between Washington Street and Park Boulevard/El Cajon Boulevard. It is currently functioning at its adopted plan ultimate classification. Normal Street is lined with sidewalks and curbs on both sides of the street, with angled parking available on both sides of the street between University Avenue and Washington Street. The posted speed limit is 30 mph . The City BMP proposes Normal Street as a Class II (Bike Lanes) facility between Washington Street and El Cajon Boulevard.

Park Boulevard changes cross-sections multiple times throughout the study area. It functions as a northsouth 2-lane collector with a two-way left-turn lane and a curb to curb width of 65 feet between Upas Street and Cypress Avenue, a 3-lane collector (2 northbound, 1 southbound) with a curb to curb width of 65 feet between Cypress Avenue and Essex Street, a 4-lane major with a curb to curb width of 110 feet between Essex Street and Normal Street/El Cajon Boulevard, a 3-lane collector with a curb to curb width of 50 feet between Normal Street/El Cajon Boulevard and Meade Avenue, and a 2-lane collector with a continuous twoway left-turn lane and a curb to curb width of 50 feet between Meade Avenue and Adams Avenue. Its adopted plan ultimate classification is to be a 4-lane major between Upas Street and Washington Street. Park Boulevard is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on both sides of the street between Normal Street and University Avenue. Parallel parking is along the other sections. The posted speed limit is 35 mph between Upas Street and Washington Street, and 30 mph north of Washington Street. Park Boulevard serves as the community boundary between Uptown and North Park. Beyond these communities, it continues into Balboa Park providing access to the attractions within the park including the San Diego Zoo. Park Boulevard is classified as a Class III bicycle facility. The City BMP proposes Park Boulevard as a Class II (Bike Lanes) facility between Adams Avenue and Upas Street, and throughout Balboa Park, with the option of keeping Class III (Bike Route) facilities between Upas Street and El Cajon Boulevard/Normal Street and north of Madison Avenue.

Reynard Way functions as a 2-lane collector with a continuous left-turn lane and a curb to curb width of 55 feet between Torrance Street and Maple Street. Reynard Way becomes Goldfinch Street north of Torrance Street and becomes State Street south of Maple Street. The posted speed limit is 30 mph . It is currently functioning at its adopted plan ultimate classification. Reynard Way is lined with sidewalks and curbs on both sides of the street. The City BMP proposes the entirety of Reynard Way as a Class III (Bike Route) facility.

Richmond Street functions as a north-south 2-lane collector with a curb to curb width of 50 feet between Upas Street and Washington Street. Its adopted plan ultimate classification is to be a 3-lane collector between Cleveland Avenue and Robinson Avenue, and a 2-lane collector between Robinson Avenue and Upas Street. Richmond Street is lined with sidewalks and curbs with parallel parking allowed on both sides of the street. The posted speed limit is 25 mph . The City BMP proposes Richmond Street as a Class II (Bike Lanes) facility between Upas Street and Cleveland Avenue.

Robinson Avenue functions as an east-west 2-lane collector with a curb to curb width of 35 feet between Curlew Street and Park Boulevard. Between Vermont Street and Park Boulevard, Robinson Avenue functions as a 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet. It is currently functioning at its adopted plan ultimate classification. Robinson Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. Parking is not available between $5^{\text {th }}$ Avenue and $7^{\text {th }}$ Avenue. It provides access to and from SR-163 between Eighth Avenue and Tenth Avenue. The posted speed limit is 25 mph between Curlew Street and Tenth Avenue and 30 mph between Tenth Avenue and Park Boulevard. The City BMP proposes Robinson Avenue as Class III (Bike Route) facility between First Avenue and Park Boulevard, and continuing east of Park Boulevard as a Bicycle Boulevard facility providing connection to Alabama Street.

San Diego Avenue functions as a 2-lane collector with a curb to curb width of 50 feet between India Street and the community boundary, with one segment between McKee Street and Washington Street that functions as a 3-lane collector with a curb to curb width of 50 feet. The roadway is one-way northbound between California Street and India Street. This roadway provides a connection to the Old Town community. It is currently functioning at its adopted plan ultimate classification. San Diego Avenue is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the east side of the street between Washington Street and India Street. Parallel parking is along the other sections. The posted speed limit is 35 mph . The City BMP proposes San Diego Avenue as a Class II (Bike Lanes) facility between India Street and Congress Street.

State Street functions as a 2-lane collector with a curb to curb width of 50 feet between Juniper Street and Laurel Street. It was not included in the future classifications. State Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . The City BMP proposes State Street as a Class III (Bike Route) facility between Laurel Street and downtown.

Sunset Boulevard functions as an east-west 2-lane collector with bike lanes and a curb to curb width of 50 feet between Witherby Street and Fort Stockton Drive. It is lined with sidewalks and curbs with parallel parking available on both sides of the street. It is currently functioning at its adopted plan ultimate classification. The posted speed limit is 25 mph .

University Avenue functions as an east-west 2-lane collector with a curb to curb width of 45 feet between Washington Street and Fifth Avenue, as a 4-lane collector between Fifth Avenue and Eighth Avenue (varying between with and without a center lane), as a 4-lane major between Vermont Street and Normal Street, and a 4-lane collector between Normal Street and Park Boulevard. University Avenue has a curb to curb width of 60 feet between Fifth Avenue and Tenth Avenue, 110 feet between Tenth Avenue and Normal Street, and 50 feet between Normal Street and Park Boulevard. It is currently functioning at its adopted plan ultimate classification. University Avenue is lined with sidewalks and curbs on both sides of the street Angle parking is available on both sides of the street between Vermont Street and Normal Street. Parallel parking is available along the other sections between Fifth Avenue and Park Boulevard. The posted speed limit is 25 mph between Washington Street and Park Boulevard. It is classified as a Class III bicycle facility between Goldfinch Street and Third Avenue. The City BMP proposes University Avenue as a Class II (Bike Lanes) facility east of First Avenue beyond the community boundaries, with the option of a Class III (Bike Route) facility between Fifth Avenue and Florida Street.

Upas Street functions as an east-west 2-lane collector with a curb to curb width of 50 feet between Front Street and Sixth Avenue, and provides access to Balboa Park. Upas Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . It is classified as
a Class III bicycle facility east of Third Avenue. The City BMP proposes Upas Street as a Class III (Bike Route) facility between First Avenue and Third Avenue as well.

Washington Street functions as an east-west 4-lane major with a curb to curb width of 80 feet between l-5 and Richmond Street, and as a 6-lane major between Richmond Street and Normal Street. It is currently functioning at its adopted plan ultimate classification. Washington Street does not have sidewalks or curbs between I-5 and Hawk Street, and between SR-163 and Lincoln Avenue. It is lined with sidewalks and curbs on both sides of the street throughout the rest of the segment. Parallel parking is available on select segments between Hawk Street and Park Boulevard. The posted speed limit is 45 mph between I-5 and Hawk Street, and 35 mph from Hawk Street to Park Boulevard. It is classified as a Class II (Bike Lanes) facility between University Avenue and India Street. The City BMP proposes the entirety of Washington Street as a Class II (Bike Lanes) facility.

NORTH PARK

$3^{\text {th }}$ Street functions as a north-south 2-lane collector with a curb to curb width of 50 feet between Juniper Street and Upas Street and a 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet between Upas Street and Adams Avenue. It is currently functioning at its adopted plan ultimate classification. $30^{\text {th }}$ Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . The City BMP proposes the entirety of $30^{\text {th }}$ Street as either a Class II (Bike Lanes) or Class III (Bike Route) facility. $30^{\text {th }}$ Street is the main roadway connecting the North Park community with the Golden Hill community.

32 ${ }^{\text {nd }}$ Street functions as a north-south 2-lane collector with a curb to curb width of 45 feet between Juniper Street and Howard Avenue. Its adopted plan ultimate classification is a 3-lane collector between Landis Street and Lincoln Avenue and a 2-lane collector for the remaining portions. 32nd Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .

Adams Avenue functions as an east-west 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet between Park Boulevard and I-805. It is currently functioning at its adopted plan ultimate classification. $32^{\text {nd }}$ Street is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the north side of the street from Mission Cliff Drive to Park Boulevard. Parallel parking is available along the other sections, The posted speed limit is 25 mph . The City BMP proposes Adams Avenue as either a Class II (Bike Lanes) or Class III (Bike Route) facility between Park Boulevard and communities east of North Park.

Boundary Street functions as a 2-lane collector with a curb to curb width of 40 feet between Maple Street and Myrtle Avenue and a one-way southbound 1-lane collector with a curb to curb width of 25 feet between Myrtle Avenue and North Park Way, with I-805 off-ramps at North Park Way. Boundary Street is lined with sidewalks and curbs with parallel parking available on both sides of the street for this portion. North of North Park Way, Boundary Street parallels l-805 as a 2-lane collector and provides sidewalk and curb on the west side of the street only. The posted speed limit is 25 mph . It is currently functioning at its adopted plan ultimate classification. The City BMP proposes Boundary Street as either a Class II (Bike Lanes) or Class III (Bike Route) facility between Lincoln Avenue and Landis Street and as a Class III facility from Landis Street to its southern terminus where a Class I (Bike Path) is proposed to provide connections with C Street and Ash Street.

Commonwealth Avenue is a short segment functioning as a 2-lane collector with a curb to curb width of 35 feet between Boundary Street and Juniper Street. It is currently functioning at its adopted plan ultimate
classification. Commonwealth Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . The City BMP proposes Commonwealth Avenue as a Class III (Bike Route) facility between Boundary Street and Juniper Street.

El Cajon Boulevard functions as an east-west 6-lane major between Park Boulevard and I-805. It is currently functioning at its adopted plan ultimate classification. El Cajon Boulevard provides access to l-805 northbound and southbound. It is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 35 mph . The City BMP proposes El Cajon Boulevard as a Class II (Bike Lanes) facility between Park Boulevard and east to adjacent communities, with the option of a Class III (Bike Route) between Park Boulevard and Utah Street.

Florida Street functions as a north-south 2-lane collector with a curb to curb width of 40 feet between Upas Street and El Cajon Boulevard. It is currently functioning at its adopted plan ultimate classification. Florida Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. It continues south into Balboa Park and changes name to Florida Drive. The posted speed limit is 25 mph . The City BMP proposes Florida Street as a Class II (Bike Lanes) facility between Upas Street and University Avenue, and as a Class III (Bike Route) facility between University Avenue and Adams Avenue.

Howard Avenue functions as an east-west 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet between Park Boulevard and $32^{\text {nd }}$ Street. It is currently functioning at its adopted plan ultimate classification. Howard Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. It continues east over I-805 and changes name to Orange Avenue. The posted speed limit is 25 mph and it is currently a designated Class III (Bike Route) facility. The City BMP proposes Howard Avenue as a dedicated Bicycle Boulevard between Georgia Street and east beyond the community boundary.

Juniper Street functions as an east-west 2-lane collector with a curb to curb width of 50 feet between $29^{\text {th }}$ Street and Pentuckett Avenue. It is currently functioning at its adopted plan ultimate classification. Juniper Street is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the north side of the street west of $30^{\text {th }}$ Street. Parallel parking is available along the other sections. The posted speed limit is 25 mph . The City BMP proposes Juniper Street as a Class III (Bike Route) between $30^{\text {th }}$ Street and Commonwealth Avenue.

Landis Street functions as a 2-lane collector with a curb to curb width of 50 feet between Boundary Street and Nile Street and provides access across I-805. Its adopted plan ultimate classification is a 3-lane collector for this section. Landis Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . The City BMP proposes Landis Street as a Bicycle Boulevard between Alabama Street and Utah Street, as a Class III (Bike Route) facility between Utah Street and Boundary Street, joining the existing bike lanes east of Boundary Street.

Lincoln Avenue functions as an east-west 2-lane collector with a curb to curb width of 50 feet between Washington Street and Utah Street, and a 2-lane collector with a continuous two-way left-turn lane and a curb to curb width of 50 feet between Utah Street and I-805. Its adopted plan ultimate classification would be changing the section between Utah Street and I-805 into a two-way couplet system with University Avenue. Lincoln Avenue is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the north side of the street between Hamilton Street and Idaho Street. Parallel parking is available along the other sections. The posted speed limit is 25 mph west of $30^{\text {th }}$ Street and 30 mph east of $30^{\text {th }}$ Street. The City BMP proposes Lincoln Avenue as a Class II (Bike Lanes) facility between its western terminus and Park Boulevard, and as a Class III (Bike Route) facility between Park Boulevard and University Avenue with an option of a Class II (Bike Lanes) facility between $30^{\text {th }}$ Street and Boundary Street.

Madison Avenue functions as an east-west 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet between Park Boulevard and Texas Street and as a 2-lane collector with a curb to curb width of 50 feet between Texas Street and Boundary Street. Its adopted plan ultimate classification is a 2-lane collector for the entirety of the roadway. Madison Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .

Meade Avenue functions as an east-west 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet between Cleveland Avenue and I-805, except between Campus Avenue and Park Boulevard where it is a 2-lane collector with a curb to curb width of 50 feet. Its adopted plan ultimate classification would be changing the section between Utah Street and I-805 into a two-way couplet system with University Avenue. Meade Avenue is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the south side of the street between North Avenue and Park Boulevard. Parallel parking is available along the other sections. The posted speed limit is 25 mph west of $30^{\text {th }}$ Street and 30 mph east of $30^{\text {th }}$ Street. The City BMP proposes Meade Avenue as a dedicated Bicycle Boulevard between Maryland Street and the community boundary to the east.

Mission Avenue runs diagonally through the grid network and functions as a one-way 2-lane collector with a curb to curb width of 50 feet between Park Boulevard and Texas Street. It is currently functioning at its adopted plan ultimate classification. Mission Avenue is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the north side of the street between Mississippi Avenue and Louisiana Street. Parallel parking is available along the other sections. The posted speed limit is 25 mph .

Monroe Avenue functions as an east-west 2-lane collector with a curb to curb width of 50 feet between Maryland Street and Ohio Street. Its adopted plan ultimate classification would be a 3-lane collector with a two-way left-turn lane. Monroe Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .

Nile Street functions as a 2-lane collector with a curb to curb width of 50 feet between Thorn Street and Landis Street. It is currently functioning at its adopted plan ultimate classification. Nile Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph.

North Park Way functions as an east-west 2-lane collector between Utah Street and Boundary Street. North Park Way has a curb to curb width of 50 feet between Utah Street and Ray Street and 40 feet between Ray Street and Boundary Street. It is currently functioning at its adopted plan ultimate classification. North Park Way is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on both sides of the street west of $30^{\text {th }}$ Street. Parallel parking is available along the other sections. The posted speed limit is 25 mph .

Pentuckett Avenue functions as a north-south 2-lane collector with a curb to curb width of 40 feet between Juniper Street and the south end of the road near SR-15. It is currently functioning at its adopted plan ultimate classification. Pentuckett Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .

Redwood Street functions as an east-west 2-lane collector with a curb to curb width of 40 feet between Pershing Drive and Boundary Street. It is currently functioning at its adopted plan ultimate classification. Redwood Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .

Texas Street functions as a north-south 2-lane collector with a curb to curb width of 40 feet between Upas Street and University Avenue, a 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet between University Avenue and Mission Avenue, and transitioning to a 3-lane major with a curb to curb width of 60 feet between Mission Avenue and $\mathrm{I}-8$. Its adopted plan ultimate classification would change it to a 4-lane major from El Cajon Boulevard to $\mathrm{I}-8$. Texas Street is lined with sidewalks and curbs with parallel parking available on both sides of the street between Upas Street and Madison Street. From Madison Street to I-8, Texas Street runs through a canyon area; bike lanes are provided on both sides and sidewalk is provided on the west side. The posted speed limit is 25 mph between Upas Street and Madison Avenue, and 40 mph between Madison Avenue and I-8. The City BMP proposes the entirety of Texas Street as a Class II (Bike Lanes).

University Avenue functions as an east-west 4-lane collector with no center lane and a curb to curb width of 50 feet between Park Boulevard and Boundary Street, expect between 30th Street and 32nd Street where it is a 3 -lane collector (2 eastbound, 1 westbound) with a curb to curb width of 50 feet. Its adopted plan ultimate classification would be changing the section between Utah Street and I-805 into a two-way couplet system with Lincoln Avenue. University Avenue is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 30 mph between Park Boulevard and Utah Street and 25 mph between Utah Street and Boundary Street. The City BMP proposes University Avenue as a Class II (Bike Lanes) facility for all segments within the community boundaries with the option of a Class III (Bike Route) between Park Boulevard and Florida Street.

Upas Street functions as an east-west 2-lane collector with a curb to curb width of 40 feet between Alabama Street and Pershing Drive and between $30^{\text {th }}$ Street and Boundary Street, and as a 2-lane collector with a twoway left-turn lane and a curb to curb width of 50 feet between Pershing Drive and $30^{\text {th }}$ Street. It is currently functioning at its adopted plan ultimate classification. No sidewalks or curb are provided on the south side. East of Pershing Drive, Upas Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . Between Alabama Street and Pershing Drive, Upas Street borders Balboa Park to the north. Upas Street is classified as a Class III bicycle facility. The City BMP proposes Upas Street as a Class II (Bike Lanes) facility between Alabama Street and $30^{\text {th }}$ Street with the option of a Class III (Bike Route) facility between Alabama Street and Pershing Avenue. Upas Street west of Morley Field Drive and $30^{\text {th }}$ Street, and as a Class III facility between $30^{\text {th }}$ Street and Boundary Street.

Utah Street functions as a north-south 2-lane collector with bike lanes and a curb to curb width of 50 feet between Upas Street and Copley Avenue, with a 3-lane section between Lincoln Avenue and University Avenue. Its adopted plan ultimate classification is a 3-lane collector. Utah Street is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the west side of the street between North Park Way and Gunn Street. Parallel parking is available along the other sections. The posted speed limit is 25 mph along Utah Street, except between University Avenue and El Cajon Boulevard where it increased to 30 mph .

GOLDEN HILL

25 ${ }^{\text {th }}$ Street functions as a north-south 4-lane collector with a curb to curb width of 60 feet between SR-94 and B Street, and a 2-lane collector with a center turn lane and a curb to curb width of 60 feet between B Street and Russ Boulevard. It is currently functioning at its adopted plan ultimate classification. $25^{\text {th }}$ Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is $25 \mathrm{mph} .25^{\text {th }}$ Street provides access to SR-94 eastbound and also connects with Balboa Park to the north. The City BMP proposes $25^{\text {th }}$ Street as a Class III (Bike Route) facility between Balboa Park and downtown with the option of a Class II (Bike Lanes) facility between Broadway and Market Street.
$\mathbf{2 6}^{\text {th }}$ Street functions as a north-south 2-lane collector with a curb to curb width of 40 feet between F Street and Russ Boulevard. It is currently functioning at its adopted plan ultimate classification. $26^{\text {th }}$ Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .
$\mathbf{2 8}^{\text {th }}$ Street functions as a north-south 2-lane collector with a curb to curb width of 50 feet between SR-94 and Russ Boulevard. Its adopted plan ultimate classification is a 3-lane collector between SR-94 and B Street. $28^{\text {th }}$ Street is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the east side of the street between A Street and B Street and on the west side of the street between C Street and Broadway. Parallel parking is available along other sections. The posted speed limit is 30 mph . $28^{\text {th }}$ Street provides access to SR-94 eastbound and westbound. North of A Street, $28^{\text {th }}$ Street serves as the eastern boundary of Balboa Park. $28^{\text {th }}$ Street is classified as a Class III (Bike Route) facility south of Broadway. The City BMP proposes Class II (Bike Lane) between Broadway and SR-94, extending the $28^{\text {th }}$ Street Class III (Bike Route) facility from Broadway north to Beech Street, and Class I (Bike Path) north of Beech Street.

30 ${ }^{\text {th }}$ Street functions as a north-south 2-lane collector with a curb to curb width of 40 feet between SR-94 and A Street where it changes name to Fern Street. $30^{\text {th }}$ street picks up again offset one block to the west as a 2 lane collector with a curb to curb width of 50 feet. Its adopted plan ultimate classification has $30^{\text {th }}$ Street as a 3-lane collector between SR-94 and C Street. It is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the west side of the street between Newton Avenue and National Avenue, between Greely Avenue and Ocean View Boulevard, and between Grape Street and Hawthorn Street. Parallel parking is available along other sections. The posted speed limit is 30 mph . $30^{\text {th }}$ Street is classified as a Class III bicycle facility. The City BMP proposes $30^{\text {th }}$ Street as either a Class II (Bike Lanes) or Class III (Bike Route) facility north of Upas Street and a Class lii (Bike Route) south of Upass Street. $30^{\text {th }}$ Street and Fern Street is the main roadway connecting the Golden Hill community with the North Park community.
$31^{\text {st }}$ Street functions as a north-south 2-lane collector with a curb to curb width of 40 feet between B Street and Cedar Street and between Grape Street and Juniper Street, and as a one-way southbound 1-lane collector with a curb to curb width of 25 feet between Grape Street and Cedar Street. It is currently functioning at its adopted plan ultimate classification. $31^{\text {st }}$ Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph .

B Street functions as an east-west 4-lane collector with no center lane and a curb to curb width of 50 feet between I-5 and $20^{\text {th }}$ Street, and as a 2-lane collector with a curb to curb width of 50 feet between $20^{\text {th }}$ Street and $32^{\text {nd }}$ Street. It is currently functioning at its adopted plan ultimate classification. B Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 30 mph . The City BMP proposes B Street as a Class III (Bike Route) facility between $19^{\text {th }}$ Street and Fern Street and as a Class II (Bike Lanes) facility west of $19^{\text {th }}$ Street. B Street provides access to $\mathrm{I}-5$ and downtown San Diego.

Beech Street functions as an east-west 2-lane collector with a curb to curb width of 50 feet between $28^{\text {th }}$ Street and Fern Street. It is currently functioning at its adopted plan ultimate classification. Beech Street is lined with sidewalks and curbs with parking available on both sides of the street. Angle parking is available on the south side of the street between Dale Street and $30^{\text {th }}$ Street. Parallel parking is available along other sections. The posted speed limit is 30 mph . The City BMP proposes Beech Street as a Class III (Bike Route) facility between $28^{\text {th }}$ Street and Edgemont Street.

Broadway functions as an east-west 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet between $19^{\text {th }}$ Street and $29^{\text {th }}$ Street, and as a 2-lane collector with a curb to curb width of 50 feet east of $29^{\text {th }}$ Street with widening by the SR-94 ramps. Its adopted plan ultimate classification would be a 4-lane major for the portion east of $30^{\text {th }}$ Street. Broadway is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . Broadway provides access to SR-94 and downtown San Diego. Broadway is classified as a Class III bicycle facility. The City BMP proposes Broadway Street as potentially being a Class II (Bike Lanes) facility between $19^{\text {th }}$ Street and $22^{\text {nd }}$ Street and between $28^{\text {th }}$ Street and SR-94.

C Street functions as an east-west 2-lane collector with a two-way left-turn lane and a curb to curb width of 50 feet between I-5 and 29 ${ }^{\text {th }}$ Street, and as a 2-lane collector with a curb to curb width of 50 feet between $29^{\text {th }}$ Street and Delevan Drive. Its adopted plan ultimate classification is a 2-lane collector. C Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 30 mph. The City BMP proposes C Street as a Class III (Bike Route) facility between $19^{\text {th }}$ Street and Delevan Drive.

Cedar Street functions as an east-west 2-lane collector between Fern Street and Gregory Street. Cedar Street has a curb to curb width of 40 feet between Fern Street and Edgemont Street and 40 feet between Edgemont Street and Gregory Street. It is currently functioning at its adopted plan ultimate classification. The segment between $32{ }^{\text {nd }}$ Street and Gregory Street is not identified in the future classifications. Cedar Street is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 30 mph .

Fern Street functions as a north-south 2-lane collector with a curb to curb width of 40 feet between C Street and Juniper Street. Its adopted plan ultimate classification has Fern Street as a 3-lane collector between C Street and A Street. It is lined with sidewalks and curbs with parallel parking available on both sides of the street. The posted speed limit is 25 mph . The City BMP proposes Fern Street as a Class III (Bike Route) north of B Street, a Class II (Bike Lanes) between B Street and SR-94 with the option of a Class III (Bike Route) facility between Broadway and SR-94.

Grape Street functions as an east-west 2-lane collector between $28^{\text {th }}$ Street and Marlton Drive. Grape Street has a curb to curb width of 50 feet between $28^{\text {th }}$ Street and $31^{\text {st }}$ Street and 40 feet between $31^{\text {st }}$ Street and Marlton Drive. It is currently functioning at its adopted plan ultimate classification. Grape Street is lined with sidewalks and curbs with parking available on both sides of the street. The posted speed limit is 25 mph .

FREEWAYS

Interstate 5 is a significant north-south interstate that traverses the United States from the Mexico border to the Canadian border through the states of California, Oregon, and Washington. Within California, I-5 connects the following major metropolitan areas: San Diego, Los Angeles, Sacramento, and the eastern portion of the San Francisco Bay Area. I-5 can be directly accessed from the Uptown and Golden Hill communities and provides access to I-8, SR-163, and SR-94 within the vicinity of the study area.

Interstate 8 is a significant east-west interstate that traverses from the western coast of San Diego to central Arizona. I-8 runs just north of the study communities, with direct access from Texas Street. I-8 provides connections with I-5, SR-163, and I-805 within the vicinity of the study area.

State Route 15 / Interstate 15 is a significant north-south interstate that traverses from San Diego to Salt Lake City through the states of California, Nevada, and Utah. SR-15 can be accessed by SR-94 and I-805, but direct access is not provided from within the vicinity of the study area.

Interstate 805 is largely contained within the San Diego metropolitan area. Termini are both located along Interstate 5, one near the Mexico border and the other near the Torrey Pines State Reserve and the University of California at San Diego. I-805 can be directly accessed from the North Park community and provides connections with I-8, SR-94 and SR-15 within the vicinity of the study area.

State Route 94 connects San Diego with the rural areas east of San Diego. Termini are located at downtown San Diego and at I-8 near the community of Boulevard in southeastern San Diego County. SR-94 can be directly accessed from the Golden Hill community and provides connections with I-5, SR-15 and I-805 within the vicinity of the study area.

State Route 163 is contained within the San Diego metropolitan area. Termini are located along Interstate 5 near Balboa Park, and along l-15 near Miramar. SR-163 can be directly accessed from the Uptown and North Park communities and provides connections with I-8 and I-5 within the vicinity of the study area.

FIGURE 3-1

Existing Roadway Functional Classification: Uptown

FIGURE 3-2

Existing Roadway Functional Classification: North Park

FIGURE 3-3

< 1 Lane Collector (one-way)
2 Lane Collector (Multi-family, commercial-industrial fronting)
< 2 Lane Collector (One-Way)
■॥-॥ 2 Lane Collector (continuous left-turn lane)
2 Lane Collector (no fronting property)
3 Lane Collector (no center lane)
< 3 Lane Collector (one-way w/ one lane dedicated for bike facility)
< 3 Lane Collector (one-way)
3 Lane Collector (two-way)

- 3 Lane Major Arterial 4 Lane Collector
4 Lane Collector (no center lane)
4 Lane Major Arterial
6 Lane Major Arterial

Existing Roadway Functional Classification: Golden Hill

3.2 TRAFFIC VOLUMES

The peak-hour intersection turning movements and roadway segment traffic data were obtained from several sources. Prior to data collection and in coordination with the City, the count data was compared against adjacent segments with more recent count data, if applicable, and volumes in the City's traffic model. At locations where volumes were determined to not be reasonable, whether new development has occurred or older count data was not similar enough to more recent count information in the area, new counts were obtained as part of the data collection process for this project. Where appropriate, traffic counts from previous studies were utilized, including the Hillcrest Mobility Study and University Avenue Mobility Plan. The City of San Diego also provided counts that they had performed in 2007 to calibrate their traffic planning model. The rest of the locations were counted by True Count in 2010 or were obtained through the latest City of San Diego traffic count database (2010).

In accordance with the City of San Diego Traffic Impact Study Manual (1998), traffic counts should be no greater than two years old. Therefore, since the counts were gathered between 2006 and 2010, validation was required to determine if the counts still represent current traffic conditions for this report. Consequently, the roadway segment ADT counts were compared to current (i.e., Year 2012 and 2013) City of San Diego and Caltrans machine counts available for the Cluster communities and adjacent freeway ramp facilities to determine if the counts included were still valid. It was concluded that traffic volumes for all three communities stayed within a 10-percent fluctuation and the volume counts originally collected were still valid for use. Thus, although count dates may not be consistent, the volumes provide a good representation of volumes for existing conditions for a planning level study.

The existing traffic volume data is contained in Appendix C. Since the count data was obtained more than two years ago, justification that the count data is still applicable is also provided in the appendix.

Figures 3-4, 3-5, 3-6, and 3-7 display the existing peak-hour traffic volumes at the study intersections for each community. Figures 3-8, 3-9 and 3-10 illustrate the existing ADT volumes along the roadway segments in the study area for each community.

FIGURE 3－4

1	$\begin{array}{r} 372 / 363 \\ \quad 399 / 394 \\ \text { (Washington 5t } \end{array}$	2	$\begin{gathered} 832 / 545 \\ \text { \& } \quad \begin{array}{c} 731 / 573 \\ \text { Washington st } \end{array} \end{gathered}$	3 088	$\begin{array}{cc} 5 / 9 \\ -\quad 1302 / 1061 \\ \hline & 2468 \\ \text { Washington st } \end{array}$		$\begin{array}{cc} \text { © } & 120 / 61 \\ - & 1147 / 1951 \\ 271 / 304 \\ \text { Washington } 5 t \end{array}$
$220 / 510$ $84 / 130$		（116／258 $551 / 1129 \sim$		$\begin{array}{cc} 4 / 27 & a \\ 534 / 989 \\ 10 / 85 & \approx \\ 8 \end{array}$		102／66 $509 / 1119$ $113 / 116$	
5 D 志 立 \square	$\begin{gathered} 8 / 116 \\ <\quad \begin{array}{r} 0379 / 979 \end{array} \\ \text { Wastington st } \end{gathered}$	6	100^{20} $7 / 4$ $-833 / 515$		$\begin{array}{cc} 8 & 1409 / 761 \\ \hdashline & 669 / 433 \end{array}$ Washington St	8 $\theta 000$ Campus Ave	$\begin{array}{ll} \therefore & 11 / 11 \\ 0 & 255123 \\ : & 2851116 \\ : & 1 / 2 \\ \text { Polk Ave } \end{array}$
721／1524		$\begin{aligned} & 735 / 2102 \\ & 67 / 216 \end{aligned}$			$\stackrel{\sim}{\square}$		
9	$\begin{array}{r} 74 / 55 \\ \therefore \quad 511 / 391 \\ \hdashline \quad 129 / 143 \\ \hline \text { EI Cajon Blva } \end{array}$	10 ） す离㐫	$\begin{array}{r} 42 / 416 \\ \square \quad 66 / 195 \\ \text { University Ave } \end{array}$	$\begin{array}{\|ll\|} \hline 11 & \begin{array}{l} 0 \\ \hline \end{array} \\ \hline & \\ & \\ \hline \end{array}$	$\begin{array}{ll} 5 & 258 / 248 \\ \Leftrightarrow & 641 / 630 \end{array}$ University Ave	 等命合感 －『	$\begin{aligned} & \therefore 203 / 187 \\ &- 373 / 427 \\ & 1341 / 140 \\ & \text { University Ave } \end{aligned}$
$\begin{array}{rl} 161 / 415 \\ 197 / 611 & 』 \\ 43 / 113 & \stackrel{y}{8} \end{array}$		$56 / 310$ $23 / 71$		$19 / 54$ $421 / 479$		$\begin{array}{cc} 398 / 306 & a \\ 158358 \\ 24 / 43 & \Rightarrow \end{array}$	
13		14	$\begin{gathered} 56 / 40 \\ \hdashline \quad 544 / 594 \\ \hdashline \begin{array}{c} 5 n i v e r s i t y ~ A v e ~ \end{array} \end{gathered}$	15	$\begin{array}{cc} \text { B } & 97 / 81 \\ - & 480,420 \\ 110 \\ \hline & \text { University Ave } \end{array}$	16 Q \＆$\sqrt{2}$	$\begin{array}{r} 151 / 265 \\ \quad \begin{array}{r} 76 / 73 \\ \text { Robinson Ave } \end{array} \end{array}$
$\begin{array}{rl} \hline 4991145 & 8 \\ 385 / 895 & 8 \\ 71 / 178 & 8 \end{array}$		$44 / 117$ $291 / 872$		$\begin{aligned} & 37 / 117 \\ & 204 / 569 \approx \\ & 77 / 121 \Leftrightarrow \end{aligned}$		${ }_{34 / 43}^{200 / 214}$ ¢	
17		18		19 	$\begin{array}{cc} 5 & 54 / 33 \\ \Leftrightarrow & 26 / 21 \\ & \\ & \text { Vine } 5 t \end{array}$	20	$\begin{gathered} 6 \begin{array}{c} 118 / 60 \\ 184 / 89 \\ \text { 1445 } \\ \text { Sassafras st } \end{array} \end{gathered}$
$\begin{gathered} 53 / 53 \\ 250 / 305 \end{gathered}$		$\begin{array}{cc} 150 / 145 & a \\ 152 / 302 & \Rightarrow \\ 24 / 26 & 8 \end{array}$				$62 / 218$ $66 / 89$	

UPTOWN

Existing Peak－Hour Intersection Volumes：Uptown

FIGURE 3-5

UPTOWN

Existing Peak-Hour Intersection Volumes: Uptown (Cont.)

FIGURE 3-6

NORTH PARK

Legend

$X / Y=A M / P M$ PEAK HOUR
TURNING VOLUMES

Existing Peak-Hour Intersection Volumes: North Park
Uptown, North Park, Golden Hill \| Draft Report June 2015 | Version 3

FIGURE 3-7

	$\begin{gathered} \left.\quad \begin{array}{c} 1159 / 536 \\ 80 \\ 80 / 45 \\ B_{5 t} \end{array}\right] \end{gathered}$	${ }^{43} \begin{aligned} & \\ & \\ & \end{aligned}$			© $16 / 21$ \& $346 / 101$ \& $337 / 125$			cst
				${ }^{217110}$	Se\%	- $326 / 754$	-	
46			- $577 / 511$ - $249 / 285$ SR-94 WB Ramps	${ }^{48}$	SR-94 WB Ramps	49		
			$\frac{0}{2} \frac{0}{2}$	$2 / 2$ $2 / 2$ $24 / 20$ 24				
50 					$\mathrm{csst}^{\text {st }}$			${ }_{6 s t}$
	-					($\begin{aligned} & 41 / 63 \\ & 1021135 \\ & 30 / 104\end{aligned}$	。	

GOLDEN HILL

not to scale
Existing Peak-Hour Intersection Volumes: Golden Hill

FIGURE 3-8

Greater than 30000

FIGURE 3-9

Existing Roadway Segment ADT Volumes: North Park

Q 5000 or Less	
Q	$5001-10000$
III	$10001-20000$
III	$20001-30000$

Existing Roadway Segment ADT Volumes: Golden Hill
Uptown, North Park, Golden Hill \| Draft Report
June 2015 | Version 3

3.3 INTERSECTION ANALYSIS

Tables 3-1, 3-2 and 3-3 display the LOS analysis results for the study intersections under Existing Conditions. As shown in the table and figures, all intersections currently operate at LOS D or better during both peak periods, except for the following intersections:

UPTOWN

- Washington Street \& Eighth Ave/SR-163 Off-Ramp (LOS F - p.m. peak)

At the intersection of Washington Street and SR-163, the eastbound through volumes are over 2,100 during the p.m. peak period. The existing two eastbound lanes do not have the capacity to adequately handle this demand.

NORTH PARK

- Madison Avenue \& Texas Street (LOS E - a.m. peak)
- El Cajon Boulevard \& Texas Street (LOS F - p.m. peak)
- El Cajon Boulevard \& I-805 SB Ramps (LOS F - p.m. peak)
- University Avenue \& Texas Street (LOS E - p.m. peak)

At the intersection of Madison Avenue and Texas Street, there are 307 vehicles making the eastbound left turn movement from Madison Avenue to Texas Street in the a.m. peak, which is above the capacity of the single left turn lane that is provided.

At the intersection of El Cajon Boulevard and Texas Street, the southbound movement does not have adequate time to pass all the vehicles through the intersection given the existing timing plan. The southbound movement is split phased.

At the intersection of El Cajon Boulevard and I-805 SB Ramps, the poor LOS is primarily caused by the southbound right turn movement having to merge with traffic on El Cajon Boulevard. The southbound right turn movement has 793 vehicles during the p.m. peak trying to merge into the closest of three lanes that are carrying 943 westbound through vehicles. Delays at the merge point can affect the speeds on the ramp and the overall intersection operations.

At the intersection of University Avenue and Texas Street there is a pedestrian-only phase and split phasing for the northbound and southbound movements. There is a good amount of vehicles coming from all directions at this intersection and the timing cannot keep the delays down for every movement, especially when pedestrians are using the intersection frequently as well.

GOLDEN HILL

- B Street \& $17^{\text {th }} \mathrm{St} / \mathrm{I}-5$ SB Off-Ramp (LOS F - a.m. peak)
- SR-94 WB Ramps \& Broadway (LOS F - both peaks)
- SR-94 WB Ramps \& $28^{\text {th }}$ Street (LOS E - a.m. peak, LOS F - p.m. peak)
- SR-94 EB Ramps \& $28^{\text {th }}$ Street (LOS F - p.m. peak)

At the intersection of B Street and I-5 Southbound Off-Ramp, vehicles looking to go through the intersection in the southbound direction have trouble finding gaps in traffic. During the a.m. peak, there are 1,159 vehicles in the westbound direction that the southbound through movement has to cross. Gaps are created briefly when the upstream traffic signal changes phases, but it does not provide enough gaps for all the vehicles to cross.

At the intersection of SR-94 Westbound Ramps and Broadway, the westbound left-turn movement from the off-ramp is stop-controlled while Broadway has free movements. These left turning vehicles have to wait for gaps in traffic along Broadway. Due to the volumes on Broadway, gaps are not provided often enough to operate at an adequate LOS during either peak-hour.

At the intersections of SR-94 Westbound Ramps and $28^{\text {th }}$ Street and SR-94 Eastbound Ramps and $28^{\text {th }}$ Street, the westbound left-turn movements from the off-ramps are stop-controlled while $28^{\text {th }}$ Street has free movements. These left turning vehicles have to wait for gaps in traffic along $28^{\text {th }}$ Street. Due to the volume on $28^{\text {th }}$ Street, gaps are not provided often enough to operate at an adequate LOS during either peak-hour.

Appendix D contains the LOS calculation worksheets.

Table 3-1 Existing Conditions Summary of Intersection Analysis

INTERSECTION		TRAFFIC CONTROL	PEAK HOUR	EXISTING				
		DELAY (a)		LOS (b)				
UPTOWN								
1	Washington St \& Hancock St		Signal	AM	24.9	C		
		PM		28.2	C			
2	Washington St \& San Diego Ave	Signal	AM	19.7	B			
			PM	17.6	B			
3	Washington St \& India St	Signal	AM	11.7	B			
			PM	14.2	B			
4	Washington St \& Fourth Ave	Signal	AM	25.2	C			
			PM	37.3	D			
5	Washington St \& Fifth Ave	Signal	AM	15.2	B			
			PM	16.3	B			
6	Washington St \& Eighth Ave/SR-163 OffRamp	Signal	AM	42.6	D			
			PM	ECL	F			
7	Washington St \& Richmond St/SR-163 On-Ramp	Signal	AM	18.6	B			
			PM	13.2	B			
8	Washington St/Normal St \& Campus Ave/Polk Ave	Signal	AM	43.0	D			
			PM	50.0	D			
9	Normal St/El Cajon Blvd \& Park Blvd	Signal	AM	25.2	C			
			PM	34.3	C			
10	University Ave \& Fourth Ave	Signal	AM	29.1	C			
			PM	28.2	C			
11	University Ave \& Fifth Ave	Signal	AM	12.9	B			
			PM	25.3	C			
12	University Ave \& Sixth Ave	Signal	AM	32.9	C			
			PM	54.8	D			
13	University Ave \& Tenth St	Signal	AM	18.6	B			
			PM	20.6	C			
14	University Ave \& Normal St	Signal	AM	5.6	A			
			PM	10.6	B			
15	University Ave \& Park Blvd	Signal	AM	24.5	C			
			PM	39.4	D			
16	Robinson Ave \& Fourth Ave	Signal	AM	21.4	C			
			PM	18.4	B			
17	Robinson Ave \& Fifth Ave	Signal	AM	10.8	B			
			PM	15.0	B			
18	Robinson Ave \& Sixth Ave	Signal	AM	21.6	C			
			PM	27.6	C			
19	Vine St \& India St	Signal	AM	5.6	A			
			PM	7.3	A			
20	Sassafras St \& Kettner Blvd	Signal	AM	10.4	B			
			PM	12.5	B			
21	Sassafras St \& India St	Signal	AM	6.3	A			
			PM	20.9	C			
Notes: Bold values indicate intersections operating at LOS E or F. ECL = Exceeds Calculable Limit. Reported when delay exceeds 180 seconds. a) Delay refers to the average control delay for the entire intersection, measured in seconds per vehicle. At a one-way or two-way stop-controlled intersection, delay refers to the worst movement. b) LOS calculations are based on the methodology outlined in the 2000 Highway Capacity Manual and performed using Synchro 7.0								

K:SND_TPTO|095240042\Excel[[240042IN01.xlsm]Existing

Table 3-2 Existing Conditions Summary of Intersection Analysis (Cont.)

INTERSECTION		TRAFFIC CONTROL	PEAK HOUR	EXISTING					
		DELAY (a)		LOS					
UPTOWN (cont.)									
22	Laurel St \& India St/I-5 NB On-Ramp		Signal	AM	17.0	B			
		PM		21.4	C				
23	Laurel St \& Fourth Ave	Signal	AM	12.2	B				
			PM	14.9	B				
24	Laurel St \& Fifth Ave	Signal	AM	12.3	B				
			PM	12.7	B				
25	Laurel St \& Sixth Ave	Signal	AM	13.7	B				
			PM	20.5	C				
26	Hawthorn St \& Brant St	Two-Way Stop	AM	9.9	A	(SB R)			
			PM	12.9	B	(SB R)			
27	Grape St \& State St	Signal	AM	15.7	B				
			PM	18.7	B				
28	Elm St \& First Ave	Signal	AM	13.3	B				
			PM	21.6	C				
29	Elm St \& Sixth Ave	Signal	AM	54.4	D				
			PM	14.8	B				
30	Cedar St \& Second Ave	Two-Way Stop	AM	31.8	D	(SB R)			
			PM	18.0	C	(SB R)			
NORTH PARK									
31	Madison Ave \& Texas St	Signal	AM	77.4	E				
			PM	34.7	C				
32	El Cajon Blvd \& Texas St	Signal	AM	35.9	D				
			PM	106.8	F				
33	El Cajon Blvd \& 30th St	Signal	AM	26.0	C				
			PM	50.2	D				
34	El Cajon Blvd \& I-805 SB Ramps	Signal	AM	18.4	B				
			PM	80.9	F				
35	El Cajon Blvd \& I-805 NB Ramps	Signal	AM	27.9	C				
			PM	19.2	B				
36	University Ave \& Texas St	Signal	AM	19.5	B				
			PM	72.7	E				
37	University Ave \& 30th St	Signal	AM	25.0	C				
			PM	49.2	D				
38	University Ave \& Boundary St	Signal	AM	23.0	C				
			PM	42.1	D				
39	University Ave \& I-805 NB Ramps	Signal	AM	29.0	C				
			PM	35.6	D				
40	North Park Way/I-805 SB Ramps \& Boundary St/33rd St	All-Way Stop	AM	18.1	C				
			PM	10.6	B				
Notes: Bold values indicate intersections operating at LOS E or F. ECL = Exceeds Calculable Limit. Reported when delay exceeds 180 seconds. a) Delay refers to the average control delay for the entire intersection, measured in seconds per vehicle. At a one-way or two-way stop-controlled intersection, delay refers to the worst novement. b) LOS calculations are based on the methodology outlined in the 2000 Highway Capacity Manual and performed using Synchro 7.0									

K:ISND_TPTO|095240042_Futurel[240042IN02_Future_Without Reduction.xlsm]Existing

Table 3-3 Existing Conditions Summary of Intersection Analysis (Cont.)

INTERSECTION		TRAFFIC CONTROL	PEAK HOUR	EXISTING					
		DELAY (a)		LOS					
NORTH PARK (cont.)									
41	Upas St \& 30th St (W)		All-Way Stop	AM	24.4	C			
		PM		25.9	D				
GOLDEN HILL									
42	B St \& 17th St/I-5 SB Off-Ramp	One-Way Stop	AM	130.7	F	(SB TR)			
			PM	29.3	D	(SB TR)			
43	B St \& I-5 NB Off-Ramp	No Conflicting Movements	AM	N/A	N/A				
			PM	N/A	N/A				
44	B St \& 19th St/I-5 NB On-Ramp	Signal	AM	9.4	A				
			PM	6.8	A				
45	C St \& 17 St	One-Way Stop	AM	13.7	B	(SB TR)			
			PM	23.3	C	(SB TR)			
46	Broadway \& 30th St	Signal	AM	14.2	B				
			PM	11.9	B				
47	SR-94 WB Ramps \& Broadway	One-Way Stop	AM	63.0	F	(WB L)			
			PM	55.3	F	(WB L)			
48	SR-94 WB Ramps \& 28th St	Two-Way Stop	AM	46.6	E	(WB LT)			
			PM	370.9	F	(WB LT)			
49	SR-94 EB Ramps \& 28th St	One-Way Stop	AM	26.7	D	(WB L)			
			PM	507.0	F	(WB L)			
50	F St \& 22nd St	All-Way Stop	AM	13.6	B				
			PM	8.6	A				
51	F St \& 25th St	All-Way Stop	AM	20.8	C				
			PM	16.2	C				
52	G St \& 22nd St	All-Way Stop	AM	9.6	A				
			PM	9.4	A				
53	G St \& 25th St	All-Way Stop	AM	12.4	B				
			PM	16.0	C				
Notes: Bold values indicate intersections operating at LOS E or F. ECL = Exceeds Calculable Limit. Reported when delay exceeds 180 seconds. a) Delay refers to the average control delay for the entire intersection, measured in seconds per vehicle. At a one-way or two-way stop-controlled intersection, delay refers to the worst novement. b) LOS calculations are based on the methodology outlined in the 2000 Highway Capacity Manual and performed using Synchro 7.0									

K:ISND_TPTO|095240042_Futurel[240042IN02_Future_Without Reduction.xlsm]Existing

3.4 ROADWAY SEGMENT ANALYSIS

Tables 3-4 through 3-10 display the roadway segments analysis under Existing Conditions for a typical weekday. As shown in the table, based on planning-level analysis using ADT volumes, it is estimated that all roadway segments function at an acceptable LOS D or better in the study area, except for the following segments. The segments listed below have volumes near or above their existing capacity, resulting in periods of congestion.

UPTOWN

- First Avenue between Washington Avenue and University Avenue (LOS E)
- First Avenue between University Avenue and Robinson Avenue (LOS F)
- First Avenue between Robinson Avenue and Pennsylvania Avenue (LOS E)
- First Avenue between Pennsylvania Avenue and Walnut Avenue (LOS E)
- First Avenue between Laurel Street and Hawthorn Street (LOS E)
- Fourth Avenue between Arbor Drive and Washington Avenue (LOS F)
- Sixth Avenue between University Avenue and Robinson Avenue (LOS F)
- Sixth Avenue between Robinson Avenue and Upas Street (LOS F)
- Sixth Avenue between Upas Street and Laurel Street (LOS F)
- Cleveland Avenue between Lincoln Street and Richmond Street (LOS E)
- Fort Stockton Drive between Hawk Street and Goldfinch Street (LOS F)
- India Street between Glenwood Drive and Sassafras Street (LOS F)
- India Street between Sassafras Street and Redwood Street (LOS E)
- Laurel Street between Columbia Street and Union Street (LOS E)
- Lincoln Avenue between Washington Street and Park Boulevard (LOS F)
- Park Boulevard between Adams Avenue and Mission Avenue (LOS E)
- Park Boulevard between Mission Avenue and El Cajon Boulevard (LOS F)
- Richmond Street between Cleveland Avenue and University Avenue (LOS E)
- Robinson Avenue between Third Avenue and Eighth Avenue (LOS F)
- University Avenue between Ibis Street and Albatross Street (LOS F)
- University Avenue between Albatross Street and First Avenue (LOS F)
- University Avenue between First Avenue and Fourth Avenue (LOS F)
- University Avenue between Fourth Avenue and Fifth Avenue (LOS F)
- University Avenue between Sixth Avenue and Eighth Avenue (LOS F)
- University Avenue between Normal Street and Park Boulevard (LOS F)
- Washington Street between Fifth Avenue and Sixth Avenue (LOS E)
- Washington Street between Sixth Avenue and Richmond Street (LOS F)

NORTH PARK

- 30th Street between Upas Street and Redwood Street (LOS F)
- 30th Street between Redwood Street and Juniper Street (LOS F)
- 32nd Street between Myrtle Avenue and Upas Street (LOS E)
- Adams Avenue between 30th Street and West Mountain View Drive (LOS F)
- Boundary Street between University Avenue and North Park Way (LOS F)
- El Cajon Boulevard between Illinois Street and I-805 Ramps (LOS E)
- Texas Street between Adams Avenue and Mission Avenue (LOS E)
- Texas Street between Mission Avenue and El Cajon Boulevard (LOS F)
- University Avenue between Park Boulevard and Florida Street (LOS F)
- University Avenue between Florida Street and Texas Street (LOS F)
- University Avenue between Texas Street and Oregon Street (LOS F)
- University Avenue between Oregon Street and Utah Street (LOS F)
- University Avenue between Utah Street and 30th Street (LOS F)
- University Avenue between 30th Street and Illinois Street (LOS F)
- University Avenue between Illinois Street and Iowa Street (LOS F)
- University Avenue between lowa Street and 32nd Street (LOS F)
- University Avenue between 32nd Street and Boundary Street (LOS F)
- Upas Street between Alabama Street and Texas Street (LOS E)
- Upas Street between Texas Street and Pershing Road (LOS E)

GOLDEN HILL

- 26th Street between Russ Boulevard and B Street (LOS F)
- 28th Street between C Street and Broadway (LOS F)
- 28th Street between Broadway and SR-94 (LOS F)
- 30th Street between A Street and Broadway (LOS F)
- Broadway between 30th Street and SR-94 (LOS F)
- Fern Street between Juniper Street and Grape Street (LOS F)
- Fern Street between Grape Street and A Street (LOS F)

Table 3-4 Existing Conditions Summary of Roadway Segment LOS Summary

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	ADT	$\begin{array}{c\|} \text { V/C } \\ \text { RATIO (a) } \\ \hline \end{array}$	LOS
UPTOWN					
First Ave					
Arbor Dr to Washington St	2 Lane Collector (one-way)	17,500	5,240	0.299	A
Washington St to University Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	7,400	0.925	E
University Ave to Robinson Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	10,100	1.263	F
Robinson Ave to Pennsylvania Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	7,500	0.938	E
Pennsylvania Ave to Walnut Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	7,261	0.908	E
Walnut Ave to Laurel St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,695	0.587	C
Laurel St to Hawthorn St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	7,290	0.911	E
Hawthorn St to Grape St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,810	0.476	C
Grape St to Elm St	2 Lane Collector (one-way)	17,500	3,285	0.188	A
Fourth Ave					
Arbor Dr to Washington St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	12,390	1.549	F
Washington St to University Ave	2 Lane Collector (one-way)	17,500	10,400	0.594	C
University Ave to Robinson Ave	2 Lane Collector (one-way)	17,500	11,800	0.674	C
Robinson Ave to Walnut Ave	2 Lane Collector (one-way)	17,500	6,946	0.397	A
Walnut Ave to Laurel St	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	8,492	0.485	B
Laurel St to Grape St	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	7,790	0.445	B
Grape St to Elm St	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	7,570	0.433	B
Fifth Ave					
Washington St to University Ave	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	11,700	0.669	C
University Ave to Robinson Ave	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	10,300	0.589	C
Robinson Ave to Walnut Ave	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	12,209	0.698	C
Walnut St to Laurel St	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	11,400	0.651	C
Laurel St to Hawthorn St	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	9,260	0.529	B
Hawthorn St to Grape St	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	10,045	0.574	C
Grape St to Elm St	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	9,220	0.527	B
Sixth Ave					
Washington St to University Ave	3 Lane Collector (two-way)	20,000	16,877	0.844	D
University Ave to Robinson Ave	4 Lane Collector (no center lane)	15,000	24,900	1.660	F
Robinson Ave to Upas St	4 Lane Collector (no center lane)	15,000	15,000	1.000	F
Upas St to Laurel St	4 Lane Collector (no center lane)	15,000	15,128	1.009	F
Laurel St to Juniper St	4 Lane Collector (no center lane)	15,000	10,140	0.676	D
Juniper St to Grape St	4 Lane Collector (no center lane)	15,000	10,915	0.728	D
Grape St to Elm St	4 Lane Collector (no center lane)	15,000	10,650	0.710	D
Ninth Ave					
Washington St to University Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,204	0.651	D
Campus Ave/Polk Ave					
Madison Ave to Washington St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,175	0.397	B
Washington St to Park Blvd	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,610	0.701	D
Cleveland Ave					
Tyler St to Lincoln St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,865	0.608	C
Lincoln St to Richmond St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	7,775	0.972	E
Curlew St					
Robinson Ave to Reynard Wy	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,720	0.215	A
Elm St					
Second Ave to Third Ave	2 Lane Collector (one-way)	17,500	7,889	0.451	B
Third Ave to Fifth Ave	3 Lane Collector (one-way)	26,000	8,179	0.315	A
Fifth Ave to Sixth Ave	3 Lane Collector (one-way)	26,000	6,720	0.258	A
Notes: Bold values indicate roadway segments operating at LOS E or F . Capacity for non-standard roadway classifications (those not shown in Table 2-3) were provided by City of San Diego staff. (a) The v / c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.					

K:ISND_TPTO. $095240042 \$ Futurel[240042RS01. xlsm]Updated Existing

Table 3-5 Existing Conditions Summary of Roadway Segment LOS Summary (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	ADT	$\begin{array}{\|c\|} \hline \text { V/C } \\ \text { RATIO (a) } \end{array}$	LOS
UPTOWN					
Fort Stockton Dr					
Arista St to Sunset Blvd	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,290	0.411	B
Sunset Blvd to Hawk St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	6,100	0.763	D
Hawk St to Goldfinch St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,450	1.056	F
Goldfinch St to Falcon St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,910	0.364	B
Front St					
Dickinson St to Arbor Dr	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,790	0.474	C
Arbor Dr to Washington St	2 Lane Collector (one-way)	17,500	5,510	0.315	A
Grape St					
Albatross St to First Ave	3 Lane Collector (one-way)	26,000	2,082	0.080	A
First Ave to Third Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,289	0.536	C
Third Ave to Sixth Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,097	0.262	A
Hawthorn St					
Brant St to First Ave	3 Lane Collector (one-way)	26,000	11,558	0.445	B
First Ave to Third Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,634	0.454	C
Third Ave to Sixth Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,577	0.447	C
India St					
Winder St to Glenwood Dr	3 Lane Collector (one-way)	26,000	8,345	0.321	A
Glenwood Dr to Sassafrass St	2 Lane Collector (one-way)	17,500	26,178	1.496	F
Sassafras St to Redwood St	3 Lane Collector (two-way)	20,000	18,676	0.934	E
Redwood St to Palm St	3 Lane Collector (one-way)	26,000	16,705	0.643	C
Juan St					
Harney St to Witherby St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,345	0.293	A
Laurel St					
Columbia St to Union St	4 Lane Collector (no center lane)	15,000	13,691	0.913	E
Union St to First Ave	2 Lane Collector (continuous left-turn lane)	15,000	11,128	0.742	D
First Ave to Third Ave	2 Lane Collector (continuous left-turn lane)	15,000	11,326	0.755	D
Third Ave to Sixth Ave	2 Lane Collector (continuous left-turn lane)	15,000	11,516	0.768	D
Lewis St					
Fort Stockton Dr to Goldfinch St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,720	0.465	C
Lincoln Ave					
Washington St to Park Blvd	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,155	1.019	F
Madison Ave					
Cleveland Ave to Park Blvd	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,750	0.469	C
Meade Ave					
Cleveland Ave to Park Blvd	2 Lane Collector (continuous left-turn lane)	15,000	3,290	0.219	A
Normal St					
Park Blvd to Washington St	6 Lane Major Arterial	50,000	22,296	0.446	B
Washington St to University Ave	4 Lane Major Arterial	40,000	4,974	0.124	A
Notes: Bold values indicate roadway segments operating at LOS E or F . Capacity for non-standard roadway classifications (those not shown in Table 2-3) were provided by City of San Diego staff. (a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.					

Table 3-6 Existing Conditions Summary of Roadway Segment LOS Summary (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	ADT	$\begin{gathered} \text { V/C } \\ \text { RATIO (a) } \end{gathered}$	LOS
UPTOWN					
Park Blvd					
Adams Ave to Mission Ave	2 Lane Collector (continuous left-turn lane)	15,000	14,839	0.989	E
Mission Ave to El Cajon Blvd	3 Lane Collector (no center lane)	11,500	11,806	1.027	F
El Cajon Blvd to Polk Ave	4 Lane Major Arterial	40,000	11,524	0.288	A
Polk Ave to University Ave	4 Lane Major Arterial	40,000	13,936	0.348	A
University Ave to Robinson Ave	4 Lane Major Arterial	40,000	14,400	0.360	A
Robinson Ave to Upas St	2 Lane Collector (continuous left-turn lane)	15,000	12,501	0.833	D
Upas St to Zoo Pl	4 Lane Major Arterial	40,000	13,807	0.345	A
Reynard Wy					
Torrance St to Curlew St	2 Lane Collector (continuous left-turn lane)	15,000	1,955	0.130	A
Curlew St to Laurel St	2 Lane Collector (continuous left-turn lane)	15,000	7,200	0.480	C
Richmond St					
Cleveland Ave to University Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	7,085	0.886	E
University Ave to Robinson Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,345	0.668	D
Robinson Ave to Upas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,015	0.627	D
Robinson Ave					
Brant St to First Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,995	0.249	A
First Ave to Third Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,800	0.725	D
Third Ave to Eighth Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	11,022	1.378	F
Tenth Ave to Richmond St	2 Lane Collector (continuous left-turn lane)	15,000	10,120	0.675	D
Richmond St to Park Blvd	2 Lane Collector (continuous left-turn lane)	15,000	7,269	0.485	C
San Diego Ave					
Hortensia St to Pringle St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,830	0.729	D
McKee St to Washington St	3 Lane Collector (one-way)	26,000	13,920	0.535	B
Washington St to India St	2 Lane Collector (one-way)	17,500	4,920	0.281	A
State St					
Laurel St to Juniper St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,140	0.518	C
Sunset Blvd					
Witherby St to Fort Stockton Dr	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,595	0.324	B
University Ave					
Ibis St to Albatross St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	10,527	1.316	F
Albatross St to First Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	16,851	2.106	F
First Ave to Fourth Ave	2 Lane Collector (no fronting property)	10,000	11,750	1.175	F
Fourth Ave to Fifth Ave	2 Lane Collector (continuous left-turn lane)	15,000	20,250	1.350	F
Fifth Ave to Sixth Ave	4 Lane Collector	30,000	21,184	0.706	D
Sixth Ave to Eighth Ave	4 Lane Collector (no center lane)	15,000	24,400	1.627	F
Vermont St to Normal St	4 Lane Major Arterial	40,000	23,938	0.598	C
Normal St to Park Blvd	4 Lane Collector (no center lane)	15,000	16,275	1.085	F
Upas St					
Third Ave to Sixth Ave	2 Lane Collector (no fronting property)	10,000	4,475	0.448	B
Washington St					
India St to University Ave	4 Lane Major Arterial	40,000	27,929	0.698	C
University Ave to First Ave	4 Lane Major Arterial	40,000	20,477	0.512	B
First Ave to Fourth Ave	4 Lane Major Arterial	40,000	25,745	0.644	C
Fourth Ave to Fifth Ave	4 Lane Major Arterial	40,000	30,900	0.773	D
Fifth Ave to Sixth Ave	4 Lane Major Arterial	40,000	38,428	0.961	E
Sixth Ave to Richmond St	4 Lane Major Arterial	40,000	41,778	1.044	F
Richmond St to Normal St	6 Lane Major Arterial	50,000	38,725	0.775	C
Notes: Bold values indicate roadway segments operating at LOS E or F. Capacity for non-standard roadway classifications (those not shown in Table 2-3) were provided by City of San Diego staff. (a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.					

K:ISND_TPTO $095240042 \$ Futurel(240042RS01. xlsm]Updated Existing

Table 3-7 Existing Conditions Summary of Roadway Segment LOS Summary (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOSE } \\ \text { CAPACITY } \end{gathered}$	ADT	$\begin{array}{c\|} \text { V/C } \\ \text { RATIO (a) } \\ \hline \end{array}$	LOS
NORTH PARK					
30th St					
Adams Ave to Meade Ave	2 Lane Collector (continuous left-turn lane)	15,000	6,325	0.422	B
Meade Ave to El Cajon Blvd	2 Lane Collector (continuous left-turn lane)	15,000	10,912	0.727	D
El Cajon Blvd to Howard Ave	2 Lane Collector (continuous left-turn lane)	15,000	12,684	0.846	D
Howard Ave to Lincoln Ave	2 Lane Collector (continuous left-turn lane)	15,000	12,703	0.847	D
Lincoln Ave to University Ave	2 Lane Collector (continuous left-turn lane)	15,000	12,500	0.833	D
University Ave to North Park Way	2 Lane Collector (continuous left-turn lane)	15,000	12,150	0.810	D
North Park Way Ave to Upas St	2 Lane Collector (continuous left-turn lane)	15,000	12,241	0.816	D
Upas St to Redwood St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,824	1.103	F
Redwood St to Juniper St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	10,013	1.252	F
32nd St					
Howard Ave to Lincoln Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,845	0.231	A
Lincoln Ave to University Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,300	0.413	B
University Ave to Myrtle Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,000	0.625	D
Myrtle Ave to Upas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	6,985	0.873	E
Upas St St to Redwood St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,200	0.650	D
Redwood St to Juniper St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,218	0.277	A
Adams Ave					
Park Blvd to Alabama St	2 Lane Collector (continuous left-turn lane)	15,000	6,758	0.451	B
Alabama St to Texas St	2 Lane Collector (continuous left-turn lane)	15,000	8,966	0.598	C
Texas St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	10,700	0.713	D
30th St to W Mountain View Dr	2 Lane Collector (continuous left-turn lane)	15,000	19,929	1.329	F
Boundary St					
University Ave to North Park Way	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	12,620	1.578	F
North Park Way to Myrtle Ave	1 Lane Collector (one-way)	7,500	2,730	0.364	B
Myrtle Ave to Redwood St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,670	0.584	C
Redwood St to Commonwealth Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,550	0.444	C
Commonwealth Ave					
Boundary St to Juniper St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,480	0.185	A
El Cajon Blvd					
Park Blvd to Florida St	6 Lane Major Arterial	50,000	19,407	0.388	A
Florida St to Texas St	6 Lane Major Arterial	50,000	23,366	0.467	B
Texas St to Oregon St	6 Lane Major Arterial	50,000	24,479	0.490	B
Oregon St to Utah St	6 Lane Major Arterial	50,000	32,468	0.649	C
Utah St to 30th St	6 Lane Major Arterial	50,000	32,191	0.644	C
30th St to Illinois St	6 Lane Major Arterial	50,000	39,116	0.782	C
Illinois St to I-805 Ramps	6 Lane Major Arterial	50,000	46,062	0.921	E
Florida St					
El Cajon Blvd to University Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,375	0.422	B
University Ave to Robinson Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,450	0.681	D
Robinson Ave to Upas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,600	0.700	D
Florida Dr					
Upas St to Morley Field Dr	2 Lane Collector (no fronting property)	10,000	5,498	0.550	B
Howard Ave					
Park Blvd to Florida St	2 Lane Collector (continuous left-turn lane)	15,000	3,000	0.200	A
Florida St to Texas St	2 Lane Collector (continuous left-turn lane)	15,000	3,566	0.238	A
Texas St to Utah St	2 Lane Collector (continuous left-turn lane)	15,000	4,815	0.321	A
Utah St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	6,137	0.409	B
30th St to 32nd St	2 Lane Collector (continuous left-turn lane)	15,000	7,187	0.479	C
Notes: Bold values indicate roadway segments operating at LOS E or F. Capacity for non-standard roadway classifications (those not shown in Table 2-3) were provided by City of San Diego staff. (a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.					

K:ISND_TPTOLO95240042_Futurel[240042RS01.xlsm]UPdated Existing

Table 3-8 Existing Conditions Summary of Roadway Segment LOS Summary (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	ADT	$\begin{array}{\|c\|} \hline \text { V/C } \\ \text { RATIO (a) } \\ \hline \end{array}$	LOS
NORTH PARK					
Juniper St					
30th St to 32nd St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,646	0.456	C
32nd St to Commonwealth Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,826	0.353	B
Landis St					
Boundary St to Nile St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,790	0.474	C
Lincoln Ave					
Florida St to Texas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	990	0.124	A
Texas St to Utah St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,400	0.300	A
Utah St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	4,550	0.303	A
30th St to 32nd St	2 Lane Collector (continuous left-turn lane)	15,000	5,563	0.371	B
32nd St to Boundary St	2 Lane Collector (continuous left-turn lane)	15,000	5,473	0.365	B
Madison Ave					
Park Blvd to Mission Ave	2 Lane Collector (continuous left-turn lane)	15,000	6,110	0.407	B
Mission Ave to Texas St	2 Lane Collector (continuous left-turn lane)	15,000	8,040	0.536	C
Texas St to Ohio St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,295	0.662	D
Meade Ave					
Park Blvd to Texas St	2 Lane Collector (continuous left-turn lane)	15,000	4,060	0.271	A
Texas St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	5,280	0.352	B
30th St to Illinois Ave	2 Lane Collector (continuous left-turn lane)	15,000	8,576	0.572	C
Illinois St to Iowa St	2 Lane Collector (continuous left-turn lane)	15,000	8,651	0.577	C
Mission Ave					
Park Blvd to Mississippi St	2 Lane Collector (one-way)	17,500	1,497	0.086	A
Monroe Ave					
Park Blvd to Mission Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,200	0.150	A
Mission Ave to Texas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,500	0.188	A
Texas St to 30th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,158	0.270	A
Nile St					
Landis St to Thorn St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,305	0.538	C
North Park Way					
30th St to 32nd St	2 Lane Collector (no fronting property)	10,000	6,737	0.674	C
Orange Ave/Howard Ave					
Iowa St to I-805	2 Lane Collector (continuous left-turn lane)	15,000	5,938	0.396	B
Pentuckett Ave					
Juniper St to Fir St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,225	0.278	A
Pershing Dr					
Upas St to Redwood St	2 Lane Collector (continuous left-turn lane)	15,000	6,439	0.429	B
Redwood St					
28th St to 30th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,988	0.749	D
30th St to 32nd St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,912	0.614	C
32nd St to Boundary St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,650	0.206	A
Robinson Ave					
Park Blvd to Florida St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,160	0.520	C
Texas St					
Adams Ave to Mission Ave	3 Lane Major Arterial	30,000	27,532	0.918	E
Mission Ave to El Cajon Blvd	2 Lane Collector (continuous left-turn lane)	15,000	16,563	1.104	F
El Cajon Blvd to Howard Ave	2 Lane Collector (continuous left-turn lane)	15,000	10,404	0.694	D
Howard Ave to University Ave	2 Lane Collector (continuous left-turn lane)	15,000	9,461	0.631	C
University Ave to Myrtle Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,821	0.478	C
Myrtle Ave to Upas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,814	0.352	B
Notes: Bold values indicate roadway segments operating at LOS E or F . Capacity for non-standard roadway classifications (those not shown in Table 2-3) were provided by City of San Diego staff. (a) The v / c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.					

K:ISND_TPTOゆ95240042_Future[240042RS01.xlsm]UPdated Existing

Table 3-9 Existing Conditions Summary of Roadway Segment LOS Summary (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOSE } \\ \text { CAPACITY } \end{gathered}$	ADT	$\begin{gathered} \text { V/C } \\ \text { RATIO (a) } \end{gathered}$	LOS
NORTH PARK					
University Ave					
Park Blvd to Florida St	4 Lane Collector (no center lane)	15,000	19,200	1.280	F
Florida St to Texas St	4 Lane Collector (no center lane)	15,000	21,611	1.441	F
Texas St to Oregon St	4 Lane Collector (no center lane)	15,000	20,058	1.337	F
Oregon St to Utah St	4 Lane Collector (no center lane)	15,000	20,361	1.357	F
Utah St to 30th St	4 Lane Collector (no center lane)	15,000	19,173	1.278	F
30th St to Illinois St	3 Lane Collector (no center lane)	11,500	21,100	1.835	F
Illinois St to Iowa St	3 Lane Collector (no center lane)	11,500	25,857	2.248	F
Iowa St to 32nd St	3 Lane Collector (no center lane)	11,500	19,644	1.708	F
32nd St to Boundary St	4 Lane Collector (no center lane)	15,000	25,568	1.705	F
Upas St					
Alabama St to Texas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	7,100	0.888	E
Texas St to Pershing Rd	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	7,160	0.895	E
Pershing Rd to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	9,574	0.638	C
30th St to 32nd St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,347	0.543	C
32nd St to Boundary St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,600	0.325	B
Utah St					
Adams Ave to Monroe Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	992	0.124	A
Meade Ave to El Cajon Blvd	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,841	0.355	B
El Cajon Blvd to Howard Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,362	0.545	C
Howard Ave to Lincoln Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,535	0.317	B
Lincoln Ave to University Ave	3 Lane Collector (no center lane)	11,500	2,900	0.252	A
University Ave to North Park Way	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,740	0.593	C
North Park Way to Upas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,919	0.240	A
GOLDEN HILL					
25 th St					
Russ Blvd to B St	2 Lane Collector (continuous left-turn lane)	15,000	7,550	0.503	C
B St to Broadway	4 Lane Collector (no center lane)	15,000	9,409	0.627	C
Broadway to F St	4 Lane Collector (no center lane)	15,000	12,105	0.807	D
$26 \mathrm{th} \mathrm{St}$					
Russ Blvd to B St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	9,152	1.144	F
B St to C St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,146	0.268	A
28th St					
Russ Blvd to C St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,888	0.611	C
C St to Broadway	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,150	1.019	F
Broadway to SR-94	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	10,697	1.337	F
30th St					
Grape St to Ash St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,865	0.483	C
A St to Broadway	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	16,610	2.076	F
Broadway to SR-94	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,210	0.526	C
31st St					
Juniper St to Grape St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,299	0.287	A
Notes: Bold values indicate roadway segments operating at LOS E or F. Capacity for non-standard roadway classifications (those not shown in Table 2-3) were provided by City of San Diego staff. (a) The v / c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.					

[^0]Table 3-10 Existing Conditions Summary of Roadway Segment LOS Summary (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	ADT	$\begin{array}{\|c\|} \hline \text { V/C } \\ \text { RATIO (a) } \\ \hline \end{array}$	LOS
GOLDEN HILL					
B St					
19th St to 20th St	4 Lane Collector (no center lane)	15,000	5,372	0.358	B
20th St to 25th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,708	0.464	C
25th St to 26th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,600	0.575	C
26th St to 28th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	6,200	0.775	D
28th St to 30th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,713	0.339	B
Beech St					
28th St to Fern St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,770	0.221	A
Broadway					
19th St to 20th St	2 Lane Collector (continuous left-turn lane)	15,000	5,788	0.386	B
20th St to 25th St	2 Lane Collector (continuous left-turn lane)	15,000	4,867	0.324	A
25th St to 28th St	2 Lane Collector (continuous left-turn lane)	15,000	4,165	0.278	A
28th St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	3,279	0.219	A
30th St to SR-94	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	15,881	1.985	F
C St					
19th St to 20th St	1 Lane Collector (one-way)	7,500	3,827	0.510	C
20th St to 25th St	2 Lane Collector (continuous left-turn lane)	15,000	3,923	0.262	A
28th St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	2,658	0.177	A
30th St to 34th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,230	0.529	C
Cedar St					
Fern St to Felton St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,815	0.352	B
Fern St					
Juniper St to Grape St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,350	1.044	F
Grape St to A St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,082	1.010	F
Grape St					
30th St to 31st St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,614	0.327	B
Notes: Bold values indicate roadway segments operating at LOS E or F. Capacity for non-standard roadway classifications (those not shown in Table 2-3) were provided by City of San Diego staff. (a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.					

3.5 FREEWAY SEGMENT ANALYSIS

Freeway volumes were obtained from Caltrans and reflect the latest volumes that had been collected at the time of this report. Tables 3-11 through 3-14 display the LOS analysis results for the study freeway segments under Existing Conditions. As shown in the table, the freeway segments surrounding the Uptown, North Park, and Golden Hill communities all have volumes that exceed the capacity during peak hours. In general, the failing segments are those that move traffic away from the cluster communities in the morning and towards the cluster communities in the afternoon.

Interstate 5 shows LOS E or F in the northbound direction at each of the segments except between Washington Street and Pacific Highway during the a.m. peak. In the p.m. peak, LOS E or F occurs from First Avenue to Sixth Avenue and from SR-163 to SR-94, both in the southbound direction.

Interstate 8 shows LOS E or F at each of the study segments in both peak periods. The failing LOS shows up in the westbound direction during the a.m. peak and in the eastbound direction during the p.m. peak.

State Route 15 shows LOS E in the southbound direction during both the a.m. and p.m. peaks between I805 and SR-94.

Interstate 805 shows LOS E or F in one direction each of the segments in the a.m. peak. From I-8 to Adams Avenue, the deficient direction is northbound, and for segments from El Cajon Boulevard to SR15 , the deficient direction is southbound. During the p.m. peak, the deficient segments are southbound from I-8 to Adams Avenue and northbound from El Cajon Boulevard to University Avenue.

State Route 94 shows LOS E or F in the westbound direction during the a.m. peak and in the eastbound direction in the p.m. peak.

State Route 163 shows LOS E or F in the southbound direction from Washington Street to l-5 during the a.m. peak and in the northbound direction from I-5 to Washington Street during the p.m. peak. In addition, the segment of SR-163 from Quince Drive to $\mathrm{I}-5$ in the southbound direction is LOS F in the p.m. peak.

3.6 FREEWAY RAMP METERING ANALYSIS

Ramp volumes were obtained from the intersection turning movements when applicable, or from Caltrans' latest volumes that had been collected at the time of this report. Table 3-15 displays the queuing analysis results for the ramps in the study area that are currently metered. The table compares the peak hour demand at the on-ramp with the current meter rate. As shown in the table, the meter rate adequately controls the expected demand without excess queuing, except at the following locations:

- Washington Street to I-5 Northbound, a.m. peak (1.4 minute average delay)
- Washington Street to I-5 Northbound, p.m. peak (2.3 minute average delay)
- India Street to l-5 Northbound, p.m. peak (4.2 minute average delay)
- Hancock Street to I-5 Southbound, p.m. peak (7.7 minute average delay)
- Fifth Avenue to l-5 Southbound, p.m. peak (5.5 minute average delay)

Appendix E contains the ramp meter information provided by Caltrans.

Table 3-11 Existing Conditions Freeway Segment Analysis Summary

FREEWAY SEGMENT	DIRECTION	NUMBER OF LANES	CAPACITY (a)	ADT (b)	$\begin{gathered} \hline \text { PEAK } \\ \text { HOUR } \\ \text { VOLUME } \\ \text { (b) } \\ \hline \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { D } \\ \substack{\text { DIRECTIONAL } \\ \text { SPLIT) }} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { PEAK- } \\ \text { HOUR } \\ \text { VOLUME (c) } \end{array}$	$\begin{gathered} \text { V/C } \\ \text { RATIO } \\ \hline \hline \end{gathered}$	LOS
AM PEAK									
I-5									
Old Town Ave to Washington St	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	196,000	15,600	0.560	8,736	0.95	E
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200			0.440	6,864	0.75	C
Washington St to Pacific Highway	NB	4 M	8,000	148,000	12,000	0.560	6,720	0.84	D
	SB	4 M	8,000			0.440	5,280	0.66	C
First Ave to Sixth Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	201,000	15,500	0.750	11,625	1.26	F1
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11,200			0.250	3,875	0.35	A
SR-163 to SR-94	NB	$5 \mathrm{M}+1 \mathrm{~A}$	11,200	210,000	16,200	0.750	12,150	1.08	F0
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11,200			0.250	4,050	0.36	A
SR-94 to Imperial Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	164,000	12,700	0.750	9,525	1.04	F0
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200			0.250	3,175	0.35	A
I-8									
Hotel Circle (W) to Hotel Circle (E)	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	208,000	16,500	0.570	9,405	1.02	F0
	EB	4 M	8,000			0.430	7,095	0.89	D
Mission Center Rd to Qualcomm Wy	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	224,000	17,900	0.570	10,203	1.11	F0
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200			0.430	7,697	0.84	D
I-805 to SR-15	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	242,000	19,100	0.650	12,415	1.35	F1
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200			0.350	6,685	0.73	C
SR-15									
I-805 to SR-94	NB	$3 \mathrm{M}+1 \mathrm{~A}$	7,200	96,000	8,900	0.430	3,827	0.53	B
	SB	$2 \mathrm{M}+1 \mathrm{~A}$	5,200			0.570	5,073	0.98	E
Notes:									
Bold values indicate freeway segments operating M=Main Lane; A=Auxiliary Lane. (a) The capacity is calculated as 2,000 ADT per (b) Traffic volumes provided by Caltrans (2008) (c) Peak-hour volume calculated by: (2-way Peak	S or F. ane and 1,200 ADT Volume)*(D)	er auxiliary lane							

Table 3-12 Existing Conditions Freeway Segment Analysis Summary (Cont.)

FREEWAY SEGMENT	DIRECTION	NUMBER OF LANES	CAPACITY (a)	ADT (b)	PEAK HOUR VOLUME (b)	$\begin{array}{\|c} \text { D } \\ \text { (DIRECTIONAL } \\ \text { SPLIT) } \\ \hline \end{array}$	PEAK- HOUR VOLUME (c)	$\begin{gathered} \text { V/C } \\ \text { RATIO } \\ \hline \end{gathered}$	LOS
AM PEAK									
I-805									
I-8 to Adams Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	192,000	15,900	0.730	11,607	1.26	F1
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11,200			0.270	4,293	0.38	A
El Cajon Blvd to University Ave	NB	4 M	8,000	171,000	14,600	0.330	4,818	0.60	B
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200			0.670	9,782	1.06	F0
University Ave to SR-15	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	169,000	13,000	0.330	4,290	0.47	B
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200			0.670	8,710	0.95	E
SR-94									
25th St to 28th St	WB	4M	8,000	123,000	10,700	0.730	7,811	0.98	E
	EB	4 M	8,000			0.270	2,889	0.36	A
28th St to 30th St	WB	4 M	8,000	130,000	12,000	0.730	8,760	1.10	F0
	EB	4 M	8,000			0.270	3,240	0.41	A
Broadway to SR-15	WB	4 M	8,000	144,000	13,300	0.730	9,709	1.21	F0
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200			0.270	3,591	0.39	A
SR-163									
I-8 to Washington St	NB	$3 \mathrm{M}+1 \mathrm{~A}$	7,200	126,000	10,100	0.410	4,141	0.58	B
	SB	$3 \mathrm{M}+1 \mathrm{~A}$	7,200			0.590	5,959	0.83	D
Washington St to Robinson Ave	NB	2 M	4,000	96,000	7,800	0.410	3,198	0.80	C
	SB	2 M	4,000			0.590	4,602	1.15	F0
Quince Dr to I-5	NB	2 M	4,000	108,000	10,100	0.350	3,535	0.88	D
	SB	2 M	4,000			0.650	6,565	1.64	F2
Notes:									
M=Main Lane; A=Auxiliary Lane. (a) The capacity is calculated as 2,000 ADT per main lane and 1,200 ADT per auxiliary lane (b) Traffic volumes provided by Caltrans (2008) (c) Peak-hour volume calculated by: (2-way Peak-Hour Volume)*(D)									

Table 3-13 Existing Conditions Freeway Segment Analysis Summary (Cont.)

FREEWAY SEGMENT	DIRECTION	NUMBER OF LANES	CAPACITY (a)	ADT (b)	PEAK HOUR VOLUME (b)	$\underset{\substack{\text { D } \\ \text { (DIRECTIONAL } \\ \text { SPLIT) }}}{ }$	$\left\|\begin{array}{c\|} \text { PEAK- } \\ \text { HOUR } \\ \text { VOLUME (c) } \end{array}\right\|$	$\begin{gathered} \text { V/C } \\ \text { RATIO } \end{gathered}$	LOS
PM PEAK									
I-5									
Old Town Ave to Washington St	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9200	196,000	15,600	0.460	7,176	0.78	C
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9200			0.540	8,424	0.92	D
Washington St to Pacific Highway	NB	4 M	8000	148,000	12,000	0.460	5,520	0.69	C
	SB	4 M	8000			0.540	6,480	0.81	D
First Ave to Sixth Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9200	201,000	15,500	0.640	9,920	1.08	F0
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11200			0.360	5,580	0.50	B
SR-163 to SR-94	NB	$5 \mathrm{M}+1 \mathrm{~A}$	11200	210,000	16,200	0.640	10,368	0.93	E
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11200			0.360	5,832	0.52	B
SR-94 to Imperial Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9200	164,000	12,700	0.640	8,128	0.88	D
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9200			0.360	4,572	0.50	B
I-8									
Hotel Circle (W) to Hotel Circle (E)	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9200	208,000	16,500	0.450	7,425	0.81	D
	EB	4 M	8000			0.550	9,075	1.13	F0
Mission Center Rd to Qualcomm Wy	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9200	224,000	17,900	0.450	8,055	0.88	D
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9200			0.550	9,845	1.07	F0
I-805 to SR-15	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9200	242,000	19,100	0.430	8,213	0.89	D
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9200			0.570	10,887	1.18	F0
SR-15									
I-805 to SR-94	NB	$3 \mathrm{M}+1 \mathrm{~A}$	7200	96,000	8,900	0.430	3,827	0.53	B
	SB	$2 \mathrm{M}+1 \mathrm{~A}$	5200			0.570	5,073	0.98	E
Notes:									
Bold values indicate freeway segments operatin M=Main Lane; A= Auxiliary Lane. (a) The capacity is calculated as $2,000 \mathrm{ADT}$ per (b) Traffic volumes provided by Caltrans (2008) (c) Peak-hour volume calculated by: (2-way Peak-	S E or F. ane and 1,200 ADT Volume)*(D)	per auxiliary lane							

Table 3-14 Existing Conditions Freeway Segment Analysis Summary (Cont.)

FREEWAY SEGMENT	DIRECTION	NUMBER OF LANES	CAPACITY (a)	ADT (b)	PEAK HOUR VOLUME (b)	$\begin{array}{\|c\|} \text { D } \\ \text { (DIRECTIONAL } \\ \text { SPLIT) } \end{array}$	$\begin{array}{\|c} \text { PEAK- } \\ \text { HOUR } \\ \text { VOLUME (c) } \\ \hline \hline \end{array}$	$\begin{gathered} \text { V/C } \\ \text { RATIO } \\ \hline \end{gathered}$	LOS
PM PEAK									
I-805									
I-8 to Adams Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9200	192,000	15,900	0.340	5,406	0.59	B
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11200			0.660	10,494	0.94	E
El Cajon Blvd to University Ave	NB	4 M	8000	171,000	14,600	0.600	8,760	1.10	F0
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9200			0.400	5,840	0.63	C
University Ave to SR-15	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9200	169,000	13,000	0.600	7,800	0.85	D
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9200			0.400	5,200	0.57	B
SR-94									
25th St to 28th St	WB	4M	8000	123,000	10,700	0.300	3,210	0.40	A
	EB	4 M	8000			0.700	7,490	0.94	E
28th St to 30th St	WB	4 M	8000	130,000	12,000	0.300	3,600	0.45	B
	EB	4 M	8000			0.700	8,400	1.05	F0
Broadway to SR-15	WB	4 M	8000	144,000	13,300	0.300	3,990	0.50	B
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9200			0.700	9,310	1.01	F0
SR-163									
I-8 to Washington St	NB	$3 \mathrm{M}+1 \mathrm{~A}$	7200	126,000	10,100	0.620	6,262	0.87	D
	SB	$3 \mathrm{M}+1 \mathrm{~A}$	7200			0.380	3,838	0.53	B
Washington St to Robinson Ave	NB	2 M	4000	96,000	7,800	0.620	4,836	1.21	F0
	SB	2 M	4000			0.380	2,964	0.74	C
Quince Dr to I-5	NB	2 M	4000	108,000	10,100	0.540	5,454	1.36	F2
	SB	2 M	4000			0.460	4,646	1.16	F0
Notes:									
Bold values indicate freeway segments opera M=Main Lane; A=Auxiliary Lane. (a) The capacity is calculated as $2,000 \mathrm{ADT}$ (b) Traffic volumes provided by Caltrans (20 (c) Peak-hour volume calculated by: (2-way	S E or F. ane and 1,200 ADT Volume)*(D)	per auxiliary lane							

Table 3-15 Existing Conditions Summary of Freeway Ramp Metering

ON-RAMP	PEAK PERIOD	$\begin{array}{\|c\|} \hline \text { METER } \\ \text { RATE }^{1}(\mathrm{veh} / \mathrm{hr}) \\ \hline \end{array}$	$\begin{gathered} \text { DEMAND }^{2} \\ \text { (veh/hr) } \end{gathered}$	EXCESS DEMAND (veh/hr)	AVERAGE DELAY (min)
INTERSTATE 5					
Washington St to I-5 NB	AM	996	1020	24	1.4
	PM	996	1034	38	2.3
India St to I-5 NB	AM	996	915	0	0.0
	PM	996	1066	70	4.2
Hawthorn St to I-5 NB	AM	996	454	0	0.0
	PM	996	842	0	0.0
Hancock St to I-5 SB	AM	Ramp not metered in the a.m. peak			
	PM	1140	1287	147	7.7
Kettner Blvd to I-5 SB	AM	Ramp not metered in the a.m. peak			
	PM	498	269	0	0.0
Fifth Ave to I-5 SB	AM	Ramp not metered in the a.m. peak			
	PM	996	1087	91	5.5
INTERSTATE 8					
NB Texas St to I-8 EB	AM	Ramp not metered in the a.m. peak			
	PM	498	465	0	0.0
SB Texas St to I-8 EB	AM	Ramp not metered in the a.m. peak			
	PM	1140	866	0	0.0
INTERSTATE 805					
El Cajon Blvd to I-805 NB	AM	1140	860	0	0.0
	PM	Ramp not metered in the p.m. peak			
University Ave to I-805 NB	AM	1140	998	0	0.0
	PM	Ramp not metered in the p.m. peak			
STATE ROUTE 94					
28th St to SR-94 WB	AM	534	100	0	0.0
	PM	Ramp not metered in the p.m. peak			
32nd St/Broadway to SR-94 WB	AM	570	99	0	0.0
	PM	Ramp not metered in the p.m. peak			
25th St to SR-94 EB	AM	Ramp not metered in the a.m. peak			
	PM	960	785	0	0.0
28th St to SR-94 EB	AM	Ramp not metered in the a.m. peak			
	PM	960	732	0	0.0
32nd St/Broadway to SR-94 EB	AM	Ramp not metered in the a.m. peak			
	PM	570	464	0	0.0
STATE ROUTE 163					
Washington St to SR-163 SB	AM	498	373	0	0.0
	PM	Ramp not metered in the p.m. peak			
1) Meter rate is the assumed peak hour capacity expected to be processed through the ramp meter (using Caltrans fast rate) 2) Demand is the peak hour demand using the on-ramp					

K:\SND_TPTO\095240042\Excel\[240042RM01.xls]Existing

4 FUTURE COMMUNITY BUILDOUT CONDITIONS

This section provides a description of future community buildout conditions.

4.1 ROAD NETWORK

One roadway network change was assumed to take place under the Horizon Year (2035) scenario: 25th Street is changing from a 4-lane collector (no center lane) to a 2-lane collector with a continuous two-way left-turn lane between Broadway and C Street. This change is under construction at the time of this report. No other roadway network changes were assumed.

4.2 TRAFFIC VOLUMES

The projections of land use intensities were developed using GIS analysis techniques by the City of San Diego's Planning Department staff. Allowable uses, floor-to-area ratios, residential densities, allowable heights, and space for parking were all considered when determining the reasonably expected land use plan alternatives.

Model Adjustments

In the process of calibrating the existing model, it was concluded that several post model adjustments were needed for the forecasted Year 2035 traffic model volumes to make them consistent with existing vehicular counts and expected overall traffic patterns within the three communities.

- For roadway segments where the difference between the calibrated existing 2008 model and the actual count exceeded 10% or 2,000 daily vehicles, the difference was subtracted or added to the Year 2035 forecast model to adjust the future volume based on the discrepancy noted between base year model volumes and count data. For roadway segments that have existing daily volumes less than 5,000, no adjustments were applied to the future model volumes.

The post model adjustment details for the Year 2035 scenario are included in Appendix F. The resulting daily traffic volumes for Year 2035 are presented in Figures 4-1, 4-2, and 4-3.

FIGURE 4-1

FIGURE 4-2

aNEOE7
5000 or Less
5001-10000
10001-20000
20001-30000
Greater than 30000
Year 2035 Proposed Land Use Roadway Segment ADT Volumes: North Park

FIGURE 4-3

5000 or Less
2
2
II
II
\square
5001-10000
10001-20000
20001-30000
Greater than 30000

Year 2035 Proposed Land Use Roadway Segment ADT Volumes: Golden Hill

Turning Movement Volume Forecasts

Year 2035 peak hour turning movements at the study area intersections were developed using methodologies from National Cooperative Highway Research Program (NCHRP) 255 - Highway Traffic Data for Urbanized Area Project Planning and Design, Chapter 8. NCHRP Report 255 is a compilation of the best techniques that are currently being used in urban areas to forecast future traffic volumes. These techniques were identified through a survey of state and local agencies with follow-up field visits to obtain detailed information on procedural steps and typical applications. The method used to forecast the future turning movement volumes for the Uptown, North Park, and Golden Hill Community Plans evaluation is the NCHRP's "Directional Volume Forecast". For this method, existing and future daily traffic volumes, existing peak hour turning movements, and projected peak hour " K " and directional " D " factors are used to calculate future year turning movements. Existing daily segment traffic volumes and peak hour intersection turning movements were counted in the field. Year 2035 daily traffic volumes were obtained from the forecast model forecast. Using the "Directional Volume Forecast" technique, the existing turning movements at each study area intersection were factored based on increases in daily approach traffic and existing K and D factors. Each respective movement was derived using an iterative approach that balances the inflows and outflows for each approach. The supporting worksheets for calculating Year 2035 volumes are included in Appendix G. Resulting peak hour intersection turning movements are presented in Figures 4-4, 4-5, 4-6 and 4-7.

FIGURE 4-4

Year 2035 Proposed Land Use Peak-Hour Intersection Volumes: Uptown

FIGURE 4-5

Year 2035 Proposed Land Use Peak-Hour Intersection Volumes: Uptown (Cont.)

FIGURE 4-6

coly		coill					
${ }^{35}$							
	$\begin{array}{cc} & 16 / 22 \\ 349 / 418 \\ 340 / 192 \\ 3 \end{array}$		$\begin{array}{cc} & 250 / 571 \\ 128 / 209 \\ & 92 / 317 \\ \text { I-805 SB Ramps } \end{array}$				
					$\stackrel{\square}{\circ}$		

Legend

$X / Y=A M / P M$ PEAK HOUR TURNING VOLUMES

AWSC

Year 2035 Proposed Land Use Peak-Hour Intersection Volumes: North Park

FIGURE 4-7

Year 2035 Proposed Land Use Peak-Hour Intersection Volumes: Golden Hill

4.3 INTERSECTION ANALYSIS

Tables 4-2, 4-3, and 4-4 display the LOS analysis results for the study intersections using their existing lane configuration and the future peak-hour traffic volumes. As shown in the table, the Uptown CPU would have a cumulative traffic related impact at 6 of the 30 study intersections, the North Park CPU would have a cumulative traffic related impact at 7 of the 11 study area intersection, and the Golden Hill CPU would have a cumulative traffic related impact at 6 of the 12 study area intersections.

Appendix D contains the peak-hour intersections LOS calculation worksheets.

4.4 ROADWAY SEGMENT ANALYSIS

Tables 4-5 through 4-11 display the LOS analysis results for the roadway segments using their existing roadway classification and the future peak-hour traffic volumes. As shown in the tables, the Uptown CPU would have a cumulative traffic related impact on 52 of the 105 roadway segments within the study area, the North Park CPU would have a cumulative traffic related impact on 39 of the 95 study area roadway segments, and the Golden Hill CPU would have a cumulative traffic related impact on 13 of the 32 study area roadway segments.

4.5 FREEWAY SEGMENT ANALYSIS

Tables 4-12 and 4-13 display the LOS analysis results for the freeway segments using their existing freeway configuration and the future peak-hour traffic volumes. As shown in the tables, the traffic generated by the land use changes associated with the Uptown, North Park and Golden Hill would have a cumulative traffic related impact along all 18 freeway segments within the study area.

4.6 FREEWAY RAMP METERING ANALYSIS

Table 4-14 displays the analysis results for the ramp meters using their existing configuration and meter rate and the future peak-hour traffic volumes. As shown in the tables, the traffic generated by the land use changes associated with the Uptown, North Park and Golden Hill would have a cumulative traffic related impact at 3 ramp meters within the study area.

Table 4-2 Horizon Year (2035) Summary of Intersection Analysis

INTERSECTION		TRAFFIC CONTROL	PEAK HOUR	Existing		Year 2035				
		DELAY (a)		LOS (b)	DELAY (a)	LOS (b)	Δ (c)	SIGNIFICANT?		
UPTOWN										
1	Washington St \& Hancock St		Signal	AM	24.9	C	33.2	C	8.3	NO
		PM		28.2	C	51.6	D	23.4	NO	
2	Washington St \& San Diego Ave	Signal	AM	19.7	B	15.4	B	-4.3	NO	
			PM	17.6	B	21.9	C	4.3	NO	
3	Washington St \& India St	Signal	AM	11.7	B	15.8	B	4.1	NO	
			PM	14.2	B	20.3	C	6.1	NO	
4	Washington St \& Fourth Ave	Signal	AM	25.2	C	31.8	C	6.6	NO	
			PM	37.3	D	59.9	E	22.6	YES	
5	Washington St \& Fifth Ave	Signal	AM	15.2	B	14.1	B	-1.1	NO	
			PM	16.3	B	19.2	B	2.9	NO	
6	Washington St \& Eighth Ave/SR163 Off-Ramp	Signal	AM	42.6	D	71.5	E	28.9	YES	
			PM	333.0	F	331.7	F	-1.3	NO	
7	Washington St \& Richmond St/SR163 On-Ramp	Signal	AM	18.6	B	51.4	D	32.8	NO	
			PM	13.2	B	33.9	C	20.7	NO	
8	Washington St/Normal St \& Campus Ave/Polk Ave	Signal	AM	43.0	D	62.7	E	19.7	YES	
			PM	50.0	D	57.3	E	7.3	YES	
9	Normal St/El Cajon Blvd \& Park Blvd	Signal	AM	25.2	C	26.6	C	1.4	NO	
			PM	34.3	C	43.8	D	9.5	NO	
10	University Ave \& Fourth Ave	Signal	AM	29.1	C	31.8	C	2.7	NO	
			PM	28.2	C	30.3	C	2.1	NO	
11	University Ave \& Fifth Ave	Signal	AM	12.9	B	13.7	B	0.8	NO	
			PM	25.3	C	28.0	C	2.7	NO	
12	University Ave \& Sixth Ave	Signal	AM	32.9	C	38.7	D	5.8	NO	
			PM	54.8	D	55.3	E	0.5	YES	
13	University Ave \& Tenth St	Signal	AM	18.6	B	17.5	B	-1.1	NO	
			PM	20.6	C	37.0	D	16.4	NO	
14	University Ave \& Normal St	Signal	AM	5.6	A	6.3	A	0.7	NO	
			PM	10.6	B	13.3	B	2.7	NO	
15	University Ave \& Park Blvd	Signal	AM	24.5	C	25.2	C	0.7	NO	
			PM	39.4	D	42.1	D	2.7	NO	
16	Robinson Ave \& Fourth Ave	Signal	AM	21.4	C	27.0	C	5.6	NO	
			PM	18.4	B	20.8	C	2.4	NO	
17	Robinson Ave \& Fifth Ave	Signal	AM	10.8	B	12.5	B	1.7	NO	
			PM	15.0	B	17.5	B	2.5	NO	
18	Robinson Ave \& Sixth Ave	Signal	AM	21.6	C	22.7	C	1.1	NO	
			PM	27.6	C	30.9	C	3.3	NO	
19	Vine St \& India St	Signal	AM	5.6	A	5.9	A	0.3	NO	
			PM	7.3	A	8.5	A	1.2	NO	
20	Sassafras St \& Kettner Blvd	Signal	AM	10.4	B	13.2	B	2.8	NO	
			PM	12.5	B	43.6	D	31.1	NO	
21	Sassafras St \& India St	Signal	AM	6.3	A	8.4	A	2.1	NO	
			PM	20.9	C	47.4	D	26.5	NO	
Notes: Bold values indicate intersections operating at LOS E or F. ECL $=$ Exceeds Calculable Limit. Reported when delay exceeds 180 seconds. (a) Delay refers to the average control delay for the entire intersection, measured in seconds per vehicle. At a one-way or two-way stop-controlled intersection, delay refers to the worst movement. b) LOS calculations are based on the methodology outlined in the 2000 Highway Capacity Manual and performed using Synchro 8 ::ISND_TPTOO:095240042_Futurel[240042IN02_Future_Without Reduction.xlism]Future 1										

Table 4-3 Horizon Year (2035) Summary of Intersection Analysis (Cont.)

INTERSECTION		TRAFFIC CONTROL	PEAK HOUR	Existing		Year 2035				
		DELAY (a)		LOS (b)	DELAY (a)	LOS (b)	Δ (c)	SIGNIFICANT?		
UPTOWN (cont.)										
22	Laurel St \& India St/I-5 NB On-		Signal	AM	17.0	B	19.7	B	2.7	NO
	Ramp	PM		21.4	C	29.5	C	8.1	NO	
23	Laurel St \& Fourth Ave	Signal	AM	12.2	B	13.8	B	1.6	NO	
			PM	14.9	B	23.8	C	8.9	NO	
24	Laurel St \& Fifth Ave	Signal	AM	12.3	B	13.3	B	1.0	NO	
			PM	12.7	B	17.8	B	5.1	NO	
25	Laurel St \& Sixth Ave	Signal	AM	13.7	B	15.8	B	2.1	NO	
			PM	20.5	C	27.9	C	7.4	NO	
26	Hawthorn St \& Brant St	Two-Way Stop	AM	9.9	A (SB R)	10.0	B (SB R)	0.1	NO	
			PM	12.9	B (SB R)	12.9	B (SB R)	0.0	NO	
27	Grape St \& State St	Signal	AM	15.7	B	12.6	B	-3.1	NO	
			PM	18.7	B	41.7	D	23.0	NO	
28	Elm St \& First Ave	Signal	AM	13.3	B	17.8	B	4.5	NO	
			PM	21.6	C	21.0	C	-0.6	NO	
29	Elm St \& Sixth Ave	Signal	AM	54.4	D	153.6	F	99.2	YES	
			PM	14.8	B	18.8	B	4.0	NO	
30	Cedar St \& Second Ave	Two-Way Stop	AM	31.8	D (SB R)	459.3	F (SB L)	427.5	YES	
			PM	18.0	C (SB R)	43.0	E (SB L)	25.0	YES	
NORTH PARK										
31	Madison Ave \& Texas St	Signal	AM	77.4	E	144.4	F	67.0	YES	
			PM	34.7	C	63.9	E	29.2	YES	
32	El Cajon Blvd \& Texas St	Signal	AM	35.9	D	37.6	D	1.7	NO	
			PM	106.8	F	85.3	F	-21.5	NO	
33	El Cajon Blvd \& 30th St	Signal	AM	26.0	C	29.7	C	3.7	NO	
			PM	50.2	D	68.1	E	17.9	YES	
34	El Cajon Blvd \& I-805 SB Ramps	Signal	AM	18.4	B	21.9	C	3.5	NO	
			PM	80.9	F	96.8	F	15.9	YES	
35	El Cajon Blvd \& I-805 NB Ramps	Signal	AM	27.9	C	30.1	C	2.2	NO	
			PM	19.2	B	24.7	C	5.5	NO	
36	University Ave \& Texas St	Signal	AM	19.5	B	25.5	C	6.0	NO	
			PM	72.7	E	49.5	D	-23.2	NO	
37	University Ave \& 30th St	Signal	AM	25.0	C	26.5	C	1.5	NO	
			PM	49.2	D	57.8	E	8.6	YES	
38	University Ave \& Boundary St	Signal	AM	23.0	C	26.0	C	3.0	NO	
			PM	42.1	D	50.0	D	7.9	NO	
39	University Ave \& I-805 NB Ramps	Signal	AM	29.0	C	45.5	D	16.5	NO	
			PM	35.6	D	80.9	F	45.3	YES	
40	North Park Way/I-805 SB Ramps \& Boundary St/33rd St	All-Way Stop	AM	18.1	C	18.1	C	0.0	NO	
			PM	10.6	B	134.8	F	124.2	YES	
41	Upas St \& 30th St (W)	All-Way Stop	AM	24.4	C	40.1	E	15.7	YES	
			PM	25.9	D	54.8	F	28.9	YES	
otes:										
a) Delay refers to the average control delay for the entire intersection, measured in seconds per vehicle. At a one-way or two-way stop-controlled intersection, delay refers to the worst movement. b) LOS calculations are based on the methodology outlined in the 2000 Highway Capacity Manual and performed using Synchro 8 E:ISND_TPTOOO95240042_FutureV[240042IN02_Future_Without Reduction.xlsm]Future1										

Table 4-4 Horizon Year (2035) Summary of Intersection Analysis (Cont.)

INTERSECTION		TRAFFIC CONTROL	PEAK HOUR	Existing		Year 2035				
		DELAY (a)		LOS (b)	DELAY (a)	LOS (b)	Δ (c)	SIGNIFICANT?		
GOLDEN HILL										
42	B St \& 17th St/I-5 SB Off-Ramp		One-Way Stop	AM	130.7	F (SB TR)	ECL	F (SB TR)	-	YES
		PM		29.3	D (SB TR)	20.4	C (SB TR)	-8.9	NO	
43	B St \& I-5 NB Off-Ramp	No Conflicting Movements	AM	N/A	N/A	N/A	N/A	N/A	N/A	
			PM	N/A	N/A	N/A	N/A	N/A	N/A	
44	B St \& 19th St/I-5 NB On-Ramp	Signal	AM	9.4	A	11.2	B	1.8	NO	
			PM	6.8	A	7.1	A	0.3	NO	
45	C St \& 17 St	One-Way Stop	AM	13.7	B (SB TR)	14.3	B (SB TL)	0.6	NO	
			PM	23.3	C (SB TR)	32.6	D (SB TL)	9.3	NO	
46	Broadway \& 30th St	Signal	AM	14.2	B	14.6	B	0.4	NO	
			PM	11.9	B	14.3	B	2.4	NO	
47	SR-94 WB Ramps \& Broadway	One-Way Stop	AM	63.0	F (WB L)	187.5	F (WB L)	124.5	YES	
			PM	55.3	F (WB L)	185.9	F (WB L)	130.6	YES	
48	SR-94 WB Ramps \& 28th St	Two-Way Stop	AM	46.6	E (WB LT)	ECL	F (WB LT)	-	YES	
			PM	370.9	F (WB LT)	883.9	F (WB LT)	513.0	YES	
49	SR-94 EB Ramps \& 28th St	One-Way Stop	AM	26.7	D (WB L)	245.3	F (WB L)	218.6	YES	
			PM	507.0	F (WB L)	ECL	F (WB L)	-	YES	
50	F St \& 22nd St	All-Way Stop	AM	13.6	B	17.4	C	3.8	NO	
			PM	8.6	A	8.7	A	0.1	NO	
51	F St \& 25th St	All-Way Stop	AM	20.8	C	82.3	F	61.5	YES	
			PM	16.2	C	39.4	E	23.2	YES	
52	G St \& 22nd St	All-Way Stop	AM	9.6	A	10.4	B	0.8	NO	
			PM	9.4	A	10.1	B	0.7	NO	
53	G St \& 25th St	All-Way Stop	AM	12.4	B	55.2	F	42.8	YES	
			PM	16.0	C	68.0	F	52.0	YES	
Notes: Bold values indicate intersections operating at LOS E or F . ECL = Exceeds Calculable Limit. (a) Delay refers to the average control delay for the entire intersection, measured in seconds per vehicle. At a one-way or two-way stop-controlled intersection, delay refers to the worst movement. (b) LOS calculations are based on the methodology outlined in the 2000 Highway Capacity Manual and performed using Synchro 8 K:SND_TPTO:095240042_Future\|[240042IN02_Future_Without Reduction.xlsm]Future1										

Table 4-5 Horizon Year (2035) Summary of Roadway Segment Analysis

[^1]Table 4-6 Horizon Year (2035) Summary of Roadway Segment Analysis (Cont.)

ROADWAY SEGMENT	roadway functional Clastification	$\begin{gathered} \text { LOSE } \\ \text { CAPACITY } \end{gathered}$	ExIITING			FUTURE (2035)			\triangle in ADT	Δ in V/C	$\begin{array}{\|c} \substack{\text { SigNIFI } \\ \text { CANT? }} \end{array}$					
			ADT	$\begin{array}{\|c\|} \hline \text { RATIO } \\ \hline(\text { (a) } \end{array}$	Los	${ }_{\text {adt }}$	$\underset{\substack{\text { Ratio } \\ \hline(\mathrm{a})}}{\substack{\text { cio }}}$	Los								
UPTown																
Fort Stockion Dr																
Arista St o Sunsel Blvd	2 Lane Collector (Multi-family, commercial- -industrial fronting)	8.000	3.290	0.411	B	4.900	0.613	c	1610	0.202	No					
Sunset Blvd to Hawk St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	6.100	0.763	D	7.900	0.988	E	1800	0.225	yes					
Hawk Sto Goldifing St	2 Lane Collector (Mulli-family, commercial-industrial fronting)	8.000	8.450	1.056	F	8.990	1.113	F	450	0.057	YES					
Dickisson St o Arbor Dr	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	3.790	0.474	c	4.600	0.575	c	810	0.101	No					
Arbor Dr to Washington St	2 Lane Collector (one-way)	17,500	5.510	0.315	A	7.900	0.451	в	2390	0.136	No					
Grape St																
Albartoss St o F First Ave	3 Lane Collector (one-way)	26,000	2.082	0.080	A	7.300	0.281	A	5218	0.201	No					
First Ave to Third Ave	2 Lane Collector (Multi-family, commercial -industrial fronting)	8.000	4.289	0.536	c	7.300	0.913	E	3011	0.377	yes					
Third Ave to Sixth Ave	2 Lane Collector (Multi-family, commercial -industrial fronting)	8.000	2.097	0.262	A	9.000	1.125	F	6903	0.863	yes					
Hawthorn St																
Brant St to First Ave	3 Lane Collector (one-way)	26,000	11.558	0.445	в	15,000	0.577	c	3442	0.132	No					
First Ave to Third Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	3.634	0.454	c	7.300	0.913	E	3666	0.459	YES					
Third Ave to Sixth Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	3.577	0.447	c	8.700	1.088	F	5123	0.641	yes					
India St																
Washington St to Winder St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000				11,000	1.375	F								
Winder S St o Gienwood Dr	3 Lane Collector (one-way)	26,000	8.345	0.321	A	10,700	0.412	A	2355	0.091	No					
Glenwood Dr to Sassafrass St	2 Lane Collector (one-way)	17,500	26.178	1.496	F	30.000	1.714	F	3822	0.218	YES					
Sassafasas St o Redwood St	3 Lane Collector (two-way)	20,000	18.676	0.934	E	21,300	1.065	F	2624	0.131	YES					
Redwood St to Palm St	3 Lane Collector (one-way)	26.000	16.705	0.643	c	20,300	0.781	D	3595	0.138	No					
Juan St																
Laurel St																
Columbia St o Union St	4 Lane Collector (no center lane)	15,000	13.691	0.913	E	21,100	1.407	F	7409	0.494	YES					
Union St to First Ave	2 Lane Collector (continuous left-urn lane)	15,000	11,128	0.742	D	17,900	1.193	F	6772	0.451	YES					
First Ave to Third Ave	2 Lane Collector (continuous effturn lane)	15.000	11.326	0.755	D	16,100	1.073	F	4774	0.318	YES					
Third Ave to Sixth Ave	2 Lane Collector (continuous left-urn lane)	15,000	11.516	0.768	D	20.200	1.347	F	8684	0.579	YES					
Lewis St																
Fort Stockton Dr to Goldfinch St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	3.720	0.465	c	4.100	0.513	c	380	0.048	No					
Lincoln Ave																
(1)																
Cleveland Ave to Park Blvd	2 Lane Collector (continuous left-urn lane)	15.000	3.290	0.219	A	3.500	0.233	A	210	0.014	No					
Normal St																
Park Blvd to Wastington St	6 Lane Majior Aterial	50,000	22,296	0.446	B	28.300	0.566	c	6004	0.120	No					
Washington St to University Ave		40,000 8.000	4.974	0.124	A				0	498	vo					
	2 Lane Collector (Multi-family, commercial-industrial fronting ***	8.000				4.974	0.622	c								

Table 4-7 Horizon Year (2035) Summary of Roadway Segment Analysis (Cont.)

Roadway Segment	Roadway functional classification	$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	${ }_{\text {EXIITING }}$			FUTURE (2035)			\triangle in ADT	Δ in V/C	$\begin{gathered} \text { SIGNIFI } \\ \text { CANT? } \end{gathered}$					
			ADT	$\begin{aligned} & \text { VATIO } \end{aligned}$	Los	ADT	$\underset{\substack{\text { (a) }}}{\mathrm{VATII}}$	Los								
UPTown																
Park Blvd																
Adams Ave to Misision Ave	2 Lane Collector (continuous lef-turn lane)	15.000	14.839	0.989	E	14.893	0.993	E	54	0.004	No					
Mission Ave to El Cajion Blve	3 Lane Collector (no center lane)	11.500	11.806	1.027	F	16.300	1.417	F	4494	0.390	YES					
El Caion Blvid to Polk Ave	4 Lane Major Aterial	40,000	11.524	0.288	A	18,000	0.465	в	7076	0.177	No					
Polk Ave to University Ave	4 Lane Major Atererial	40,000	13.936	0.348	,	22.500	0.563	c	8564	0.215	No					
University Ave to Robinson Ave	4 Lane Major Atrerial	40,000	14.400	0.360	,	19.800	0.495	B	5400	0.135	No					
Robinson Ave to Upas St	2 Lane Collector (continuous left-urn lane)	15,000	12.501	0.833	D	17,200	1.147	F	4699	0.314	yes					
Upas St o Zoo Pl	4 Lane Major Arterial	40,000	13,807	0.345	,	17,700	0.443	в	3893	0.098	No					
Reymard W_{y}																
Torrance St to Curlew St	2 Lane Collector (continuous left-urn lane)	15,000	1.955	0.130	A	5.300	0.353	B	3345	0.223	No					
Richmond St																
Cleveland Ave to University Ave	2 Lane Collector (Mulli-family, commercial industrial froning)	8.000	7.085	0.886	E	9,000	1.125	F	1915	0.239	yes					
University Ave to Robinson Ave	2 Lane Collector (Mulli-family, commercial-industrial fronting)	8.000	5.345	0.668	D	6.700	0.838	E	1355	0.170	YES					
Robisson Ave																
Brant St 10 First Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	1.995	0.249	A	4.600	0.575	c	2605	0.326	No					
First Ave to Third Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	5.800	0.725	D	11,500	1.438	F	5700	0.713	YES					
Third Ave to Eight Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	11,022	1.378	F	14,400	1.800	F	3378	0.422	yes					
Tenth Ave to Richmond St	2 Lane Collector (continuous left-urn lane)	15,000	10,120	0.675	D	12,300	0.820	D	2180	0.145	No					
Richmond St o Park Blvd	2 Lane Collector (continuous left-urn lane)	15,000	7,269	0.485	c	9,200	0.613	c	1931	0.128	No					
San Diego Ave																
Hortensia St o Pringle St	2 Lane Collector (Mulli-family, commercial-industrial fronting)	8.000	5.830	0.729	D	10.500	1.313	F	4670	0.584	YES					
Mcke St to Wastington St	3 Lane Collector (one-way)	26,000	13,220	0.535	в	18,200	0.700	c	4280	0.165	No					
Washington St to India St	2 Lane Collector (one-way)	17,500	4.920	0.281	A	7.100	0.406	A	2180	0.125	No					
State St																
Laure St to Juniper St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	4,140	0.518	c	8.200	1.025	F	4060	0.507	yes					
Suset Blve																
Uniersity Ave																
Ibis St o Albatross St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8.000	10,527	1.316	F	14,700	1.838	F	4173	0.522	yes					
Albatross St to First Ave	2 Lane Collector (Mulli-i-amily, commercial-industrial fronting)	8.000	16.851	2.106	F	20.800	2.600	F	3949	0.494	yes					
First Ave to Fourth Ave	2 Lane Collector (no fronting property)	10,000	11,750	1.175	F	14,100	1.410	F	2350	0.235	YES					
Fourth Ave to Fift Ave	2 Lane Collector (continuous left-ur l lane)	15,000	20.250	1.350	F	21.600	1.440	F	1350	0.090	yes					
Fifth Ave to Sixth Ave	4 Lane Collector	30,000	21.184	0.706	D	24,900	0.830	D	3716	0.124	No					
Sixth Ave to Eighth Ave	4 Lane Collector (no center lane)	15,000	24.400	1.627	F	2,3,30	1.953	F	4900	0.326	yes					
Vermont St to Normal St	4Lane Major Atrerial	40,000	23.938	0.598	c	25,600	0.640	c	1662	0.042	No					
Normal St to Patk Blvd	4 Lane Collector (no center lane)	15,000	16,275	1.085	F	21,200	1.413	F	4925	0.328	yes					
Upas St																
Third Ave to Sixth Ave	2 Lane Collector (no fronting property)	10.000	4.475	0.448	B	8.500	0.850	D	4025	0.402	No					
Wastington St L																
India St o University Ave	4 Lane Major Atrerial	40,000	27,929	0.698	c	34.800	0.870	D	6871	0.172	No					
University Ave to First Ave	4 Lane Major Atrerial	40,000	20.477	0.512	B	25,400	0.635	c	4923	0.123	No					
First Ave to Fourth Ave	4 Lane Major Aterial	40,000	25,74	0.644	c	25,745	0.64	c	0	0.000	No					
Fourth Ave to Fift Ave	4 Lane Major Atrerial	40,000	30,900	0.773	D	37,300	0.933	E	6400	0.160	Yes					
Fifth Ave to Sixth Ave	4 Lane Major Aterial	40,000	38,428	0.961	E	41,100	1.028	F	2672	0.067	YES					
Sixth Ave to Richmond St	4 Lane Major A Aterial	40,000	41,778	1.044	F	41,778	1.044	F	0	0.000						
Richmond St to Normal St	6 Lane Major Atrerial	50,000	38,725	0.775	c	47.100	0.942	E	8375	0.167	YES					

Capacity for non-standard roadway classifications were provided by City of San Diego staff.
(a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segm
(a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.

Table 4-8 Horizon Year (2035) Summary of Roadway Segment Analysis (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	EXISTING			FUTURE (2035)			\triangle in ADT	Δ in V/C	$\begin{aligned} & \text { SIGNIFI } \\ & \text { CANT? } \end{aligned}$
			ADT	RATIO (a)	LOS	ADT	RATIO (a)	LOS			
NORTH PARK											
30th St											
Adams Ave to Meade Ave	2 Lane Collector (continuous left-turn lane)	15,000	6,325	0.422	B	10,400	0.693	D	4075	0.271	NO
Meade Ave to El Cajon Blvd	2 Lane Collector (continuous left-turn lane)	15,000	10,912	0.727	D	14,400	0.960	E	3488	0.233	YES
El Cajon Blvd to Howard Ave	2 Lane Collector (continuous left-turn lane)	15,000	12,684	0.846	D	12,684	0.846	D	0	0.000	NO
Howard Ave to Lincoln Ave	2 Lane Collector (continuous left-turn lane)	15,000	12,703	0.847	D	17,900	1.193	F	5197	0.346	YES
Lincoln Ave to University Ave	2 Lane Collector (continuous left-turn lane)	15,000	12,500	0.833	D	14,000	0.933	E	1500	0.100	YES
University Ave to North Park Way	2 Lane Collector (continuous left-turn lane)	15,000	12,150	0.810	D	12,500	0.833	D	350	0.023	NO
North Park Way Ave to Upas St	2 Lane Collector (continuous left-turn lane)	15,000	12,241	0.816	D	16,500	1.100	F	4259	0.284	YES
Upas St to Redwood St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,824	1.103	F	11,900	1.488	F	3076	0.385	YES
Redwood St to Juniper St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	10,013	1.252	F	12,100	1.513	F	2087	0.261	YES
32nd St											
Howard Ave to Lincoln Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,845	0.231	A	4,400	0.550	C	2555	0.319	NO
Lincoln Ave to University Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,300	0.413	B	3,300	0.413	B	0	0.000	NO
University Ave to Myrtle Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,000	0.625	D	11,200	1.400	F	6200	0.775	YES
Myrtle Ave to Upas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	6,985	0.873	E	7,900	0.988	E	915	0.115	YES
Upas St St to Redwood St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,200	0.650	D	5,200	0.650	D	0	0.000	NO
Redwood St to Juniper St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,218	0.277	A	2,600	0.325	B	382	0.048	NO
Adams Ave											
Park Blvd to Alabama St	2 Lane Collector (continuous left-turn lane)	15,000	6,758	0.451	B	7,400	0.493	C	642	0.042	NO
Alabama St to Texas St	2 Lane Collector (continuous left-turn lane)	15,000	8,966	0.598	C	8,966	0.598	C	0	0.000	NO
Texas St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	10,700	0.713	D	13,800	0.920	E	3100	0.207	YES
30th St to W Mountain View Dr	2 Lane Collector (continuous left-turn lane)	15,000	19,929	1.329	F	19,929	1.329	F	0	0.000	NO
Boundary St											
University Ave to North Park Way	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	12,620	1.578	F	16,000	2.000	F	3380	0.422	YES
North Park Way to Myrtle Ave	1 Lane Collector (one-way)	7,500	2,730	0.364	B	3,300	0.440	B	570	0.076	NO
Myrtle Ave to Redwood St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,670	0.584	C	6,000	0.750	D	1330	0.166	NO
Redwood St to Commonwealth Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,550	0.444	C	3,900	0.488	C	350	0.044	NO
Commonwealth Ave											
Boundary St to Juniper St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,480	0.185	A	2,800	0.350	B	1320	0.165	NO
El Cajon Blvd											
Park Blvd to Florida St	6 Lane Major Arterial	50,000	19,407	0.388	A	27,100	0.542	B	7693	0.154	NO
Florida St to Texas St	6 Lane Major Arterial	50,000	23,366	0.467	B	34,600	0.692	C	11234	0.225	NO
Texas St to Oregon St	6 Lane Major Arterial	50,000	24,479	0.490	B	34,800	0.696	C	10321	0.206	NO
Oregon St to Utah St	6 Lane Major Arterial	50,000	32,468	0.649	C	42,800	0.856	D	10332	0.207	NO
Utah St to 30th St	6 Lane Major Arterial	50,000	32,191	0.644	C	39,800	0.796	C	7609	0.152	NO
30th St to Illinois St	6 Lane Major Arterial	50,000	39,116	0.782	C	48,800	0.976	E	9684	0.194	YES
Illinois St to I-805 Ramps	6 Lane Major Arterial	50,000	46,062	0.921	E	58,900	1.178	F	12838	0.257	YES
Florida St											
El Cajon Blvd to University Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,375	0.422	B	7,400	0.925	E	4025	0.503	YES
University Ave to Robinson Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,450	0.681	D	8,800	1.100	F	3350	0.419	YES
Robinson Ave to Upas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,600	0.700	D	6,800	0.850	E	1200	0.150	YES
Florida Dr											
Upas St to Morley Field Dr	2 Lane Collector (no fronting property)	10,000	5,498	0.550	B	6,700	0.670	C	1202	0.120	NO
Notes: Bold values indicate roadway segments operating Capacity for non-standard roadway classifications (a) The v / c Ratio is calculated by dividing the AD	d by City of San Diego staff. each respective roadway segment's capacity.										

Table 4-9 Horizon Year (2035) Summary of Roadway Segment Analysis (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{array}{\|c\|} \text { LOS E } \\ \text { CAPACITY } \\ \hline \end{array}$	EXISTING			FUTURE (2035)			\triangle in ADT	Δ in V / C	$\begin{aligned} & \text { SIGNIFI } \\ & \text { Cont? } \end{aligned}$
			ADT	$\begin{array}{\|c\|} \hline \text { RATIO } \\ \text { (a) } \end{array}$	LOS	ADT	$\begin{array}{\|c} \hline \text { RATIO } \\ \text { (a) } \end{array}$	LOS			
NORTH PARK											
Howard Ave											
Park Blvd to Florida St	2 Lane Collector (continuous left-turn lane)	15,000	3,000	0.200	A				1800	0.400	NO
	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000				4,800	0.600	C			
Florida St to Texas St	2 Lane Collector (continuous left-turn lane)	15,000	3,566	0.238	A				334	0.250	No
	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000				3,900	0.488	C			
Texas St to Utah St	2 Lane Collector (continuous left-turn lane)	15,000	4,815	0.321	A				6485	1.092	Yes
	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000				11,300	1.413	F			
Utah St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	6,137	0.409	B				4063	0.866	yes
	2 Lane Collector (Multi-family, commercial-industrial fronting)*******)	8,000				10,200	1.275	F			
30th St to 32nd St	2 Lane Collector (continuous left-turn lane)	15,000	7,187	0.479	C				3313	0.834	Yes
	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000				10,500	1.313	F			
Juniper St											
30th St to 32nd St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,646	0.456	C	6,200	0.775	D	2554	0.319	NO
32nd St to Commonwealth Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,826	0.353	B	4,400	0.550	C	1574	0.197	NO
Landis St											
Boundary St to Nile St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,790	0.474	C	4,000	0.500	C	210	0.026	NO
Lincoln Ave											
Florida St to Texas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	990	0.124	A	4,300	0.538	C	3310	0.414	NO
Texas St to Utah St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,400	0.300	A	3,200	0.400	B	800	0.100	NO
Utah St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	4,550	0.303	A	7,500	0.500	C	2950	0.197	NO
30th St to 32nd St	2 Lane Collector (continuous left-turn lane)	15,000	5,563	0.371	B	9,200	0.613	C	3637	0.242	NO
32nd St to Boundary St	2 Lane Collector (continuous left-turn lane)	15,000	5,473	0.365	B	9,800	0.653	C	4327	0.288	No
Madison Ave											
Park Blvd to Mission Ave	2 Lane Collector (continuous left-turn lane)	15,000	6,110	0.407	B	8,100	0.540	C	1990	0.133	NO
Mission Ave to Texas St	2 Lane Collector (continuous left-turn lane)	15,000	8,040	0.536	C	10,300	0.687	D	2260	0.151	NO
Texas St to Ohio St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	5,295	0.662	D	12,200	1.525	F	6905	0.863	YES
Meade Ave											
Park Blvd to Texas St	2 Lane Collector (continuous left-turn lane)	15,000	4,060	0.271	A				4140	0.754	Yes
	2 Lane Collector (Multi-family, commercial-industrial fronting***	8,000				8,200	1.025	F			
Texas St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	5,280	0.352	B				4620	0.886	Yes
	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000				9,900	1.238	F			
30th St to Illinois Ave	2 Lane Collector (continuous left-turn lane)	15,000	8,576	0.572	C				2924	0.866	yes
	2 Lane Collector (Multi-family, commercial-industrial fronting***	8,000				11,500	1.438	F			
Illinois St to Iowa St	2 Lane Collector (continuous left-turn lane)	15,000	8,651	0.577	C				3249	0.911	yes
	2 Lane Collector (Multi-family, commercial-industrial fronting***	8,000				11,900	1.488	F			
Mission Ave											
Park Blvd to Mississippi St	2 Lane Collector (one-way)	17,500	1,497	0.086	A	3,700	0.211	A	2203	0.125	NO
Monroe Ave											
Park Blvd to Mission Ave	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,200	0.150	A	3,200	0.400	B	2000	0.250	NO
Mission Ave to Texas St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,500	0.188	A	5,500	0.688	D	4000	0.500	NO
Texas St to 30th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,158	0.270	A	5,700	0.713	D	3542	0.443	NO
Nile St											
Landis St to Thorn St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,305	0.538	C	5,000	0.625	D	695	0.087	NO
Noles:											

Table 4-10 Horizon Year (2035) Summary of Roadway Segment Analysis (Cont.)

Notes:
Bold values indicate roadway segments operating at LOS E or F.
$* *$.
Bold values indicate roadway segments operating at LOS E or F .
*॥Orange/Howard Avenue will be classifed as a two lane collector with no continous center left turn lane to accommodate future bicycle boulevard pending further project level analysis
Capacity for non-standard roadway classifications were provided by City of San Diego staff.
(a) The v / c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.

Table 4-11 Horizon Year (2035) Summary of Roadway Segment Analysis (Cont.)

ROADWAY SEGMENT	ROADWAY FUNCTIONAL CLASSIFICATION	$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \\ \hline \end{gathered}$	EXISTING			FUTURE (2035)			Δ in ADT	Δ in V/C	SIGNIFI CANT?
			ADT	VIC RATIO (a)	LOS	ADT	V/C RATIO (a)	LOS			
GOLDEN HILL											
25th St											
Russ Blvd to B St	2 Lane Collector (continuous left-turn lane)	15,000	7,550	0.503	C	7,800	0.520	C	250	0.017	NO
B St to Broadway	4 Lane Collector (no center lane)	15,000	9,409	0.627	C				1491	0.100	NO
	2 Lane Collector (continuous left-turn lane)	15,000				10,900	0.727	D			
Broadway to F St	4 Lane Collector (no center lane)	15,000	12,105	0.807	D				5295	0.353	YES
	2 Lane Collector (continuous left-turn lane)	15,000				17,400	1.160	F			
26th St											
Russ Blvd to B St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	9,152	1.144	F	9,152	1.144	F	0	0.000	NO
B St to C St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,146	0.268	A	5,100	0.638	D	2954	0.370	NO
28th St											
Russ Blvd to C St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,888	0.611	C	8,800	1.100	F	3912	0.489	YES
C St to Broadway	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,150	1.019	F	10,500	1.313	F	2350	0.294	YES
Broadway to SR-94	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	10,697	1.337	F	19,100	2.388	F	8403	1.051	YES
30th St											
Grape St to Ash St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,865	0.483	C	6,900	0.863	E	3035	0.380	YES
A St to Broadway	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	16,610	2.076	F	19,800	2.475	F	3190	0.399	YES
Broadway to SR-94	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,210	0.526	C	9,500	1.188	F	5290	0.662	YES
31st St											
Juniper St to Grape St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,299	0.287	A	4,700	0.588	C	2401	0.301	NO
B St											
19th St to 20th St	4 Lane Collector (no center lane)	15,000	5,372	0.358	B	6,500	0.433	B	1128	0.075	NO
20th St to 25th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	3,708	0.464	C	5,400	0.675	D	1692	0.211	NO
25th St to 26th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,600	0.575	C	7,500	0.938	E	2900	0.363	YES
26th St to 28th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	6,200	0.775	D	7,100	0.888	E	900	0.113	YES
28th St to 30th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,713	0.339	B	5,700	0.713	D	2987	0.374	NO
Beech St											
28th St to Fern St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1,770	0.221	A	6,200	0.775	D	4430	0.554	NO
Broadway											
19th St to 20th St	2 Lane Collector (continuous left-turn lane)	15,000	5,788	0.386	B	6,000	0.400	B	212	0.014	NO
20th St to 25th St	2 Lane Collector (continuous left-turn lane)	15,000	4,867	0.324	A	8,000	0.533	C	3133	0.209	NO
25th St to 28th St	2 Lane Collector (continuous left-turn lane)	15,000	4,165	0.278	A	5,500	0.367	B	1335	0.089	NO
28th St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	3,279	0.219	A	4,900	0.327	A	1621	0.108	NO
30th St to SR-94	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	15,881	1.985	F	15,811	1.976	F	-70	-0.009	NO
C St											
19th St to 20th St	1 Lane Collector (one-way)	7,500	3,827	0.510	C	6,100	0.813	D	2273	0.303	NO
20th St to 25th St	2 Lane Collector (continuous left-turn lane)	15,000	3,923	0.26	A	4,500	0.300	A	577	0.038	NO
25th St to 28th St	2 Lane Collector (continuous left-turn lane)	15,000				5,500	0.367	B	-	-	-
28th St to 30th St	2 Lane Collector (continuous left-turn lane)	15,000	2,658	0.177	A	4,100	0.273	A	1442	0.096	NO
30th St to 34th St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	4,230	0.53	C	7,900	0.988	E	3670	0.459	YES
Cedar St											
Fern St to Felton St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,815	0.352	B	3,400	0.425	B	585	0.073	NO
Fern St											
Juniper St to Grape St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,350	1.044	F	8,900	1.113	F	550	0.069	YES
Grape St to A St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	8,082	1.010	F	15,000	1.875	F	6918	0.865	YES
Grape St											
30th St to 31st St	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2,614	0.327	B	9,000	1.125	F	6386	0.798	YES
Notes:											
Bold values indicate roadway segments operating at LOS E or F . Capacity for non-standard roadway classifications were provided by City of San Diego staff.											

Bold values indicate roadway segments operating at LOS E or F.
Capacity for non-standard roadway classifications were provided by
(a) The v / c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.

Table 4-12 Horizon Year (2035) Freeway Segment Analysis Summary

FREEWAY SEGMENT	DIRECTION	NUMBER OF LANES	CAPACITY (a)	ExISting		build out baseline		Δ (c)	SIGNIFICANT?
				V/C RATIO	LOS	V/C Ratio	LOS		
AM PEAK									
I-5									
Old Town Ave to Washington St	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	0.950	E	1.183	F0	0.234	YES
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	0.746	C	0.798	C	0.052	NO
Washington St to Pacific Highway	NB	4 M	8,000	0.840	D	1.096	F0	0.256	YES
	SB	4 M	8,000	0.660	C	0.739	C	0.079	NO
First Ave to Sixth Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	1.264	F1	1.341	F1	0.078	YES
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11,200	0.346	A	0.743	C	0.397	NO
SR-163 to SR-94	NB	$5 \mathrm{M}+1 \mathrm{~A}$	11,200	1.085	F0	1.149	F0	0.064	YES
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11,200	0.362	A	0.901	D	0.540	NO
SR-94 to Imperial Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	1.035	F0	1.064	F0	0.029	YES
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	0.345	A	0.835	D	0.490	NO
1-8									
Hotel Circle (W) to Hotel Circle (E)	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	1.022	F0	1.333	F1	0.311	YES
	EB	4 M	8,000	0.887	D	0.763	C	-0.124	NO
Mission Center Rd to Qualcomm Wy	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	1.109	F0	1.366	F2	0.257	YES
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	0.837	D	0.680	C	-0.157	NO
I-805 to SR-15	WB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	1.349	F1	1.545	F2	0.196	YES
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	0.727	C	0.766	C	0.040	NO
SR-15									
I-805 to SR-94	NB	$3 \mathrm{M}+1 \mathrm{~A}$	7,200	0.532	B	0.772	C	0.241	NO
	SB	$2 \mathrm{M}+1 \mathrm{~A}$	5,200	0.976	E	1.283	F1	0.307	YES
I-805									
I-8 to Adams Ave	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	1.262	F1	1.515	F2	0.253	YES
	SB	$5 \mathrm{M}+1 \mathrm{~A}$	11,200	0.383	A	0.458	B	0.074	NO
El Cajon Blvd to University Ave	NB	4 M	8,000	0.602	B	1.427	F2	0.825	YES
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	1.063	F0	0.457	B	-0.607	NO
University Ave to SR-15	NB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	0.466	B	1.207	F0	0.740	YES
	SB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	0.947	E	0.421	B	-0.526	NO
SR-94									
25th St to 28th St	wB	4M	8,000	0.976	E	1.241	F0	0.264	YES
	EB	4 M	8,000	0.361	A	0.470	B	0.109	NO
28th St to 30th St	WB	4 M	8,000	1.095	F0	1.303	F1	0.208	YES
	EB	4 M	8,000	0.405	A	0.494	B	0.089	NO
Broadway to SR-15	WB	4 M	8,000	1.214	F0	1.414	F2	0.200	Yes
	EB	$4 \mathrm{M}+1 \mathrm{~A}$	9,200	0.390	A	0.466	B	0.075	NO
SR-163									
I-8 to Washington St	NB	$3 \mathrm{M}+1 \mathrm{~A}$	7,200	0.575	B	1.121	F0	0.546	YES
	SB	$3 \mathrm{M}+1 \mathrm{~A}$	7,200	0.828	D	0.950	E	0.122	YES
Washington St to Robinson Ave	NB	2 M	4,000	0.800	C	0.830	D	0.031	NO
	SB	2 M	4,000	1.151	F0	1.846	F2	0.696	YES
Quince Dr to I-5	NB	2 M	4,000	0.884	D	0.914	D	0.030	NO
	SB	2 M	4,000	1.641	F2	2.032	F3	0.391	YES
Notes: Bold values indicate freeway segments operating at LOS E or F. (a) The capacity is calculated as 2,000 ADT per lane and 1,200 ADT per auxiliary lane (b) Traffic volumes provided by City of San Diego model (c) Peak-hour volume calculated by: (ADT*K*D)/Truck Factor									

Table 4-13 Horizon Year (2035) Freeway Segment Analysis Summary (Cont.)

Table 4-14 Horizon Year (2035) Summary of Ramp Metering Analysis

1) Meter rate is the assumed peak hour capacity expected to be processed through the ramp meter (using Caltrans fast rate)
2) Demand is the peak hour demand using the on-ramp

5 SIGNIFICANCE OF IMPACTS AND MITIGATION MEASURES

This chapter addresses the project impacts for each of the three communities based on a comparison between the Year 2035 conditions and the Existing conditions. Per the City's significance thresholds and the analysis methodology presented in this report, the following cumulative impacts to intersections and roadway segments were determined:

5.1 UPTOWN

5.1.1 SIGNIFICANCE OF IMPACTS

INTERSECTIONS

- Washington Street \& Fourth Avenue
- Washington Street \& Eighth Avenue/ SR-163 Off-Ramp
- Washington Street/ Normal Street \& Campus Avenue/ Polk Avenue
- University Avenue \& Sixth Avenue
- Elm Street \& Sixth Avenue
- Cedar Street \& Second Avenue

SEGMENTS

- First Avenue: Washington Street to University Avenue
- First Avenue: University Avenue to Robinson Avenue
- First Avenue: Robinson Avenue to Grape Street
- Fourth Avenue: Arbor Drive to Washington Street
- Fourth Avenue: Walnut Avenue to Laurel Street
- Fifth Avenue: Robinson Avenue to Walnut Avenue
- Sixth Avenue: Washington Street to University Avenue
- Sixth Avenue: University Avenue to Laurel Street
- Sixth Avenue: Laurel Street to Elm Street
- Ninth Avenue: Washington Street to University Avenue
- Campus Avenue/ Polk Avenue: Washington Street to Park Boulevard
- Cleveland Avenue: Tyler Street to Richmond Street
- Fort Stockton Drive: Sunset Boulevard to Goldfinch Street
- Grape Street: First Avenue to Third Avenue
- Grape Street: Third Avenue to Sixth Avenue
- Hawthorn Street: First Avenue to Third Avenue
- Hawthorn Street: Third Avenue to Sixth Avenue
- India Street: Washington Street to Winder Street
- India Street: Glenwood Drive to Sassafrass Street
- India Street: Sassafrass Street to Redwood Street
- Laurel Street: Columbia Street to Sixth Avenue
- Lincoln Avenue: Washington Street to Park Boulevard
- Park Boulevard: Mission Avenue to Upas Street
- Richmond Street: Cleveland Avenue to Upas Street
- Robinson Avenue: First Avenue to Third Ave
- Robinson Avenue: Third to Eighth Avenue
- San Diego Avenue: Hortensia Street to Pringle Street
- State Street: Laurel Street to Juniper Street
- University Avenue: Ibis Street to Fifth Avenue
- University Avenue: Sixth Avenue to Eighth Avenue
- University Avenue: Normal Street to Park Boulevard
- Washington Street: Fourth Avenue to Sixth Avenue
- Washington Street: Richmond Street to Normal Street

5.1.2 MITIGATION MEASURES

INTERSECTIONS

- Washington Street \& Fourth Avenue: Widen Fourth Avenue in the southbound direction to add a second left-turn lane. Restripe the southbound approach to be two left-turn lanes, one through lane, and one right-turn lane. Uptown CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- Washington Street \& Eighth Avenue/ SR-163 Off-Ramp: Widen Washington Street in the eastbound direction to four lanes and the eastbound direction to three lanes. Widen the SR-163 Off-ramp to two lanes. Uptown CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- Washington Street/ Normal Street \& Campus Avenue/ Polk Avenue: Widen Washington Street in the northeast direction to add and exclusive right-turn lane. Uptown CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- University Avenue \& Sixth Avenue: Widen 6th Avenue in the southbound to add a second leftturn lane. Uptown CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- Elm Street \& Sixth Avenue: Widen Elm Street in the westbound direction to add second rightturn lane. Uptown CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the Uptown Impact Fee Study (IFS).
- Cedar Street \& Second Avenue: Install a traffic signal at this intersection. Uptown CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.

SEGMENTS

- First Avenue from Washington Street to University Avenue: Restripe the roadway to a 2 lane collector with continuous two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- First Avenue from University Avenue to Robinson Avenue: Widen the roadway to a 4 lane collector with continuous two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- First Avenue from Robinson Avenue to Laurel Street: Restripe the roadway to a 2 lane collector with continuous two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- First Avenue from Laurel Street to Hawthorn Street: Restripe the roadway to a 2 lane collector with continuous two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the Uptown IFS.
- First Avenue from Hawthorn Street to Grape Street: Restripe the roadway to a 2 lane collector with continuous two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Fourth Avenue from Arbor Drive to Washington Street: Widen the roadway to a 4 lane collector with continuous two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Fourth Avenue from Walnut Avenue to Laurel Street: Restore the roadway to a 3 lane collector for vehicles and remove the dedicated multi-modal lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Fifth Avenue from Robinson Avenue to Walnut Avenue: Restore the roadway to a 3 lane collector for vehicles and remove the dedicated multi-modal lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Sixth Avenue from Washington Street to University Avenue: Widen the roadway to a 6 lane prime arterial. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Sixth Avenue from University Avenue to Laurel Street: Widen the roadway to a 4 lane major arterial. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Sixth Avenue from Laurel Street to Elm Street: Widen the roadway to a 4 lane collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Ninth Avenue from Washington Street to University Avenue: Restripe the roadway to a 2 lane collector with continuous center two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Campus Avenue/ Polk Avenue from Washington Street to Park Boulevard: Restripe the roadway to a 2 lane collector with continuous left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Cleveland Avenue from Tyler Street to Richmond Street: Restripe the roadway to a 2 lane collector with continuous center two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Fort Stockton Drive from Sunset Boulevard to Goldfinch Street: Restripe the roadway to a 2 lane collector with continuous center two way left-turn lane. Uptown CPU significant traffic impact
to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Grape Street from First Avenue to Sixth Avenue: Restripe the roadway to a 2 lane collector with continuous center two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Hawthorn Street from First Avenue to Sixth Avenue: Restripe the roadway to a 2 lane collector with continuous center two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- India Street from Washington Street to Winder Street: Restripe the roadway to a 2 lane collector with continuous center two way left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- India Street from Glenwood Drive to Sassafrass Street: Widen the roadway to a 4 lane oneway collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- India Street from Sassafrass Street to Redwood Street: Widen the roadway to a 3 lane oneway collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Laurel Street from Columbia Street to Sixth Avenue: Widen the roadway to a 4 lane collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Lincoln Avenue from Washington Street to Park Boulevard: Restripe the roadway to a 2 lane collector with continuous left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Park Boulevard from Mission Avenue to El Cajon Boulevard: Widen the roadway to a 4 lane one-way collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Park Boulevard from Robinson Avenue to Upas Street: Widen the roadway to a 4 lane oneway collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Richmond Street from Cleveland Avenue to Robinson Avenue: Restripe the roadway to a 2 lane collector with continuous left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the Uptown IFS.
- Richmond Street from Robinson Avenue to Upas Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Robinson Avenue from First Avenue to Third Ave: Restripe the roadway to a 2 lane collector with continuous left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Robinson Avenue from Third to Eighth Avenue: Widen the roadway to a 4 lane collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- San Diego Avenue from Hortensia Street to Pringle Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- State Street from Laurel Street to Juniper Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the Uptown IFS.
- University Avenue from Ibis Street to Fifth Avenue: Widen the roadway to a 4 lane collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- University Avenue from Sixth Avenue to Eighth Avenue: Widen the roadway to a 4 lane major arterial and install a raised median. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- University Avenue from Normal Street to Park Boulevard: Widen the roadway to a 4 lane collector. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Washington Street from Fourth Avenue to Sixth Avenue: Widen the roadway to a 6 lane major arterial. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Washington Street from Richmond Street to Normal Street: Restripe the roadway to a 6 lane prime arterial and remove on-street parking. Uptown CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.

CORRIDORS

Intelligent Transportation Systems (ITS) is the application of technology to transportation systems to maximize efficiency of services. Applying ITS technology to a corridor can improve capacity and operations along the individual segments within the corridor. In the Uptown community, the following corridors would benefit from ITS technology integration:

- Sixth Avenue
- University Avenue
- Washington Avenue

TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management (TDM) combines marketing and incentive programs to reduce dependence on automobiles. TDM measures within the Uptown community should be encouraged and supported to help prevent or minimize congestion and parking issues.

5.2 NORTH PARK

5.2.1 SIGNIFICANCE OF IMPACTS

INTERSECTIONS

- Madison Avenue \& Texas Street
- El Cajon Boulevard \& $30^{\text {th }}$ Street
- El Cajon Boulevard \& I-805 SB Ramps
- University Avenue \& $30^{\text {th }}$ Street
- University Avenue \& I-805 NB Ramps
- North Park Way/ I-805 SB Ramps \& Boundary Street/33rd Street
- Upas Street \& $30^{\text {th }}$ Street (W)

SEGMENTS

- $30^{\text {th }}$ Street: Meade Avenue to El Cajon Boulevard
- $30^{\text {th }}$ Street: Howard Avenue to University Avenue
- $30^{\text {th }}$ Street: North Park Way to Upas Street
- $30^{\text {th }}$ Street: Upas Street to Juniper Street
- $32^{\text {nd }}$ Street: University Avenue to Upas Street
- Adams Avenue: Texas Street to $30^{\text {th }}$ Street
- Boundary Street: University Avenue to North Park Way
- El Cajon Boulevard: $30^{\text {th }}$ Street to I-805 Ramps
- Florida Street: El Cajon Boulevard to Upas Street
- Howard Avenue: Texas Street to 32nd Street
- Madison Avenue: Texas Street to Ohio Street
- Meade Avenue: Park Boulevard to Iowa Street
- North Park Way: $32^{\text {nd }}$ Street to Boundary Street
- Redwood Street: $28^{\text {th }}$ Street to $30^{\text {th }}$ Street
- Texas Street: Adams Avenue to El Cajon Boulevard
- Texas Street: Howard Avenue to University Avenue
- University Avenue: Park Boulevard to Florida Street
- University Avenue: Texas Street to $32^{\text {nd }}$ Street
- University Avenue: 32 ${ }^{\text {nd }}$ Street to Boundary Street
- Upas Street: Alabama Street to Pershing Road
- Upas Street: Pershing Road to $30^{\text {th }}$ Street
- Utah Street: Howard Avenue to Lincoln Avenue
- Utah Street: North Park Way to Upas Street

5.2.2 MITIGATION MEASURES

INTERSECTIONS

- Madison Avenue \& Texas Street: Widen Texas Street in the northbound direction to add a second through lane. Widen Madison Avenue in the westbound direction to add a second rightturn lane. North Park CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- El Cajon Boulevard \& 30 ${ }^{\text {th }}$ Street: Restripe $30^{\text {th }}$ Street in the southbound direction to add a second left-turn lane and remove parking. Restripe El Cajon Boulevard in the westbound direction to add a second WB left-turn lane and remove parking. North Park CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- EI Cajon Boulevard \& I-805 SB Ramps: Widen the I-805 SB off-ramp to add a second right-turn lane. North Park CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- University Avenue \& $3 \mathbf{0}^{\text {th }}$ Street: Restripe $30^{\text {th }}$ street in the southbound direction to add a second through lane and remove parking. North Park CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- University Avenue \& I-805 NB Ramps: Widen University Avenue in the eastbound direction to add an exclusive right-turn lane. Widen University Avenue in the westbound direction to add a shared through right-turn lane. Restripe and reconstruct medians on the I-805 northbound ramps to have dual left-turn lanes and an exclusive through lane and right-turn lane. North Park CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- North Park Way/ I-805 SB Ramps \& Boundary Street/33rd ${ }^{\text {rd }}$ Street: Restripe and reconstruct the median to add a second left-turn lane in the southbound direction on Boundary Street and an exclusive left-turn lane on the I-805 southbound off-ramp. Widen the I-805 southbound on-ramp to add an additional receiving lane. North Park CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.
- Upas Street \& 30 ${ }^{\text {th }}$ Street (W): Restripe Upas Street in the westbound direction to add an exclusive right-turn lane. North Park CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure.

SEGMENTS

- $30^{\text {th }}$ Street from Meade Avenue to El Cajon Boulevard: Widen the roadway to a 4 lane collector. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- $30^{\text {th }}$ Street from Howard Avenue to University Avenue: Widen the roadway to a 4 lane collector. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- $30^{\text {th }}$ Street from North Park Way to Upas Street: Widen the roadway to a 4 lane collector. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- $30^{\text {th }}$ Street from Upas Street to Juniper Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- $\quad 3^{\text {nd }}$ Street from University Avenue to Upas Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Adams Avenue from Texas Street to $\mathbf{3 0}^{\text {th }}$ Street: Widen the roadway to a 4 lane collector. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Boundary Street from University Avenue to North Park Way: Widen the roadway to a 4 lane collector. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the North Park Impact Fee Study (IFS).
- El Cajon Boulevard from $30^{\text {th }}$ Street to l-805 Ramps: Widen the roadway to a 8 lane major arterial. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Florida Street from El Cajon Boulevard to Upas Street: Restripe the roadway to a 2 lane collector with continuous two way left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Howard Avenue from Texas Street to 32nd Street: Remove proposed bicycle boulevard and provide a 2 lane collector with continuous center left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Madison Avenue from Texas Street to Ohio Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the North Park Impact Fee Study (IFS).
- Meade Avenue from Park Boulevard to lowa Street: Remove proposed bicycle boulevard and provide a 2 lane collector with continuous center left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- North Park Way from $\mathbf{3 2}^{\text {nd }}$ Street to Boundary Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Redwood Street from $\mathbf{2 8}^{\text {th }}$ Street to $\mathbf{3 0}^{\text {th }}$ Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Texas Street from Adams Avenue to El Cajon Boulevard: Widen the roadway to a 6 lane major arterial. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. However, partial mitigation has been proposed with the construction of a 4 lane collector with continuous center left-turn lane between Madison Avenue and EI Cajon Boulevard. This improvement project is identified in the North Park Impact Fee Study (IFS).
- Texas Street from Howard Avenue to University Avenue: Widen the roadway to a 4 lane collector. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- University Avenue Park Boulevard to $\mathbf{3 2}^{\text {nd }}$ Street: Widen the roadway to a 4 lane collector. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- University Avenue from 32 ${ }^{\text {nd }}$ Street to Boundary Street: Widen the roadway to a 4 lane major arterial and add a raised median. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Upas Street from Alabama Street to Pershing Road: Restripe the roadway to a 2 lane collector with continuous left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Upas Street: Pershing Road to $\mathbf{3 0}^{\text {th }}$ Street: Widen the roadway to a 4 lane collector. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Utah Street from Howard Avenue to Lincoln Avenue: Restripe the roadway to a 2 lane collector with continuous left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Utah Street from North Park Way to Upas Street: Restripe the roadway to a 2 lane collector with continuous left-turn lane. North Park CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.

CORRIDORS

Intelligent Transportation Systems (ITS) is the application of technology to transportation systems to maximize efficiency of services. Applying ITS technology to a corridor can improve capacity and operations along the individual segments within the corridor. In the North Park community, the following corridors would benefit from ITS technology integration:

- University Avenue
- El Cajon Boulevard

TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management (TDM) combines marketing and incentive programs to reduce dependence on automobiles. TDM measures within the North Park community should be encouraged and supported to help prevent or minimize congestion and parking issues.

5.3 GOLDEN HILL

5.3.1 SIGNIFICANCE OF IMPACTS

INTERSECTIONS

- B Street \& $17^{\text {th }}$ Street/ I-5 SB Off-Ramp
- SR-94 WB Ramps \& Broadway
- SR-94 WB Ramp \& $28^{\text {th }}$ Street
- SR-94 EB Ramp \& $28^{\text {th }}$ Street
- F Street \& $25^{\text {th }}$ Street
- G Street \& $25^{\text {th }}$ Street

SEGMENTS

- $25^{\text {th }}$ Street: Broadway to F Street
- $28^{\text {th }}$ Street: Russ Boulevard to SR-94
- $30^{\text {th }}$ Street: Grape Street to SR-94
- B Street: $25^{\text {th }}$ Street to $28^{\text {th }}$ Street
- C Street: $30^{\text {th }}$ Street to $34^{\text {th }}$ Street
- Fern Street: Juniper Street to A Street
- Grape Street: $30^{\text {th }}$ Street to $31^{\text {st }}$ Street

5.3.2 MITIGATION MEASURES

INTERSECTIONS

- B Street \& 17 ${ }^{\text {th }}$ Street/ I-5 SB Off-Ramp: Install traffic signal control at the intersection. Golden Hill CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the Golden Hill Impact Fee Study (IFS).
- SR-94 WB Ramps \& Broadway: Install traffic signal control at the intersection. Golden Hill CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure. However, signal warrants are not met for the signalization of this location. This improvement will be placed on the watch list for future signalization in the Golden Hill IFS.
- SR-94 WB Ramps \& 28 ${ }^{\text {th }}$ Street: Install traffic signal control at the intersection. Golden Hill CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the Golden Hill IFS.
- SR-94 EB Ramps \& 28 ${ }^{\text {th }}$ Street: Install traffic signal control at the intersection. Restripe the southbound approach to have an exclusive left-turn lane and a through lane. Golden Hill CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified in the Golden Hill IFS.
- F Street \& $\mathbf{2 5}^{\text {th }}$ Street: Install traffic signal control at the intersection. Golden Hill CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure. However, signal warrants are not met for the signalization of this location. This improvement will be placed on the watch list for future signalization in the Golden Hill IFS.
- G Street \& 25 ${ }^{\text {th }}$ Street: Install traffic signal control at the intersection. Golden Hill CPU significant traffic impact to this intersection would be fully mitigated with the implementation of this mitigation measure. However, signal warrants are not met for the signalization of this location. This improvement will be placed on the watch list for future signalization in the Golden Hill IFS.

SEGMENTS

- $25^{\text {th }}$ Street from Broadway to F Street: Widen the roadway to a 4 lane collector. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- 28 ${ }^{\text {th }}$ Street from Russ Boulevard to Broadway: Restripe the roadway to have a continuous leftturn lane. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- 28 ${ }^{\text {th }}$ Street from Broadway to SR-94: Widen the roadway to a 4 lane collector. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. However, partial mitigation is proposed at this location with the widening of the roadway to a two lane collector with continuous left-turn lane. This improvement project is identified on the Golden Hill IFS.
- $30^{\text {th }}$ Street from Grape Street to Ash Street: Restripe the roadway to have a continuous leftturn lane. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- $30^{\text {th }}$ Street from A Street to Broadway: Widen the roadway to a 4 lane collector. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. However, partial mitigation is proposed at this location with the widening of the roadway to a two lane collector with continuous left-turn lane. This improvement project is identified on the Golden Hill IFS.
- $\quad 30^{\text {th }}$ Street from Broadway to SR-94: Widen roadway to have a continuous left-turn lane. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified on the Golden Hill IFS.
- B Street from $\mathbf{2 5}^{\text {th }}$ Street to $\mathbf{2 8}^{\text {th }}$ Street: Restripe the roadway to have a continuous left-turn lane. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. This improvement project is identified on the Golden Hill IFS.
- C Street from 30 ${ }^{\text {th }}$ Street to $34^{\text {th }}$ Street: Restripe the roadway to have a continuous left-turn lane. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure. However, partial mitigation is proposed at this location with restriping of the roadway to a two lane collector with continuous left-turn lane between 30th Street and 32nd Street. This improvement project is identified on the Golden Hill IFS.
- Fern Street from Juniper Street to Grape Street: Restripe the roadway to have a continuous left-turn lane. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Fern Street from Grape Street to A Street: Widen the roadway to a 4 lane collector. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.
- Grape Street from $30^{\text {th }}$ Street to $31^{\text {st }}$ Street: Restripe the roadway to have a continuous left-turn lane. Golden Hill CPU significant traffic impact to this roadway segment would be fully mitigated with the implementation of this mitigation measure.

TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management (TDM) combines marketing and incentive programs to reduce dependence on automobiles. TDM measures within the Golden Hill community should be encouraged and supported to help prevent or minimize congestion and parking issues.

5.4 FREEWAYS

As shown in Chapter 4, the evaluated CPU land uses would have a cumulative traffic related impact at the following mainline freeway segments:

5.4.1 SIGNIFICANCE OF IMPACTS

MAINLINE SEGMENTS

- I-5 NB: Old Town Avenue to Imperial Avenue
- I-5 SB: Old Town Avenue to Imperial Avenue
- I-8 WB: Hotel Circle (W) to SR-15
- I-8 EB: Hotel Circle (W) to SR-15
- SR-15 NB: I-805 to SR-94
- SR-15 SB: I-805 to SR-94
- I-805 NB: I-8 to SR-15
- I-805 SB: I-8 to SR-15
- SR-94 WB: 25th Street to SR-15
- SR-94 EB: 25th Street to SR-15
- SR-163 NB: I-8 to Robinson Avenue
- SR-163: SB: I-8 to I-5

INTERCHANGE RAMPS

- Hancock St to l-5 SB
- Kettner Boulevard to I-5 SB
- Fifth Avenue to I-5 SB

5.4.2 MITIGATION MEASURES

MAINLINE SEGMENTS

- I-5 NB from Old Town Avenue to Imperial Avenue: SANDAG's 2050 Revenue Constrained RTP includes operational improvements along I-5 between Old Town Avenue and Imperial Avenue. This project is expected to be constructed by year 2050. This measure provides partial mitigation since it improves freeway operation in the vicinity of the project.
- I-5 SB from Old Town Avenue to Imperial Avenue: SANDAG's 2050 Revenue Constrained RTP includes operational improvements along I-5 between Old Town Avenue and Imperial Avenue. This project is expected to be constructed by year 2050. This measure provides partial mitigation since it improves freeway operation in the vicinity of the project.
- I-8 WB from Hotel Circle (W) to SR-15: SANDAG's 2050 Revenue Constrained RTP includes operational improvements along I-8 between Hotel Circle (W) and SR-15. This project is expected to be constructed by year 2050. This measure provides partial mitigation since it improves freeway operation in the vicinity of the project.
- I-8 EB from Hotel Circle (W) to SR-15: SANDAG's 2050 Revenue Constrained RTP includes operational improvements along I-8 between Hotel Circle (W) and SR-15. This project is expected to be constructed by year 2050. This measure provides partial mitigation since it improves freeway operation in the vicinity of the project.
- SR-15 NB from I-805 to SR-94: SANDAG's 2050 Revenue Constrained RTP proposes the construction of managed lanes along SR-15 between I-805 and SR-94. This project is expected to be constructed by year 2035. This measure provides partial mitigation since it reduces the traffic demand on the freeway general purpose lane.
- SR-15 SB from I-805 to SR-94: SANDAG's 2050 Revenue Constrained RTP proposes the construction of managed lanes along SR-15 between I-805 and SR-94. This project is expected to be constructed by year 2035. This measure provides partial mitigation since it reduces the traffic demand on the freeway general purpose lane.
- I-805 NB from I-8 to SR-15: SANDAG's 2050 Revenue Constrained RTP proposes the construction of managed lanes along I-805 between I-8 and SR-15. This project is expected to be constructed by year 2030. This measure provides partial mitigation since it reduces the traffic demand on the freeway general purpose lane.
- I-805 SB from I-8 to SR-15: SANDAG's 2050 Revenue Constrained RTP proposes the construction of managed lanes along I-805 between I-8 and SR-15. This project is expected to be constructed by year 2030. This measure provides partial mitigation since it reduces the traffic demand on the freeway general purpose lane.
- SR-94 WB from 25th Street to SR-15: SANDAG's 2050 Revenue Constrained RTP proposes the construction of managed lanes along SR-94 between 25th Street and SR-15. This project is expected to be constructed by year 2020. This measure provides partial mitigation since it reduces the traffic demand on the freeway general purpose lanes.
- SR-94 EB from 25th Street to SR-15: SANDAG's 2050 Revenue Constrained RTP proposes the construction of managed lanes along SR-94 between 25th Street and SR-15. This project is expected to be constructed by year 2020. This measure provides partial mitigation since it reduces the traffic demand on the freeway general purpose lane.
- SR-163 NB from I-8 to Robinson Avenue: No improvements are identified for this state route segment in SANDAG's 2050 RTP.
- SR-163: SB from I-8 to I-5: No improvements are identified for this state route segment in SANDAG's 2050 RTP.

INTERCHANGE RAMPS

- Hancock St On-Ramp to l-5 SB: SANDAG's 2050 Revenue Constrained RTP includes operational improvements along I-5 between SR-15 and I-8. This project is expected to be constructed by year 2050. This measure provides partial mitigation since it improves freeway operation in the vicinity of the project.
- Kettner Boulevard On-Ramp to I-5 SB: SANDAG's 2050 Revenue Constrained RTP includes operational improvements along $\mathrm{I}-5$ between SR-15 and $\mathrm{I}-8$. This project is expected to be
constructed by year 2050. This measure provides partial mitigation since it improves freeway operation in the vicinity of the project.
- Fifth Avenue to On-Ramp I-5 SB: SANDAG's 2050 Revenue Constrained RTP includes operational improvements along I-5 between SR-15 and I-8. This project is expected to be constructed by year 2050. This measure provides partial mitigation since it improves freeway operation in the vicinity of the project.

6 POST-MITIGATION ANALYSIS

This section provides a description of the future community buildout conditions with the implementation of the traffic mitigation measures described in Chapter 5.

6.1 INTERSECTION ANALYSIS

Table 6-1 displays the LOS analysis results for the study intersections within the study area after the implementation of the mitigation measures described in Chapter 5 . As shown in the table, the mitigation measures described in Chapter 5 would restore operations to LOS D or better during both peak hours at all locations. As discussed in Chapter 5, mitigations are recommended by the CPU at one location within Uptown and all six locations within Golden Hill.

Appendix D contains the peak-hour intersections LOS calculation worksheets.

6.2 ROADWAY SEGMENT ANALYSIS

Tables 6-2 through 6-7 displays the LOS analysis results for the study roadway segments within the study area after the implementation of the mitigation measures described in Chapter 5. As shown in the table, the mitigation measures described in Chapter 5 would restore operations to LOS D or better at all locations. As discussed in Chapter 5, mitigations are recommended by the CPU along three roadways within Uptown, one roadway within North Park and two roadways within Golden Hill.

6.3 FREEWAY SEGMENT AND RAMP METER ANALYSIS

The improvements identified in SANDAG's Regional Transportation Plan would improve operations along the freeway segments and ramps; however, to what extent is still undetermined. As these are future improvements that will be defined more over time, no post mitigation analysis was performed as part of these planning efforts. Using the RTP as the instrument to implement freeway improvements, it can be determined that none of the freeway impacts would be fully mitigated by the CPU.

Table 6-1 Post Mitigation Summary of Intersection Analysis

Intersection	Peak Hour	Year 2035	Post-Mitigation
		Delay (a) / LOS (b)	Delay (a) / LOS (b)
Uptown			
Washington St at Fourth Ave	AM	31.8 / C	27.3 / C
	PM	59.9 / E	42.7 / D
Washington St, Eighth Ave \& SR-163 Off Ramp	AM	71.5 / E	22.3 / C
	PM	ECL / F	49.5 / D
Washington St, Normal St \& Campus Ave, Polk Ave	AM	62.7 / E	49.9 / D
	PM	57.3 / E	39.5 / D
University Ave \& Sixth Ave	AM	38.7 / D	40.0 / D
	PM	55.3 / E	50.8 / D
Elm St \& Sixth Ave	AM	153.6 / F	20.6 / C
	PM	18.8 / B	12.5 / B
Cedar St \& Second Ave	AM	459.3 / F	25.9 / C
	PM	43.0 / E	10.1 / B
North Park			
Madison Ave \& Texas St	AM	144.4 / F	36.2 / D
	PM	63.9 / E	35.0 / D
El Cajon Blvd \& 30th St	AM	29.7 / C	26.1 / C
	PM	68.1 / E	52.0 / D
El Cajon Blvd \& I-805 SB Ramps	AM	21.9 / C	15.5 / B
	PM	96.8 / F	37.7 / D
University Ave \& 30th St	AM	26.5 / C	25.9 / C
	PM	57.8 / E	44.3 / D
University Ave \& I-805 NB Ramps	AM	45.5 / D	52.6 / D
	PM	80.9 / F	54.9 / D
North Park Way, I-805 SB Ramps, \& Boundary St	AM	18.1 / C	11.4 / B
	PM	134.8 / F	32.1 / D
Upas St \& 30th St	AM	40.1 / E	14.5 / B
	PM	54.8 / F	34.1 / D
Golden Hill			
B St \& 17th St/ I-5 SB Off-Ramp	AM	ECL / F	25.1 / C
	PM	20.4 / C	7.2 / A
SR-94 WB Ramps \& Broadway	AM	ECL / F	11.1 / B
	PM	ECL / F	13.2 / B
SR-94 WB Ramps \& 28th St	AM	ECL / F	15.4 / B
	PM	ECL / F	14.6 / B
SR-94 EB Ramps \& 28th St	AM	ECL / F	13.8 / A
	PM	ECL / F	18.4 / B
F St \& 25th St	AM	82.3 / F	12.5 / B
	PM	39.4 / E	7.5 / A
G St \& 25th St	AM	55.2 / F	19.8 / B
	PM	68.0 / F	16.5 / B

Notes:
ECL $=$ Exceeds Calculable Limit. Reported when delay exceeds 180 seconds.
(a) Delay refers to the average control delay for the entire intersection, measured in seconds per vehicle. At a two-way stop-controlled intersection, delay refers to the worst movement.
(b)LOS calculations are based on the methodology outlined in the 2000 Highway Capacity Manual and performed using Synchro 8

Table 6-2 Post Mitigation Summary of Roadway Segment Analysis - Uptown

ROADWAY SEGMENT	$\begin{gathered} \text { Year } 2035 \\ \text { ADT } \end{gathered}$	ROADWAY FUNCTIONAL CLASSIFICATION		$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	V/C RATIO (a)	LOS
First Ave						
Washington St to University Ave	9,100	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.138	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.607	C
University Ave to Robinson Ave	16,300	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2.038	F
		Mitigated Classification	4 Lane Collector	30,000	0.543	C
Robinson Ave to Pennsylvania Ave	11,500	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.438	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.767	D
Pennsylvania Ave to Walnut Ave	12,800	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.600	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.853	D
Walnut Ave to Laurel St	11,900	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.488	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.793	D
Laurel St to Hawthorn St	8,400	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.050	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.560	C
Hawthorn St to Grape St	6,800	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.850	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.453	B
Fourth Ave						
Arbor Dr to Washington St	14,900	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.863	F
		Mitigated Classification	4 Lane Collector	30,000	0.497	C
Walnut Ave to Laurel St	15,100	Baseline Classification	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	0.863	E
		Mitigated Classification	3 Lane Collector (one-way)	26,000	0.581	C
Fifth Ave						
Robinson Ave to Walnut Ave	15,800	Baseline Classification	3 Lane Collector (one-way w/ one lane dedicated for multi-modal)	17,500	0.903	E
		Mitigated Classification	3 Lane Collector (one-way)	26,000	0.608	C
Sixth Ave						
Washington St to University Ave	45,100	Baseline Classification	3 Lane Collector (two-way)	20,000	2.255	F
		Mitigated Classification	6 Lane Prime Arterial	60,000	0.752	C
University Ave to Robinson Ave	32,600	Baseline Classification	4 Lane Collector (no center lane)	15,000	2.173	F
		Mitigated Classification	4 Lane Major Arterial	40,000	0.815	D
Robinson Ave to Upas St	29,900	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.993	F
		Mitigated Classification	4 Lane Major Arterial	40,000	0.748	C
Upas St to Laurel St	25,900	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.727	F
		Mitigated Classification	4 Lane Major Arterial	40,000	0.648	C
Laurel St to Juniper St	16,600	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.107	F
		Mitigated Classification	4 Lane Collector	30,000	0.553	C
Juniper St to Grape St	18,700	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.247	F
		Mitigated Classification	4 Lane Collector	30,000	0.623	C
Grape St to Elm St	20,300	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.353	F
		Mitigated Classification	4 Lane Collector	30,000	0.677	D
ity for non-standard roadway classifications we v / c Ratio is calculated by dividing the ADT	ded by City of S by each respectiv	ego staff. way segment's capacity.				

ROADWAY SEGMENT	$\begin{gathered} \text { Year } 2035 \\ \text { ADT } \end{gathered}$	ROADWAY FUNCTIONAL CLASSIFICATION		$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	V/C RATIO (a)	LOS
Ninth Ave						
Washington St to University Ave	8,000	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.000	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.533	C
Campus Ave/Polk Ave						
Washington St to Park Blvd	7,400	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.925	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.493	C
Cleveland Ave						
Tyler St to Lincoln Ave	7,200	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.900	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.480	C
Lincoln Ave to Richmond St	9,600	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.200	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.640	C
Fort Stockton Dr						
Sunset Blvd to Hawk St	7,900	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.988	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.527	C
Hawk St to Goldfinch St	8,900	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.113	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.593	C
Grape St						
First Ave to Third Ave	7,300	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.913	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.487	C
Third Ave to Sixth Ave	9,000	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.125	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.600	C
Hawthorn St						
First Ave to Third Ave	7,300	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.913	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.487	C
Third Ave to Sixth Ave	8,700	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.088	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.580	C
India St						
Washington St to Winder St	11,000	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.375	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.733	D
Glenwood Dr to Sassafrass St	30,000	Baseline Classification	2 Lane Collector (one-way)	17,500	1.714	F
		Mitigated Classification	4 Lane Collector (one-way)	35,000	0.857	D
Sassafrass St to Redwood St	21,300	Baseline Classification	2 Lane Collector (one-way)	17,500	1.217	F
		Mitigated Classification	3 Lane Collector (one-way)	26,000	0.819	D
Laurel St						
Columbia St to Union St	21,100	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.407	F
		Mitigated Classification	4 Lane Collector	30,000	0.703	D
Union St to First Ave	17,900	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	1.193	F
		Mitigated Classification	4 Lane Collector	30,000	0.597	C
First Ave to Third Ave	16,100	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	1.073	F
		Mitigated Classification	4 Lane Collector	30,000	0.537	C
Third Ave to Sixth Ave	20,200	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	1.347	F
		Mitigated Classification	4 Lane Collector	30,000	0.673	D
Lincoln Ave						
Washington St to Park Blvd	11,100	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.388	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.740	D

Capacity for non-standard roadway classifications were provided by City of San Diego staff.

ROADWAY SEGMENT	$\begin{gathered} \text { Year } 2035 \\ \text { ADT } \end{gathered}$	ROADWAY FUNCTIONAL CLASSIFICATION		$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	V/C RATIO (a)	LOS
Park Blvd						
Mission Ave to El Cajon Blvd	16,300	Baseline Classification	3 Lane Collector (no center lane)	11,500	1.417	F
		Mitigated Classification	4 Lane Collector	30,000	0.543	C
Robinson Ave to Upas St	17,200	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	1.147	F
		Mitigated Classification	4 Lane Collector	30,000	0.573	C
Richmond St						
Cleveland Ave to University Ave	9,000	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.125	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.600	C
University Ave to Robinson Ave	6,700	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.838	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.447	B
Robinson Ave to Upas St	8,100	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.013	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.540	C
Robinson Ave						
First Ave to Third Ave	11,500	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.438	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.767	D
Third Ave to Eighth Ave	14,400	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.800	F
		Mitigated Classification	4 Lane Collector	30,000	0.480	C
San Diego Ave						
Hortensia St to Pringle St	10,500	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.313	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.700	D
State St						
Laurel St to Juniper St	8,200	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.025	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.547	C
University Ave						
Ibis St to Albatross St	14,700	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.838	F
		Mitigated Classification	4 Lane Collector	30,000	0.490	C
Albatross St to First Ave	20,800	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2.600	F
		Mitigated Classification	4 Lane Collector	30,000	0.693	D
First Ave to Fourth Ave	14,100	Baseline Classification	2 Lane Collector (no fronting property)	10,000	1.410	F
		Mitigated Classification	4 Lane Collector	30,000	0.470	C
Fourth Ave to Fifth Ave	21,600	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	1.440	F
		Mitigated Classification	4 Lane Collector	30,000	0.720	D
Sixth Ave to Eighth Ave	29,300	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.953	F
		Mitigated Classification	4 Lane Major Arterial	40,000	0.733	C
Normal St to Park Blvd	21,200	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.413	F
		Mitigated Classification	4 Lane Collector	30,000	0.707	D
Washington St						
Fourth Ave to Fifth Ave	37,300	Baseline Classification	4 Lane Major Arterial	40,000	0.933	E
		Mitigated Classification	6 Lane Major Arterial	50,000	0.746	C
Fifth Ave to Sixth Ave	41,100	Baseline Classification	4 Lane Major Arterial	40,000	1.028	F
		Mitigated Classification	6 Lane Major Arterial	50,000	0.822	D
Richmond St to Normal St	47,100	Baseline Classification	6 Lane Major Arterial	50,000	0.942	E
		Mitigated Classification	6 Lane Prime Arterial	60,000	0.785	C

Capacity for non-standard roadway classifications were provided by City of San Diego staff.
a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity

Table 6-5 Post Mitigation Summary of Roadway Segment Analysis - North Park

ROADWAY SEGMENT	Future ADT	ROADWAY FUNCTIONAL CLASSIFICATION		$\begin{gathered} \text { LOS E } \\ \text { CAPACITY } \end{gathered}$	$\begin{gathered} \text { V/C } \\ \text { RATIO (a) } \end{gathered}$	LOS
30th St						
Meade Ave to El Cajon Blvd	14,400	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.960	E
		Mitigated Classification	4 Lane Collector	30,000	0.480	C
Howard Ave to Lincoln Ave	17,900	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	1.193	F
		Mitigated Classification	4 Lane Collector	30,000	0.597	C
Lincoln Ave to University Ave	14,000	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.933	E
		Mitigated Classification	4 Lane Collector	30,000	0.467	C
North Park Way Ave to Upas St	16,500	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	1.100	F
		Mitigated Classification	4 Lane Collector	30,000	0.550	C
Upas St to Redwood St	11,900	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.488	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.793	D
Redwood St to Juniper St	12,100	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.513	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.807	D
32nd St						
University Ave to Myrtle Ave	11,200	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.400	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.747	D
Myrtle Ave to Upas St	7,900	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.988	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.527	C
Adams Ave						
Texas St to 30th St	13,800	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.920	E
		Mitigated Classification	4 Lane Collector	30,000	0.460	B
Boundary St						
University Ave to North Park Way	16,000	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	2.000	F
		Mitigated Classification	4 Lane Collector	30,000	0.533	C
El Cajon Blvd						
30th St to Illinois St	48,800	Baseline Classification	6 Lane Major Arterial	50,000	0.976	E
		Mitigated Classification	8 Lane Major Arterial	60,000	0.813	C
Illinois St to I-805 Ramps	58,900	Baseline Classification	6 Lane Major Arterial	50,000	1.178	F
		Mitigated Classification	8 Lane Major Arterial	60,000	0.982	E
Florida St						
El Cajon Blvd to University Ave	7,400	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.925	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.493	C
University Ave to Robinson Ave	8,800	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.100	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.587	C
Robinson Ave to Upas St	6,800	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.850	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.453	B
Howard Ave						
Texas St to Utah St	11,300	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000	1.413	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.753	D
Utah St to 30th St	10,200	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000	1.275	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.680	D
30th St to 32nd St	10,500	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000	1.313	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.700	D
Madison Ave						
Texas St to Ohio St	12,200	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.525	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.813	D

Capacity for non-standard roadway classifications were provided by City of San Diego staff.
(a) The v / c Ratio is calculated by dividing the ADT volume by each respective roadway segm

Table 6-6 Post Mitigation Summary of Roadway Segment Analysis - North Park (Cont.)

ROADWAY SEGMENT	Future ADT	ROADWAY FUNCTIONAL CLASSIFICATION		LOS E CAPACITY	$\begin{array}{\|c\|} \text { V/C } \\ \text { RATIO (a) } \end{array}$	LOS
Meade Ave						
Park Blvd to Texas St	8,200	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000	1.025	F
		Mitigated Classification	2 Lane Collector (continuous left-urn lane)	15,000	0.547	C
Texas St to 30th St	9,900	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000	1.238	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.660	C
30th St to Illinois St	11,500	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000	1.438	F
		Mitigated Classification	2 Lane Collector (continuous left-urn lane)	15,000	0.767	D
Illinois St to Iowa St	11,900	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)**	8,000	1.488	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.793	D
North Park Way						
32nd St to Boundary St	10,600	Baseline Classification	2 Lane Collector (no fronting property)	10,000	1.060	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.707	D
Redwood St						
28th St to 30th St	7,200	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.900	E
		Mitigated Classification	2 Lane Collector (continuous left-urn lane)	15,000	0.480	C
Texas St						
Adams Ave to Mission Ave	39,100	Baseline Classification	3 Lane Major Arterial	30,000	1.303	F
		Mitigated Classification	6 Lane Major Arterial	50,000	0.782	C
Mission Ave to El Cajon Blvd	38,300	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	2.553	F
		Partial Mitigation Class.	4 Lane Collector	30,000	1.277	F
		Mitigated Classification	6 Lane Major Arterial	50,000	0.766	C
Howard Ave to University Ave	14,400	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.960	E
		Mitigated Classification	4 Lane Collector	30,000	0.480	C
University Ave						
Park Blvd to Florida St	23,900	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.593	F
		Mitigated Classification	4 Lane Collector	30,000	0.797	D
Texas St to Oregon St	23,700	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.580	F
		Mitigated Classification	4 Lane Collector	30,000	0.790	D
Oregon St to Utah St	22,900	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.527	F
		Mitigated Classification	4 Lane Collector	30,000	0.763	D
Utah St to 30th St	20,800	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.387	F
		Mitigated Classification	4 Lane Collector	30,000	0.693	D
30th St to Illinois St	22,800	Baseline Classification	3 Lane Collector (no center lane)	11,500	1.983	F
		Mitigated Classification	4 Lane Collector	30,000	0.760	D
Illinois St to 32nd St	22,600	Baseline Classification	3 Lane Collector (no center lane)	11,500	1.965	F
		Mitigated Classification	4 Lane Collector	30,000	0.753	D
32nd St to Boundary St	29,600	Baseline Classification	4 Lane Collector (no center lane)	15,000	1.973	F
		Mitigated Classification	4 Lane Major Arterial	40,000	0.740	C
Upas St						
Alabama St to Texas St	8,600	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.075	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.573	C
Texas St to Pershing Rd	11,500	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	1.438	F
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.767	D
Pershing Rd to 30th St	16,300	Baseline Classification	2 Lane Collector (continuous left-turn lane)	15,000	1.087	F
		Mitigated Classification	4 Lane Collector	30,000	0.543	C
Utah St						
Howard Ave to Lincoln Ave	7,300	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.913	E
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.487	C
North Park Way to Upas St	7,500	Baseline Classification	2 Lane Collector (Multi-family, commercial-industrial fronting)	8,000	0.938	
		Mitigated Classification	2 Lane Collector (continuous left-turn lane)	15,000	0.500	C
non-standard roadway classifications we Ratio is calculated by dividing the ADT	ity of San Diego st espective roadway	ent's capacity.				

Table 6-7 Post Mitigation Summary of Roadway Segment Analysis - Golden Hill

Capacity for non-standard roadway classifications were provided by City of San Diego staff.
(a) The v / c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.

APPENDIX A

EXISTING TRAFFIC SIGNAL TIMING SHEETS

APPENDIX B

EXISTING INTERSECTION GEOMETRICS

APPENDIX C

TRAFFIC COUNT SHEETS

APPENDIX D

SYNCHRO PEAK-HOUR INTERSECTION ANALYSIS SHEETS

APPENDIX E

RAMP METER RATES

APPENDIX F

POST-MODEL VOLUME ADJUSTMENTS

APPENDIX G

PEAK-HOUR VOLUMES FORECAST WORKSHEETS

[^0]: K:SND_TPTO $095240042 \$ _Futurel[240042RS01.xlsm]Updated Existing

[^1]: and
 Capacity for non-standard roadway classifications were provided by City of San Diego staff.
 (a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.

