Additional Phase II Environmental Site Assessment Report

Midway Rising Portions of Assessor's Parcel Number 441-590-04 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard, San Diego, California 92110

Prepared for:

Midway Rising, LLC 12100 Wilshire Boulevard, Suite 1135 Los Angeles, California 90025

SCS ENGINEERS

01213320.07 | October 1, 2024

8799 Balboa Avenue, Suite 290 San Diego, CA 92123 858-571-5500 October 1, 2024

Project Number: 01213320.07

Mr. Nico Gemigniani Midway Rising, LLC 12100 Wilshire Boulevard, Suite 1135 Los Angeles, California 90025

Subject: Additional Phase II Environmental Site Assessment (Assessment)

Site: Midway Rising

3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard

San Diego, California

Dear Mr. Gemigniani:

SCS Engineers (SCS) is pleased to present this *Additional Phase II Environmental Site Assessment Report* (Report) for the above-referenced Site to Midway Rising, LLC (Client). The Report summarizes the Additional Phase II Environmental Site Assessment activities (Assessment) conducted by SCS in connection with the proposed development of the Midway Rising development project. The work described in this Report was performed by SCS pursuant to the Consulting Contract between SCS and Midway Rising, LLC (Client).

If we can be of further assistance, or if you have any questions regarding the above scope of work, please contact one of the undersigned at (858) 571-5500 or the provided email addresses.

Sincerely,

Allison O'Neal Project Professional

allinoKeal

SCS ENGINEERS

Chuck Houser, PG Project Manager SCS ENGINEERS

Luke Montague, MESM, PG Vice President

SCS ENGINEERS

Table of Contents

Sec	tion	Page
1	Background	
2	Objectives	
3	Scope of Services	
	Preparation for Fieldwork	7
	Preparation of Health and Safety Plan	7
	Utility Search and Markout	7
	Permitting	7
	Field Activities	8
	Geophysical Survey	8
	Trenching - Soil Sampling and Analysis	8
	Direct-Push Drilling – Soil, Soil Vapor, and Groundwater Sampling and Analysis	9
	Soil and Groundwater Sampling	11
	Soil Vapor Sampling	11
	Hand Auger Borings - Soil Sampling	12
4	Site Geology and Hydrogeology	13
	Geology	13
	Hydrogeology	13
	Water Quality Survey	13
5	Findings	14
	Geophysical Summary	14
	Laboratory Analytical Results	14
	Trenching and Direct Push Soil Sample Analytical Results	14
	Total Petroleum Hydrocarbons (TPH)	14
	Volatile Organic Compounds (VOCs)	14
	Organochlorine Pesticides (OCPs)	15
	Lead and Other Metals	15
	Groundwater Sample Analytical Results	15
	Total Petroleum Hydrocarbons (TPH)	15
	Volatile Organic Compounds (VOCs)	15
	Soil Vapor Sample Analytical Results	15
	VOCs in Soil Vapor	16
	Hand Auger Soil Sample Analytical Results	17
	Total Petroleum Hydrocarbons (TPH)	17
	Volatile Organic Compounds (VOCs)	17
	Organochlorine Pesticides (OCPs)	17
	Lead and Other Metals	18
6	Discussion and Vapor Intrusion Risk Screening	18
	Remediation Criteria for Constituent of Concern-Bearing Soil and Groundwater	18
	Comparison of TPH, VOC, OCP, and Metals Concentrations in Soil to Remediation Criteri	a 20
	TPH in Soil for Discovered UST	22

	Comparison of Reported TPH Concentrations to Health Risk-Based Screening Values for the Discovered UST22	2
	Comparison of Reported TPH Concentrations to Waste-Based Screening Values fo the Discovered UST23	
	VOCs Soil for the Discovered UST23	
	Comparison of VOC Concentrations to Health Risk-Based Remediation Criteria (i.e., for Soil That Remains on-Site) for the Discovered UST	3
	Comparison of VOC Concentrations to Waste-Based Remediation Criteria (i.e., for Soil Export) for the Discovered UST	
	OCPs in Soil from the Hand Auger Samples24	ļ
	Comparison of OCP Concentrations Collected by Hand Auger to Health Risk-Based	
	Remediation Criteria (i.e., for Soil That Remains on-Site) 24	
	Comparison of OCP Concentrations to Waste-Based Remediation Criteria (i.e., for Soil Export)25	
	Comparison of Metals Concentrations to Waste-Based Remediation Criteria (i.e., for Soil Export) for the Former Burn Dump Area	3
	Comparison of Metals Concentrations to Health Risk-Based Remediation Criteria (i.e., for Soil that Remains on-Site) for the Former Burn Dump Area	
	Comparison of Metals Concentrations to Health Risk-Based Remediation Criteria and Waste-Based Remediation Criteria for the Hand Auger Samples)
	Comparison of TPH, VOC, and OCP Concentrations in Groundwater to Remediation Criteria 31	L
	TPH Groundwater 31	L
	Comparison of Reported TPH Concentrations to Health Risk-Based Screening Values	2
	VOCs Groundwater 32	2
	Comparison of VOC Concentrations to Health Risk-Based Remediation Criteria 32	2
	Vapor Intrusion Risk Screening (VIRS)	2
	Approach33	3
	DTSC/CalEPA VIRS Results	3
	DTSC 2011 Attenuation Factor Results35	5
	Supplemental Draft Guidance 2023 Attenuation Factor Results	õ
	VIRS Recommendations – Existing Buildings	õ
	VIRS Recommendations – Future Buildings	3
7	Conclusions36	3
	Background36	3
	Geophysical Survey37	7
	Soil Investigation	7
	Groundwater Investigation)
	Soil Vapor Investigation	
8	Recommendations42	
9	Report Usage and Future Site Conditions43	
10	Special Contractual Conditions Between User and Environmental Professional43	3

Figures

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12	Four-Way Site Location Map Site Map with All Sample Locations Site Plan with Previous Soil Sample Analytical Results for TPH, VOCs, and OCPs Site Plan with Previous Groundwater Analytical Results for Metals Site Plan with Previous Groundwater Analytical Results for TPH and VOCs Site Plan Showing Previous Soil Vapor Sampling Locations and Analytical Results Site Map with TPH and Title 22 Metals Analytical Results Inset 1 – Soil Sample Analytical Results for TPH, VOCs, and Title 22 Metals Inset 2 – Soil Sample Analytical Results for TPH, VOCs, OCPs, and Title 22 Metals Inset 3 – Soil Sample Analytical Results for TPH, VOCs, and Title 22 Metals Inset 4 – Soil Sample Analytical Results for TPH and Title 22 Metals Site Plan with Features of Environmental Concern
Figure 13	Geophysical Map-EM31 In-Phase
Figure 14A	Site Plan Showing Selected Soil Vapor Analytical Data and VIRS Results Locations 1 through 11
Figure 14B	Site Plan Showing Soil Vapor Sampling Locations and Analytical Results Locations 12 through 24
Figure 14C Figure 15A Figure 15B	Site Plan Showing Soil Vapor Sampling Locations and Select Analytical Site Plan with Select Soil Sample Analytical Results for OCPs and Metals Site Plan with Select Soil Sample Analytical Results for OCPs and Metals with Extent of Chlordane-Bearing Soil

Tables

Table 1	Soil Sample Analytical Results for TPH, VOCs, and OCPs
Table 2	Soil Sample Analytical Results for Title 22 Metals
Table 3	Groundwater Sample Analytical Results for TPH and VOCs
Table 4	Soil Vapor Sample Analytical Results and Vapor Intrusion Risk Screening (VIRS)

Appendices

Appendix A	Geophysical Report
Appendix B	Boring and Trench Logs
Appendix C	Laboratory Analytical Reports
Appendix D	ProUCL Worksheets

1 BACKGROUND

SCS understands that the site consists of approximately 48 acres of land located at 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard in San Diego, California (Figure 1) (Site). Reportedly, the Site is developed with several commercial/retail buildings and the Pechanga Arena (Sports Arena). SCS understands that the Client is planning to redevelop the Site into an entertainment-anchored mixed-use development that includes new residential, office, and retail uses, as well as a new arena (Midway Rising Project) (Project).

SCS has completed the following reports for the Site:

- Phase I Environmental Site Assessment, dated April 28, 2023 (2023 Phase I ESA)
- Phase II Environmental Site Assessment Report, dated July 10, 2023 (Phase II ESA)
- Phase II Environmental Site Assessment Report Number 2, Geophysical Survey and Trenching Assessment, dated September 22, 2023 (Trenching Phase II ESA)
- Phase I Environmental Site Assessment, dated May 3, 2024 (2024 Phase I ESA)

The 2023 and 2024 Phase I ESAs identified the following previous environmental land uses/features of concern at various properties within the Site boundaries:

- Clarifier system and ice pits
- Current and past gasoline service stations, including the presence of USTs
- Off-site upgradient facilities that used or have records of a release of petroleum hydrocarbon or halogenated solvent products.
- Lead-based paint (LBP), pesticides, and termiticides
- Previous agricultural use
- Previous printing and furniture stripping shops
- Previous barracks-style housing with possible fuel oil heating systems
- Presence of fill soils, including burn ash and waste
- Other petroleum hydrocarbon and hazardous materials storage and uses including Kobey's waste storage area

Various subsurface investigations events have been carried out by SCS in various representative and focused portions of the Site between February 2023 and March 2024, and have consisted of soil, soil vapor, and groundwater sampling, as well as extensive geophysical surveys of select areas at the Site followed by focused shallow soil trenching efforts. In early and mid-2023, SCS conducted assessment activities throughout the Site consisting of sampling from borings in early 2023 and from exploratory trenches in mid-2023. Figure 2 depicts the locations of the borings and trenches. The following is a summary of investigation areas and methods. Analytical results are depicted on the referenced figures.

Early 2023 - Soil, Groundwater, and Soil Vapor Borings

 Soil borings were drilled and sampled throughout Parcels A through D and Parcel F. Soil samples were analyzed for some or all of the following: total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), pesticides, and/or metals. Locations and analytical results are depicted on Figures 3 and 4.

- Groundwater samples were collected from three locations within Parcel A and two locations within Parcel B. Samples were analyzed for TPH and VOCs. Locations and analytical results are depicted on Figure 5.
- Soil vapor samples were collected from various locations throughout the Site. Locations and analytical results are depicted on Figure 6.

Mid 2023 - Exploratory Trenching

- Exploratory trenches were excavated and sampled at various locations throughout Parcel A.
 During this phase of assessment, trenches T1 through T32 were excavated and sampled.
 The purpose of the trench locations were to:
 - Assess burn ash waste encountered in a soil boring in the southwestern portion of the Site.
 - Assess several geophysical anomalies potentially indicative of underground storage tanks (USTs) or other subsurface features of concern,
 - Assess areas of the Site interpreted from historic aerial photos to be vacant lots or yard areas between structures where waste may have historically been deposited or burned.

Locations and analytical results are depicted on Figures 7 through 11.

The 2023 subsurface investigations have indicated the following findings regarding environmental concerns:

- Former burn dump area A portion of a feature known as the West Point Loma Dump is located in the southwestern portion of the Site and is interpreted to be a former open burn pit area that was present from at least approximately 1899 to 1908 and possibly longer, prior to the development of Frontier Housing, and was later covered with 2 to 3 feet of fill soils. Burn ash with elevated concentrations of metals including antimony, arsenic, cobalt, and/or mercury that exceed residential health risk-based screening levels were discovered in this area of the Site, buried at depths of approximately 2 to 5 feet deep along with old household debris including bottles, ceramics, and other trash. Portions of these soils are considered a California hazardous waste, and artifacts within this deposit will likely be considered historic and require extraction and handling separately. A soil management plan (SMP) will be prepared by SCS that describes the means and methods for the proper management of impacted soils during construction and grading activities. Although several soil borings as well as trenching were completed in this area for delineation, additional delineation is required to further determine the lateral extent of these soils. SCS also recommends that the San Diego Local Enforcement Agency (LEA) and other applicable regulatory agency (such as the County of San Diego Department of Environmental Health and Quality [DEHQ], Regional Water Quality Control Board [RWQCB], and/or Department of Toxic Substances Control [DTSC]) be consulted prior to grading and development activities to ensure the former waste areas of the Point Loma Dump are properly managed during construction activities in accordance with applicable regulations.
- <u>Pesticide-bearing soils</u> Shallow soils with elevated concentrations of the organochlorine
 pesticide identified as chlordane were identified in several samples collected from Parcel C
 at the Subject Property, some of which are considered a California hazardous waste. The
 known pesticide-bearing soil within the Construction Excavation Envelope that exceeds the
 remediation criteria for chlordane needs to be properly managed during excavation and
 grading activities.

- <u>Underground storage tank (UST) discovered</u> the geophysical operations completed at the
 Site indicated the presence of a UST within the western parking lot area of the Site. A
 backhoe was used to expose the UST in June of 2023, which was measured to be
 approximately 12 feet long by 4 feet in diameter, with visible petroleum hydrocarbon staining
 observed near the bottom of the UST.
- <u>Former UST at Dixieline (Parcel D)</u> Petroleum hydrocarbon-bearing soil was encountered in the approximate location of a former UST at Dixieline. Although reported concentrations of petroleum hydrocarbons were below typical health risk screening levels, impacted soil in this area may require special handling if encountered during Site grading and development.
- Groundwater with detectable CoCs Although detectable concentrations of total petroleum hydrocarbons (TPH) and volatile organic compounds (VOCs) (i.e., bromodichloromethane and dibromochloromethane) were reported to be present in up to 3 of the 5 samples analyzed, all of the groundwater samples analyzed for TPH and VOCs were reported to be below the Health Risk-Based Remediation Criteria. However, due to the detectable concentrations of CoCs in one or more of the samples collected and analyzed, and due to the relatively shallow depth of groundwater at the Subject Property (i.e., approximately 8 to 10 feet below grade), if dewatering activities are required during construction, groundwater filtration and proper permits may be required prior to discharging to the sanitary sewer system.
- Soil vapor VOCs including benzene, ethylbenzene, xylenes, and tetrachloroethene (PCE) were reported to be present in various soil vapor samples that were collected and analyzed. After applying the applicable 2011 Department of Substances Control (DTSC) attenuation factors for the existing commercial and possible future residential land use (0.001 and 0.0005 respectively) to the maximum reported concentrations of VOCs in soil vapor beneath the Site, the maximum theoretical concentrations of VOCs in indoor air at the Site do not exceed the commercial and residential screening levels (DTSC- Modified Screening Levels [SLs]); however, if using the California Environmental Protection Agency (CalEPA)-recommended attenuation factor of 0.03, the maximum theoretical concentrations of benzene and ethylbenzene in indoor air at portions of the Site exceed the commercial and residential screening levels (DTSC-SLs), and theoretical indoor air concentrations of m,p-xylene and PCE in select portions of the Site exceed the residential screening levels (DTSC-SLs).

These features and areas of environmental concern are depicted on Figure 12. Based on these findings and the proposed redevelopment of the Site into a mixed-use development, preparation of a SMP is recommended to provide a dynamic strategy to properly manage CoC-bearing soil and to assess and mitigate, and document, as necessary, releases of CoCs in a manner that is protective of human health for the proposed future land use and the beneficial uses of water resources of the Site and vicinity. The SMP should guide both the reuse and/or export of impacted soil, as well as the environmental oversight of the excavation and removal of USTs and associated petroleum hydrocarbon-bearing soil, removal of the clarifiers/ice pits on the Site, further delineation of impacts from the recognized environmental conditions identified on the Site, special handling, if required, of artifacts present in the burn dump area that will be carried out by others, and confirmation soil sampling as needed on the Site.

This report addresses the following additional Phase II ESA activities that were recommended by SCS based on the findings of prior subsurface investigations and Phase I ESA reports, and based on conversations with the Client:

Summit Gasoline Service Station at 3520 Sports Arena Boulevard - DEHQ records report the existing gasoline service station at 3580 Sports Arena Boulevard, USTs and system was installed in 2003, including a split regular unleaded gasoline 10,000-gallon and diesel fuel 12,000-gallon USTs, and one premium unleaded 20,000-gallon UST. In February 2020, one additional regular unleaded gasoline 40,000-gallon UST was added to this system. These four USTs and associated fueling system are currently in place. At the time of the site reconnaissance, one UST was observed on the ground surface east of the convenience store and west of the car wash.

No unauthorized releases of petroleum hydrocarbons and only minor violations were reported in the DEHQ files regarding the existing gas station. Based on an absence of disposal violations, and the lack of known and reported releases, there does not appear to be a recognized environmental condition associated with the current use of this portion of the Subject Property as a gas station. However, based on our experience, there are likely surface release(s) spills at the gas station that have occurred, as the well possible vapor phase releases as a result of piping systems that were not historically vapor "tight." Additionally, note that one former UST was observed to be stored above ground that was located east of the convenience store and west of the car wash for which information was not available. Combined with the proposed redevelopment plans for the Subject Property into a mixed-use development with commercial/retail and residential uses along with the sports arena complex, the Phase I ESA indicated that there is a possibility that other currently unknown possible releases may have occurred, which were reported to be potential recognized environmental conditions.

In order to address the environmental concerns reported in the Phase I ESA, SCS completed limited soil and groundwater sampling at the Summit Gasoline service station in February, 2023. The soil sample results indicated non-detect concentrations of TPH in various samples collected between 0.5 and 10 feet deep. One groundwater sample indicated relatively low concentrations of TPH as diesel (TPHd) and TPH as oil (TPHo), with TPH as gasoline (TPHg) and VOCs reported to be non-detect above laboratory reporting limits.

In addition, SCS previously attempted to complete a geophysical survey, soil sampling for possible burn ash from the Point Loma Dump, and soil vapor sampling in connection with the fueling station activities in 2023 and 2024, although access to this area was not granted. Subsurface investigation (geophysical survey, soil and soil vapor sampling) was recommended, in particular due to the proposed change in land use to include residential properties in the area of the current and historical gas stations and was addressed as a part of this Assessment.

- Possible Former Gasoline Service Station at east end of Parcel B (currently Chilis Restaurant)

 Regarding the historical service station that was reportedly located on Parcel B, information regarding removal of USTs from the historical service station is not available. Therefore, based on the lack of records pertaining to the condition of the subsurface following UST removal, this possible historical gasoline service station is considered a recognized environmental condition and further research or investigation was recommended. A geophysical survey of this portion of the Site was completed as a part of this Assessment.
- Former Fueling Station at Dixieline Lumber at 3520 Sports Arena Boulevard This facility
 previously contained a fueling station circa approximately 1970 to 2003 (33 years). DEHQ
 records indicate the USTs and fueling systems at Dixieline have been removed and soil

confirmation samples taken in the excavation areas indicated CoCs were not detected above laboratory reporting limits.

SCS completed limited soil sampling in the reported location of the former Dixieline fueling station in March of 2023. The results indicated a maximum TPHo concentration of 670 mg/kg at a depth of 5 feet below grade, and a maximum TPHg concentration of 24 mg/kg at a depth of 5 feet below grade. TPHg was reported to be non-detect above laboratory detection limits. Additional soil vapor sampling was completed in this area as part of this Assessment.

- Additional Geophysical Survey and Trenching Southwest of the Sports Arena Although
 geophysical surveys and trenching were completed around areas of concern identified in
 historic aerial photographs of the former Frontier Housing, due to time constraints, a
 geophysical survey and follow up trenching of identified anomalies were not completed of an
 additional area of concern to the southwest of the Sports Arena. Therefore, SCS
 recommended completing the additional geophysical survey and follow up trenching in the
 area located southwest of the Sports Arena, which was completed as a part of this
 Assessment.
- Further Assess Pesticide-Bearing Soil at Soma at 3350 Sports Arena Boulevard In March of 2023, a soil boring identified as DP-23-038 was advanced at the Soma property, and a soil sample collected at a depth of 2.5 below grade was reported with the OCP identified as chlordane with a concentration of 1,800 micrograms per kilogram (µg/kg), which exceeds the residential Health Risk-Based Remediation Criteria of 480 µg/kg. In order to further delineate the lateral extent of OCP-bearing soil, twelve step-out borings were completed around boring DP-23-038 in March of 2024. Additional OCP-bearing soil above Health Risk-Based Remediation Criteria as well as Hazardous Waste Criteria was reported to be present in several samples, and lateral delineation was not achieved. Therefore, additional soil sampling and analysis was recommended to attempt to delineate the lateral extent of OCP-bearing soil in this area, and which was completed as part of this Assessment.
- Further Assess Pesticide-Bearing Soil at Dixieline Lumber at 3520 Sports Arena Boulevard –
 During previous subsurface investigations conducted at Dixieline, one soil boring and one
 soil sample were analyzed for OCPs. Based on SCS's experience with lumberyards,
 pesticides such as organochlorine pesticides and arsenic were previously used as wood
 preservatives at lumberyards. Considering that the Dixieline facility has occupied the Site
 from approximately 1966 to present, additional soil sampling was recommended to further
 assess the shallow soil at this facility for pesticides and preservatives, which was completed
 as a part of this Assessment.
- Assess Petroleum Hydrocarbon-Bearing Soil and Groundwater in Vicinity of UST Discovered in Sports Arena Parking Lot a potential UST was identified during the geophysical survey in the western parking lot of the Sports Arena in June of 2023 in an area interpreted to contain a former maintenance building of the former Frontier Housing. A pothole excavated in this area using a backhoe confirmed the presence of a UST measuring approximately 12 feet long by 4 feet in diameter, with visible petroleum hydrocarbon staining observed near the bottom of the UST. Soil samples collected from the sides of the UST using the backhoe were reported with concentrations of TPHg, TPHd, and naphthalene in trench sample T13 that exceed the Health Risk-Based Remediation Criteria. Additional soil sampling was recommended to delineate the vertical and horizontal extent of petroleum hydrocarbon-bearing soil, and to also assess groundwater for petroleum hydrocarbons in the immediate area of the UST, which was completed as a part of this Assessment.

- Shallow Soil Sampling at Salvation Army at 3240 Sports Arena Boulevard representative soil sampling was not previously conducted on the Salvation Army Thrift Store property due to access constraints. Representative shallow soil sampling was recommended on adjacent parcels to assess for CoCs including OCPs, Title 22 metals, and TPH. Sampling on the adjacent parcels would, in SCS's opinion, be sufficient to close data gaps at this facility at this time, based on the available data, which was completed as a part of this Assessment.
- Shallow Soil Sampling in the Sports Arena Contractors Service Yard Areas representative
 soil sampling was not previously conducted within the Sports Arena Contractors Yard areas
 situated immediately south of the adjacent Clean Harbors property to the northeast at 3495
 Kurtz Street property due to access constraints. Representative shallow soil sampling was
 recommended to assess for CoCs including OCPs, Title 22 metals, and TPH, which was
 completed as a part of this Assessment.
- Soil Vapor Sampling in the footprints of the Proposed Midway Rising Structures the
 previous soil vapor sampling activities conducted in 2023 consisted of a focused
 assessment to investigate on- and off-site environmental concerns identified in the 2023
 Phase I ESA. Additional soil vapor sampling was recommended in the footprints of the
 proposed Midway Rising project building footprints once plans were completed, which was
 completed as a part of this Assessment.

Additional soil vapor sample points were also recommended for the following environmental concerns based on the previous soil vapor sampling as well as Phase I ESA reports, which was completed as a part of this Assessment:

- Elevated concentrations of VOCs above the Health Risk-Based Remediation Criteria using the Cal EPA attenuation factor of 0.03 were identified in the following areas:
 - Previous soil vapor samples (with VOC exceedances to the 0.03 attenuation factor) include SV-23-064 (benzene), SV-23-065 (ethylbenzene), SV-23-068 (ethylbenzene, m,p-xylene, and PCE), and SV-23-075 (PCE)
- Off-Site Concerns the following off-site concerns were identified in the Phase I ESA reports, for which soil vapor sampling was recommended:
 - Former Cleaners at 3496 and 3502 Kurtz Street
 - H21153-1/H19221, Former Truck Terminal/Golden Chariot Trucking/Loyola Trucking/Clean Harbors at 3495 Kurtz Street
 - H21151-001 and -002, Former Shorebreak Materials-Butler Property, 3612
 Kurtz Street
 - HMD/UST 211463 and 131595, Exponents, Inc., 3280 Kurtz Street
 - HMD 207798/103138 3467-3469 Kurtz Street
 - Yellow Cab Company of San Diego, 3473 Kurtz Street

The Assessment covered in this report included additional geophysical survey activities, and additional Phase II soil, soil vapor, and groundwater sampling activities per the recommendations above to further evaluate the possible presence of CoCs in the subsurface at the Site from current and past on-Site activities and possible off-Site sources, in connection with the proposed redevelopment of the Site.

2 OBJECTIVES

The objectives of the scope of services included in this Report were to:

- <u>Geophysical survey</u> further evaluate the area to the southwest of the Pechanga Arena in
 order to evaluate the subsurface of a portion of the Site for the presence of previously
 unidentified USTs, piping, UST pits, and undocumented fills including burn pits and to
 evaluate the possible efficacy of using geophysical survey methods to evaluate subsurface
 conditions.
- <u>Soil and groundwater sampling</u> Further assess in representative and focused locations the
 possible presence and concentrations of elevated concentrations of metals such as lead,
 petroleum products, organochlorine pesticides (OCPs), and volatile organic compounds
 (VOCs) in the soil. Additionally, to further assess groundwater for petroleum hydrocarbons
 and VOCs in select focused locations.
- <u>Soil Vapor Sampling</u> Assess the possible presence and concentrations of VOCs in the footprints of the proposed Midway Rising structures.

3 SCOPE OF SERVICES

PREPARATION FOR FIELDWORK

Preparation of Health and Safety Plan

A health and safety plan for work conducted at the Site and workers within the "exclusion zone" was required pursuant to the regulations found in 29 Code of Federal Regulations (CFR) Part 1910.120 and California Code of Regulations (CCR), Title 8, Section 5192. Therefore, a health and safety plan was prepared for the proposed work scope, which outlined the potential chemical and physical hazards that may have been encountered during drilling and sampling activities. The appropriate personal protective equipment and emergency response procedures for the anticipated Site-specific chemical and physical hazards were detailed in this plan. SCS and contracted personnel involved with the proposed field work were required to read and sign this document in order to encourage proper health and safety practices.

Utility Search and Markout

SCS notified Underground Service Alert on May 7, 2024 and July 2, 2024, as required by state law, prior to drilling and sampling activities and was issued ticket numbers A241280833-01A and A241840896-00A. In addition, two private utility locators, One Atlas and Subsurface Alert, were subcontracted to clear the proposed boring locations for possible subsurface utility conflicts. These procedures were designed to minimize the likelihood of drilling into a subsurface utility. Sampling locations were adjusted as necessary to avoid conflicts with identified subsurface features.

Permitting

For borings used to collect groundwater samples, or borings that exceed 20 feet in depth, drilling permits are required by the San Diego County Department of Environmental Health and Quality (DEHQ). Initially, SCS did not anticipate that groundwater would be encountered, or that borings would extend beyond 20 feet depth. Therefore drilling permits were not obtained prior to field

activities. Two borings drilled near the existing UST in the western portion of Parcel A did encounter groundwater and so the DEHQ was notified and a drilling permit obtained for these two borings.

FIELD ACTIVITIES

Geophysical Survey

In 1945, the Site region was developed with barracks-style temporary housing for defense industry workers, called the Frontier Homes Housing Project, or simply "Frontier." A significant portion of the Site was occupied by these barracks-style structures. Potential environmental issues that could be associated with such a development include, but are not necessarily limited to:

- The presence of existing or former underground storage tanks (USTs) used to store heating fuel
- The possible presence of releases from former or existing USTs.
- The presence of undocumented fill soils.
- The potential presence of burn pits used for municipal waste incineration.

SCS retained One Atlas, a geophysical consultant, to evaluate the subsurface of portions of the Site for the presence of previously unidentified USTs, piping, UST pits, and undocumented fills including burn pits associated with the Frontier Housing barracks-style temporary housing and was focused on the area immediately south and west of the arena and the accessible portions of the Chic-fil-A and Chilis lots in Parcel B. In addition to providing possible information about the presence of USTs and UST pits, and undocumented fills and burn pits, the information collected from the geophysical survey was added to the broader geophysical survey completed to date. The portions of the Site evaluated are depicted on Figure 13.

One Atlas, under supervision by SCS, used geophysical equipment designed to provide data regarding resistivity of subsurface materials and the presence of metallic objects and debris, as well as ground penetrating radar used to evaluate subsurface structures and interfaces.

The designated areas were traversed with the various instruments used for the evaluation. Detected features were mapped and presented in an illustrated report by the geophysical consultant, included as Appendix A. Evaluation of the geophysical survey results informed the focused excavation activities (trenching) described below.

The various types of geophysical survey equipment used along with a discussion of the results are presented in the "Geophysical Summary" section further below.

Trenching - Soil Sampling and Analysis

On May 7 and 8, 2024, exploratory trenches were excavated to visually evaluate subsurface conditions and observe features of concern, such as piping or underground storage tanks (USTs), or the presence of burned waste material. A total of 10 trenches were excavated (T33 through T41). The approximate trench locations are depicted on Figures 7 through 11. Exploratory trenches were excavated using a backhoe. Individual exploratory trenches were approximately 2 feet wide (the width of the backhoe bucket), and 7 to 8 feet long. The depth was determined by the depth of features of concern. The locations of the exploratory trenches were designed to evaluate anomalies from the geophysical survey (trenches T35 and T38), and to provide additional delineation of the burn ash deposit associated with the West Point Loma Dump (trenches T33, T34, T36, T37, T39, T40, and T41).

At each trench location, the pavement (asphalt or concrete) was sawcut to the anticipated dimensions of the exploratory trench. Pavement was removed, stockpiled, and disposed off-site. As the exploratory trench was excavated, spoils were stockpiled to one side of the trench. Upon completion, the trench excavation was backfilled with the spoils and compacted. The trench was temporarily patched with cold-patch asphalt to allow traffic access.

For final permanent patching, the cold patch asphalt was removed, stockpiled, and disposed off-site, and the trench excavations were paved with hot mix asphalt. SCS and Arena personnel have established a staging area in the northwestern corner of the Site where equipment was stored, coldpatch asphalt was stockpiled to be ready for use in temporary patching, and where demolished debris (existing asphalt) was stockpiled pending off-site disposal.

A California Professional Geologist, or a qualified professional under the direct supervision of a professional Geologist, was on the Site to observe the excavation activity and log the trenches. Copies of the trench logs are included in Appendix B.

Soil samples were collected from the excavations at depths determined by the field personnel. Samples were placed into laboratory-supplied glass jars, labeled, and placed in an ice-filled cooler pending delivery to the laboratory for analysis. At least one sample per trench from material interpreted to be fill (burn ash and/or overlying soil fill) was collected and analyzed. Additional samples were collected as-needed based on field observations and the experience and judgement of the on-Site professional (e.g., interpreted lithologic changes).

Soil samples were submitted to a California-state accredited laboratory for analysis. Samples were analyzed for total lead in general accordance with EPA Method 6010. Selected samples were analyzed for Title 22 metals in general accordance with EPA Method 6010, and total petroleum hydrocarbons (TPH) as gasoline (TPHg), diesel fuel (TPHd), and oil (TPHo) in general accordance with EPA Method 8015B. Chain-of-custody procedures were implemented for sample tracking. Based upon a review of the results, a second round of laboratory analysis (Title 22 metals, volatile organic compounds [VOCs], lead leachability analysis [WET and TCLP], and possible additional lead and TPH for further vertical delineation) was requested as-needed.

Soil samples were submitted to a California-state accredited laboratory for analysis (Enthalpy Analytical of Orange, California). Chain-of-custody procedures were implemented for sample tracking. Written analytical reports were provided by the laboratory upon the completion of the sample testing. Copies of the lab reports are included in Appendix C.

Direct-Push Drilling – Soil, Soil Vapor, and Groundwater Sampling and Analysis

In May of 2024, SCS advanced 6 soil borings and 24 soil vapor probes using direct push drilling. Soil borings were advanced to a maximum depth of up to approximately 13 feet below grade at the Site. Soil vapor borings were advanced to a maximum depth of up to approximately 5 feet below grade at the Site. Groundwater was encountered at a depth of approximately 9 to 10 feet below grade in two soil borings, SB-UST-24-2 and SB-UST-24-3. The following table summarizes the soil and soil vapor borings and approximate maximum depths and approximate sample depths for each boring, as well as borings that were to be sampled for groundwater.

Boring Location, ID	Depth (feet BGS)	Media to be	Sample	Number of
		Sampled	Depths/Analysis	Analyses
Summit Gas: SG-SB-24-1 SG-SB-24-2 SG-SB-24-3	7	Soil	Soil Depths: 2.5, 3.5, 4, 4.5, 5, 5.5, and/or 6.5 Lead: 2.5, 3.5, 4, 5.5, and/or 6.5 Metals: 4.5 or 5	Soil: 3 metals 6 lead
Parcel A UST: SB-UST-24-1 SB-UST-24-2 SB-UST-24-3	13	Soil, Groundwater	Soil Depths: 3.5, 4, 5.5, 6.5, 7, 8, 8.5, 9, 9.5, 10, 11.5, and/or 12.5 TPH: 5, 5.5, 6.5, 7, 8, 9, 10, 11.5, and/or 12.5 VOCs: Up to one sample from each boring based on TPH results Groundwater: TPH, VOCs	Soil: 13 TPH 4 VOCs GW: 2 TPH 2 VOCs
Soil Vapor, Parcels A, B, C, and D: Parcel A: SV-24- 001 thru SV-24- 013 and SV-24- 024 Parcel B: SV-24- 014, SV-24-017, SV-24-021 thru 023 Parcel C: SV-24- 015 and 016 Parcel D: SV-24- 018 thru 020	2.5 to 5	Soil Vapor	VOCs	Soil Vapor: 26 VOCs including two duplicate samples
Totals	Lab Analysis Round 1: Soil - 3 metals, 6 lead, 13 TPH, 4 VOCs			
	Groundwater – 2 TPH, 2 VOCs,			
Soil Vapor - 26 VOCs				

Notes:

BGS: Below ground surface.

Lead: Total lead in general accordance with EPA Method 6010B.

Metals: Title 22 metals in general accordance with EPA Method 6010B

TPH: Extended range total petroleum hydrocarbons in general accordance with EPA Method 8015M

VOCs: Volatile organic compounds in general accordance with EPA Method 8260B for soil/groundwater and TO15 for soil vapor

Four full days were required to advance up to approximately 175 linear feet of borings and collect the soil, groundwater, and soil vapor samples. Figure 7 depicts the approximate locations of the soil borings and Figure 14A through 14C depicts the approximate locations of the soil vapor borings drilled during the current assessment.

Soil and Groundwater Sampling

A California Professional Geologist, or a qualified professional under the direct supervision of a professional Geologist, was on the Site to observe the drilling activity. Soil samples were collected from the approximate depths as presented in the table above, and we also observed samples for staining or odors that might indicate the presence of CoCs, and screen samples using a photoionization detector (PID). Additional samples were collected based on field observations and the experience and judgement of the on-Site professional (e.g., interpreted lithologic changes). Soil boring lithologic logs were completed for the soil borings that require the boring permit, SB-UST-24-2 and SB-UST-24-3 (Appendix B).

The borings were advanced by a standard sized direct push drill rig, and soil samples were collected using a 1 ¾" or similar diameter split spoon-type drive sampler within an acetate liner. The ends of sections of acetate liner selected for analysis were covered with Teflon sheets and plastic caps. The liners were labeled and placed in an ice-filled cooler for delivery to a State-accredited laboratory for analysis. Chain-of-custody procedures were implemented for sample tracking. Upon completion, the borings were backfilled with bentonite and hydrated in accordance with manufacturers specifications.

For borings SB-UST-24-2 and SB-UST-24-3, shallow groundwater grab samples were collected by installing a temporary groundwater well using PVC casing. The groundwater samples were collected using a disposable bailer, placed in laboratory-supplies containers, labeled and stored in an ice-filled cooler pending delivery to the laboratory for analysis. Chain-of-custody procedures were implemented for sample tracking.

Pursuant to our standard operating procedures, the sampling equipment was decontaminated onsite between soil samples to minimize the likelihood of "cross-contaminating" the samples and to minimize the potential for a "false positive" in the soil samples analyzed.

The samples summarized in the table above were analyzed by a State-accredited off-Site laboratory on a "standard" turnaround (approximately five to seven working days). Chain-of-custody procedures were implemented for sample tracking. Based upon a review of the results, a second round of laboratory analysis (VOCs, lead leachability analysis [WET and TCLP], and possible additional lead, OCPs, and TPH for further vertical delineation) was requested as-needed and was analyzed on a standard turnaround time. Written analytical reports were provided by the laboratory upon the completion of the sample testing (Appendix C).

Soil Vapor Sampling

SCS collected soil vapor samples from twenty-four (24) soil vapor boring locations (SV-24-001 through SV-24-024) at depths of approximately 5 feet below ground surface (bgs). One sample location, SV-24-020, encountered refusal at a depth of approximately 2.5 feet.

Soil vapor sampling was conducted in general accordance with the Department of Toxic Substances Control (DTSC) Active Soil Gas Advisory, dated July 2015. The vapor probes were advanced using either a truck-mounted direct push drill rig or hand tools.

The soil vapor probes were constructed in general accordance with DTSC Guidelines. The probes consisted of a temporary airstone filter, 1/8" Nylaflow tubing, and a valve at the termination. The probe tip was set within a 12" sand pack, with a minimum of 6" dry bentonite above the sand. The annular seal between probe depths and/or to the surface consisted of granular bentonite hydrated

in lifts. Upon completion of sampling, the probes were abandoned without excavation, the locations were backfilled with bentonite, and the surface were patched accordingly.

Following a 120 minute equilibration time, the samples were collected into Summa canisters for analysis at a fixed lab. At each location, a shut in test was performed for 60 seconds, and 1,1-difluoroethane (1,1-DFA) was used as a liquid leak check. Probe vacuum was monitored during purging to remain at <100" water, and a flow rate of 100-200 milliliters per minute (mL/min) was maintained and recorded during purging and sampling. Prior to collecting the sample, each location was purged of approximately 3 purge volumes. During the sampling, SCS prepared a site map depicting the scaled locations of the sample probes (Figures 14A through 14C).

The soil vapor samples were analyzed by a State-accredited laboratory. Samples were analyzed for VOCs - full range in general accordance with Method TO-15. Chain-of-custody procedures were implemented for sample tracking. A final written analytical report was provided by the laboratory (Appendix C).

Hand Auger Borings - Soil Sampling

Phase II assessment activities conducted in early 2023 detected organochlorine pesticides (OCPs), in particular elevated concentrations of the OCP chlordane, in soil borings drilled in the southern portion of Parcel C (Soma parcel). To provide delineation of the pesticides, in March and May of 2024, SCS collected soil samples from thirty (30) hand auger boring locations (HA-24-001 through HA-24-030) at depths up to approximately 6 feet below ground surface (bgs) in the southern portion of Parcel C.

Additional hand-auger soil assessment in July 2024 was also conducted as follows:

- Approximately four additional shallow soil borings were drilled in the southern portion of Parcel C to further delineate the extent of chlordane in soil (HA-24-031 through HA-24-034).
- Two shallow soil borings were drilled immediately to the east and west of the southern portion of Parcel E (Salvation Army) to collect Phase II assessment data relative to that parcel (HA-24-026 and HA-24-027).

Shallow soil borings were advanced using a hand-held auger. Soil samples were collected by placing soil from desired depths into laboratory-supplied glass jars. The jars were tightly capped, labeled, and placed in an ice-filled cooler pending delivery to the laboratory. Upon completion, the borings were backfilled with the cuttings.

The hand auger soil samples were analyzed by a State-accredited laboratory. Select samples were analyzed for the following:

- OCPs in accordance with EPA Method 8081A
- Title 22 Metals in accordance with EPA Method 6010
- Total lead in accordance with EPA Method 6010
- Total petroleum hydrocarbons (TPH), extended range in accordance with EPA Method 8015B.
- Volatile organic compounds (VOCs) in general accordance with EPA Method 8260B.

Not all soil samples were analyzed for all of the analyses listed. Selected samples were also analyzed for metals or chlordane leachability using the Waste Extraction Test (WET) or Toxicity Characteristic Leaching Procedure (TCLP), as needed. Chain-of-custody procedures were implemented for sample tracking. A final written analytical report was provided by the laboratory.

4 SITE GEOLOGY AND HYDROGEOLOGY

GEOLOGY

A geological map¹ for the Site vicinity indicates that the Site is underlain by artificial fill containing compacted engineered and non-compacted, non-engineered fill. Soil observed by SCS in soil borings advanced during the Assessment consisted of brown to dark brown, silty, fine- to medium-grained sand.

Reported Formation	Artificial fill (af), Urban land, placed historically
Reported Description	Urban land and deposits of fill resulting from human construction, mining, or quarrying activities; includes compacted engineered and non-compacted, non-engineered fill

During drilling, geologic materials observed included artificial fill soils underlain by alluvium, bay muds, as well as tidal flat and beach bar deposits.

HYDROGEOLOGY

Groundwater depth information was measured and flow direction was estimated during this assessment. The following table summarizes the results of this review:

Property Location	Parcels A and B on Site
Reported Depth	8 to 10 feet below grade
Reported Flow Direction	Estimated to flow to the west/northwest but highly variable based on review of nearby groundwater assessment cases on Geotracker

Please note that many variables influence groundwater depth and flow direction, and that the actual depth and flow direction at the Site may be different than presented in this section.

WATER QUALITY SURVEY

The following table summarizes the reported water quality in the Site vicinity:

Reported Hydrologic Subarea	Mission San Diego (907.11)
Reported Hydrologic Area	Lower San Diego (907.10)
Reported Hydrologic Unit	San Diego (907)
Reported Beneficial Use	None. Due to the Site's location west of the easterly boundary of the Interstate 5 right-of-way, the Site is excepted from the sources of drinking water policy
Source	California RWQCB, San Diego Region, Water Quality Control Plan for the San Diego Basin, September 8, 1994, with amendments effective prior to September 1, 2021

Geologic Map of the San Diego 30' x 60' Quadrangle, California, compiled by Michael P. Kennedy and Siang S. Tan, 2005, California Division of Mines and Geology and United States Department of Agriculture Web Soil Survey, https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

5 FINDINGS

GEOPHYSICAL SUMMARY

Figure 13 in the Atlas One report (Appendix A) depicts the EM31 In-Phase data obtained during the geophysical survey. The EM31 is used to assess the presence of conductors and non-conductors in the subsurface. There are two components to the magnetic field measured by the EM31: quadrature phase and in-phase. The in-phase measurement is more sensitive to large metallic objects than the quadrature phase. Within Parcel A, the geophysical survey was conducted in the area just south to west of the arena interpreted general to be the former location of administration buildings associated with Frontier School. During trenching assessment conducted during 2023, a UST was encountered in a location associated with the former school. The additional geophysical survey in this area was intended, in part, to evaluate the possibility of additional USTs associated with the school.

Specific features called out in the geophysics report (Appendix A) are depicted on Figure 12 as A and B. Most of these features were interpreted not to represent subsurface features of concern. However, two EM anomalies were noted as follows:

- A: Near the southern arena entrance.
- B: Southwest of the arena near the entrance driveway along Summit Gas.

Exploratory trenches were excavated in the location of each of these anomalies. At the location of Trench T35 (anomaly A), a vertical metal pipe (interpreted to be a possible water line riser) was encountered. No metallic objects were encountered in Trench T38 (anomaly B).

LABORATORY ANALYTICAL RESULTS

Trenching and Direct Push Soil Sample Analytical Results

The results of the trenching and direct push soil samples collected and analyzed during the above-described sampling activities on May 7, 8, 21, and 23, 2024, are summarized below, which are also tabulated in Tables 1 and 2 and depicted on Figures 7, 8, 9, 10, and 11.

Copies of the laboratory reports are included in Appendix C.

Total Petroleum Hydrocarbons (TPH)

A total of 15 trenching and direct push soil samples were analyzed for extended-range TPH in accordance with EPA Method 8015B. TPHg was reported in 2 of the 15 samples analyzed with detections ranging from 56 milligrams per kilogram (mg/kg) in sample SB-UST-24-1-7 to 73 g/kg in sample SB-UST-24-1-9. Concentrations of TPHd were reported in 2 of the 15 samples analyzed, with detections ranging from 890 mg/kg in sample SB-UST-24-1-9 to 1,900 mg/kg in sample SB-UST-24-1-7. Concentrations of TPHo above the laboratory reporting limit were reported in 4 of the 15 samples analyzed, with detections ranging from 52 mg/kg in sample T38-3.5 to 130 mg/kg in sample SB-UST-24-1-7.

Volatile Organic Compounds (VOCs)

A total of 5 trenching and direct push soil samples were analyzed for VOCs in accordance with EPA Method 8260B. Detectable 1,2,4-trimethylbenzene above the laboratory reporting limit was reported in 1 of the 5 samples analyzed at a concentration of 330 mg/kg in SB-UST-24-1-9. Detectable

naphthalene above the laboratory reporting limit was reported in 1 of the 5 samples analyzed at a concentration of 640 mg/kg in SB-UST-24-1-9. All other VOCs analyzed were reported to be below the respective laboratory reporting limits.

Organochlorine Pesticides (OCPs)

A total of 8 trenching and direct push soil samples were analyzed for OCPs in accordance with EPA Method 8081A. All OCPs analyzed in these samples were reported to be below the respective laboratory reporting limits.

Lead and Other Metals

Trenching and direct push soil analytical results for lead and other metals indicated metals were detected above laboratory reporting limits in several samples on Site. The data are presented in Table 2.

Groundwater Sample Analytical Results

The results of the groundwater samples collected and analyzed during the above-described sampling activities on May 23, 2024, are summarized below, which are also tabulated in Table 3 and depicted on Figure 10.

Copies of the laboratory reports are included in Appendix C.

Total Petroleum Hydrocarbons (TPH)

A total of 2 groundwater samples were analyzed for extended-range TPH in accordance with EPA Method 8015B. Concentrations of TPHg were reported above the laboratory reporting limits in 1 of the 2 groundwater samples analyzed at a concentration of 0.84 milligrams per liter (mg/L) in sample SB-UST-24-2-W. Concentrations of TPHd were reported in both of the samples analyzed, with detections ranging from of 1.2 mg/L in sample SB-UST-24-3-W to 3.4 mg/L in sample SB-UST-24-2-W. Concentrations of TPHo were not reported above the laboratory reporting limits in any of the groundwater samples analyzed

Volatile Organic Compounds (VOCs)

A total of 2 groundwater samples collected from the Site were analyzed for VOCs in accordance with EPA Method 8260B. Detectable m,p-xylenes above the laboratory reporting limit was reported in 1 of the 2 samples analyzed, sample SB-UST-24-3-W at 1.6 μ g/L. Detectable o-xylene above the laboratory reporting limit was reported in 1 of the 2 samples analyzed, sample SB-UST-24-3-W at 0.6 μ g/L. Detectable 1,2,4-trimethylbenzene above the laboratory reporting limit was reported in 1 of the 2 samples analyzed, sample SB-UST-24-2-W at 0.9 μ g/L. Detectable naphthalene above the laboratory reporting limit was reported in 1 of the 2 samples analyzed, sample SB-UST-24-2-W at 5.4 μ g/L. All other VOCs analyzed were reported to be below the respective laboratory reporting limits.

Soil Vapor Sample Analytical Results

A summary of the laboratory analytical results for soil vapor is presented below. A complete listing of the results is presented in the laboratory analytical report included in Appendix C. The data are presented in Table 4 and depicted on Figures 14A through 14C.

VOCs in Soil Vapor

A total of 24 soil vapor samples were analyzed for VOCs in general accordance with EPA Method TO-15 and, due to elevated levels of non-target analytes, the following samples collected in May 2024 were analyzed by 8260SV rather than EPA Method TO-15; SV-24-021-5, SV-24-021-5 Dup, SV-24-023-5, SV-24-023-5 Dup, and SV-24-022-5. Additionally, analytes dichlorotetrafluoroethane and 4-ethyltoluene are not included in 8260SV.

1,1-difluoroethane (leak check compound [LCC]), dichlorodifluoromethane (F12), chloromethane, carbon disulfide, 2-butanone (MEK), chloroform, benzene, 4-methyl-2-pentanone (MIBK), toluene, 2-hexanone (MBK), chlorobenzene, ethylbenzene, m,p-xylene, styrene, o-xylene, tetrachloroethene (PCE), 4-ethyltoluene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene were reported to be present above the respective laboratory reporting limits in one or more of the soil vapor samples collected at the Site. All other VOCs analyzed were reported to be below the respective laboratory reporting limits.

The uses and presence of these VOCs are summarized below:

- F12 is commonly used in industry as a refrigerant.
- Chloromethane is used to make other chemicals and is found in vinyl chloride end-products.
- Carbon disulfide is used industrially in the manufacture of perfumes, cellophane, rayon, and some types of rubber.
- MEK is used in a number of industrial products such as paints and other coatings. It is also used in glues and as a cleaning agent.
- Chloroform is a routine water disinfection byproduct commonly found in municipal water systems and is typically found near municipal water sources such as irrigation lines.
 Chloroform is a member of a group of closely related chemicals, known as trihalomethanes, that are formed when chlorine reacts with natural organic humic materials and bromine via the haloform reaction in water, and occur in varying ratios when water is chlorinated for municipal uses. Chloroform is also a common byproduct in commercial bleach.
- MIBK is a solvent for vinyl, epoxy, and acrylic resins, for natural resins, and for nitrocellulose.
- MBK in paint and paint thinner, to make other chemical substances, and to dissolve oils and waxes.
- Chlorobenzene is used primarily as a solvent, a degreasing agent, and a chemical intermediate.
- Styrene is used in plastics, latex paints and coatings, synthetic rubbers, polyesters and styrene-alkyd coatings.
- PCE is used as a solvent in industry as well as the dry cleaning and auto repair industry.
- 4-ethyltoluene is used in the production of specialty polystyrenes.
- The remaining constituents, including benzene, toluene, ethylbenzene, xylenes, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene are typical constituents associated with petroleum hydrocarbons such as gasoline.

Concentrations of benzene were reported in most of the soil vapor samples analyzed in this sampling event, with the highest concentrations detected near the gasoline service station. Concentrations of m,p-xylene were found in one sample also located near the gasoline service station. Concentrations of ethylbenzene were found in one sample located in the Dixieline lumber yard. Concentrations of chloroform were found in one sample located in the parking lot north of Chili's restaurant. In addition, concentrations of PCE were found near the Dixieline Lumber facility in several samples, at the southwest corner of the parking lot near the sports arena building in one sample, in the western

area of the Chick-fil-A parking lot in one sample, and south of the discovered UST in the western portion of the Site.

With the possible exception of elevated concentrations of benzene likely being from the gasoline service station on Site, and it's not clear whether these VOCs in soil vapor beneath other portions of the Site resulted from an on- or off-Site source.

Regarding two detections of 1,1-Difluoroethane (leak check compound or LCC), values within 10 times the RL are considered within the tolerance of the relevant quality analysis/quality control parameters for the laboratory analytical method. The LCC detection in sample SV-24-017-5, at 87 $\mu g/m^3$, is 16 times above this level and this indicates at least some of the sample came from ambient air and not soil vapor, which may bias concentrations of VOCs detected in this sample to be low, so that what is actually in the soil vapor may be higher than what is indicated in the results. Conversely, some of the detected VOCs in SV-24-017-5 may have been derived from ambient air and not from soil vapor. All the other samples with LCC concentrations above laboratory limits were within the relevant quality analysis/quality control parameters for the laboratory analytical method, and therefore are considered representative of subsurface soil vapor conditions.

Hand Auger Soil Sample Analytical Results

The results of the hand auger soil samples collected and analyzed during the above-described sampling activities on March 4 & 5, May 16, 17, & 20, and July 9, 2024 are summarized below, and are also tabulated in Tables 1 and 2 and depicted on Figures 15A and 15B.

Copies of the laboratory reports are included in Appendix C.

Total Petroleum Hydrocarbons (TPH)

A total of 24 hand auger soil samples were analyzed for extended-range TPH in accordance with EPA Method 8015B. TPHg was reported below the laboratory reporting limits in all 24 samples. TPHd was reported in 1 of the 24 samples analyzed with a concentration of 20 mg/kg in sample HA-24-028-0.5. Concentrations of TPHo above the laboratory reporting limit were reported in 11 of the 24 samples analyzed, with detections ranging from 35 mg/kg in sample HA-24-019-0.5 to 190 mg/kg in sample HA-24-028-2.5.

Volatile Organic Compounds (VOCs)

A total of 4 hand auger soil samples were analyzed for VOCs in accordance with EPA Method 8260B. All VOCs analyzed in these samples were reported to be below the respective laboratory reporting limits.

Organochlorine Pesticides (OCPs)

A total of 81 hand auger soil samples collected from the Site were analyzed for OCPs in accordance with EPA Method 8081A. Detectable dichlorodiphenyldichloroethylene (DDE) above the laboratory reporting limit was reported in 5 of the 81 samples analyzed, ranging from 5.2 μ g/kg in samples HA-24-003-3.5 and HA-24-029-0.5 to 8.7 μ g/kg in HA-24-029-2.5. Detectable heptachlor above the laboratory reporting limit was reported in 2 of the 81 samples analyzed, ranging from 5.1 μ g/kg in sample HA-24-003-0.5 to 27 μ g/kg in HA-24-015-1.5. Detectable heptachlor epoxide above the laboratory reporting limit was reported in 1 of the 81 samples analyzed at a concentration of 6.0 μ g/kg in HA-24-001-3. Concentrations of chlordane were reported in 35 of the 81 samples analyzed and ranged from 62 μ g/kg in sample HA-24-007-2.5 to 19,000 μ g/kg in sample HA-24-015-0.5. All other OCPs analyzed were reported to be below the respective laboratory reporting limits.

A total of 9 hand auger soil samples were analyzed for toxicity characteristic leaching procedure (TCLP) for chlordane for waste characterization purposes. Detectable chlordane TCLP above the laboratory reporting limit was reported in 1 of the 11 samples at a concentration of 3.9 micrograms per liter (μ g/L) in sample HA-24-007-0.5.

A total of 5 hand auger soil samples were analyzed soluble threshold limit concentration (STLC) for chlordane for waste characterization purposes. STLC for chlordane in these samples were reported to be below the respective laboratory reporting limits.

Lead and Other Metals

Hand auger soil analytical results for lead and other metals indicated metals were detected above laboratory reporting limits in several samples on Site. The data are presented in Table 2.

6 DISCUSSION AND VAPOR INTRUSION RISK SCREENING

REMEDIATION CRITERIA FOR CONSTITUENT OF CONCERN-BEARING SOIL AND GROUNDWATER

Soil and groundwater Remediation Criteria are used in this Report for comparison of the reported soil and groundwater sample results to applicable Health Risk-Based Remediation Criteria, Waste-Based Remediation Criteria, and Hazardous Waste-Based Remediation Criteria defined in the table below for the reported and suspected CoCs, which include metals such as arsenic and lead, OCPs, TPH, and VOCs. The applicable regulatory soil and groundwater screening levels for the identified CoCs used herein are summarized in the below table and are further defined below the table.

Remediation Criteria/ Remediation Measure	Constituents of Concern	Analyte (Lab method)	Regulatory Threshold
Waste-Based Pertains to soil export only. Soil	Previously detected CoCs at the Site	TPH (EPA 8015B) VOCs (EPA 8260B)	Any detectable
with exceedances to be exported	(arsenic, lead,	OCPs (EPA 8081A)	concentrations ¹
as a non-hazardous regulated waste at a minimum	zardous regulated OCPs, and TPH) and		Tier 1 Soil Screening Levels (SSLs) with 90 UCL ¹
	Lead and other Metals	Lead and other Metals (EPA 6010B)	>1,000 mg/kg with Site-wide 95 UCL ³ for lead
Hazardous Waste-Based Soil		WET and TCLP for Lead and other Metals (CCR 66261.100)	>5 mg/L³ for lead
Health Risk-Based Soil Remediation Criteria	Lead and other Metals	Lead and other Metals (EPA 6010B)	>80 mg/kg with Site-wide 95 UCL ² for lead
Soil with exceedances to be properly managed (either exported	Petroleum hydrocarbons	TPHo (EPA 8015B)	>12,000 mg/kg ⁴
as regulated waste, or buried on- Site beneath a soil cap)		TPHd (EPA 8015B)	>260 mg/kg ⁴

Remediation Criteria/ Remediation Measure	Constituents of Concern	Analyte (Lab method)	Regulatory Threshold
		TPHg (EPA 8015B)	>430 mg/kg ⁴
	0CPs	OCPs (EPA 8081A)	SFRWQCB ESLs ⁴
	VOCs	VOCs (EPA 8260B)	DTSC-SL ²
	Petroleum hydrocarbons	TPHo (EPA 8015B)	>100 mg/L ⁴
Health Risk-Based Groundwater Remediation Criteria		TPHd (EPA 8015B)	>100 mg/L ⁴
Groundwater with exceedances to be properly managed		TPHg (EPA 8015B)	NE ⁴
	VOCs	VOCs (EPA 8260B)	SFRWQCB ESLs ⁴

Notes:

mg/kg: milligrams per kilogram. mg/L: milligrams per liter.

TPHg, TPHd, TPHo: Total petroleum hydrocarbons as gasoline, diesel, and oil.

VOCs: Volatile organic compounds. OCPs: Organochlorine pesticides. UCL: Upper confidence limit.

1: Per San Diego Regional Water Quality Control Board (RWQCB) Tier 1 Soil Screening Levels (SSLs), March 13, 2024.

- 2: Per Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number 3, June 2020, Revised May 2022, recommended Soil Screening Levels for residential users. If a DTSC-SL has not been established for a constituent. The Environmental Protection Agency (EPA) Regional Screening Level (RSL) for residential users dated May 2024, was used for the constituent.
- 3: Per the California Code of Regulations, Title 22 Article 3, July 20, 2005.
- 4: The San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) Environmental Screening Levels (ESLs) for residential users, dated 2019 (revised).

Waste-Based Remediation Criteria – Should there be export of soil at the Site and per our experience with the DEHQ, it is recommended that soil that is classified as a hazardous waste (if encountered) be exported to an appropriately licensed facility rather than be left on-Site.

• For "clean"² (Inert) soil that is exported from the Site, the RWQCB Tier 1 SSLs established in the Waiver³ are intended to be the criteria by which exported waste soil is judged to be clean, described within the Waiver as "inert waste soils that can be reused without restriction."

Inert soil – For purposes of this Report, Inert is defined as soil that does not contain detectable concentrations of possible constituents of concern with the possible exception of California Code Regulations Title 22 metals (with metals concentrations below the San Diego Regional Water Quality Control Board [RWQCB] Tier 1 Soil Screening Levels using a 90 percent upper confidence limit), or leachable concentrations of organic constituents that are consistent with the definition of "inert waste" specified in California Code of Regulations Title 27, section 20230, consistent with the RWQCB Order No. R9-2024-0001, Conditional Waivers of Waste Discharge Requirements for Low Threat Discharges in the San Diego Region, March 13, 2024 (Waiver). The soil is comprised of native/formational material as well as fill soil that is interpreted to have been placed during the original development of the Site.

The Tier 1 SSLs presented in RWQCB's Order No. R9-2019-0005, Conditional Waivers of Waste Discharge Requirements for Low Threat Discharges in the San Diego Region (Waiver) are intended to be the criteria by which soils are judged to be inert waste soils that can be reused without restriction.

- o For chemical CoCs including OCPs, TPH, and VOCs, all soil containing any detectable or leachable concentrations of chemical CoCs proposed for export off-Site would need to be disposed of as regulated, non-hazardous waste per the Tier 1 SSLs.
- o For metals, which are naturally occurring, the Tier 1 SSL for the lead is 23.9 mg/kg and the Tier 1 SSL for arsenic is 3.5 mg/kg. If soil was to be exported as Inert, excavated Site soils must be shown, through the collection of soil samples and analysis for lead and other metals, with the 90% upper confidence limit (UCL), to be below the Tier 1 SSL.

Hazardous Waste-Based Remediation Criteria - For characterizing soil as hazardous waste, the California Code of Regulations, Title 22 Article 3, July 20, 2005, was used.

- Soil is characterized as a California hazardous waste, at a minimum, upon exceedance of the
 total concentrations of a CoC to the Total Threshold Limit Concentration (TTLC), and/or by
 comparing the results of a Waste Extraction Test (WET) to the Soluble Threshold Limit
 Concentration (STLC).
- Soil is characterized as a federal or Resource, Conservation, and Recovery Act (RCRA)
 hazardous waste through an exceedance of Toxicity Characteristic Leaching Procedure
 (TCLP) laboratory results upon comparison to the respective Maximum Contaminant
 Concentration for the Toxicity Characteristic (MCCTC).

Health Risk-Based Remediation Criteria - to screen soil and groundwater for possible risks to residential users and workers at the Site:

- For VOCs and lead, the DTSC Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number 3, June 2020, revised May 2022: recommended Screening Levels (SLs) for residential soil and cancer endpoint. For constituents where the DTSC SLs are not established, the United States Environmental Protection Agency (EPA) Regional Screening levels (RSLs) for residential soil. May 2024 were used.
- For TPH, groundwater VOCs, and OCPs, based on prior conversations with the applicable regulatory agencies, SCS uses the SFRWQCB Tier 1 ESLs (2019, Revision 2), which provide conservative screening levels for soil and groundwater impacted with petroleum hydrocarbons and OCPs. The ESLs are intended to help expedite the identification and evaluation of potential environmental concerns.

COMPARISON OF TPH, VOC, OCP, AND METALS CONCENTRATIONS IN SOIL TO REMEDIATION CRITERIA

A comparison of the following CoCs in soil to the remediation criteria at the targeted features of concern are organized as follows:

Discovered UST – Soil samples collected for this feature of concern are from borings SB-UST-24-1, -2, and -3, which were collected during the May 2024 sampling event to further delineate samples collected from trench T13 where the UST was discovered. TPH and VOCs result comparisons to Remediation Criteria for samples collected from borings SB-UST-24-1, -2, and -3 are discussed in the specified sections below and also information on how this relates to samples collected from previous trench T13 and the extent of TPH and VOC bearing soil in this area. In addition, two groundwater samples were collected from borings

- SB-UST-24-2 and SB-UST-24-3 and the TPH and VOC result comparisons to remediation criteria are also discussed in the specified sections below.
- Former burn dump area Soil samples collected for this feature of concern are from trenches T33, T34, T36, T37, T39 through T42, and direct push borings SG-SB-24-1, -2, and -3, which were collected during this sampling event to further delineate elevated concentrations of lead and other metals in samples previously collected from trenches T3 - T10, T23 and T24 and direct push boring A-23-012 from previous sampling events. Lead and metals result comparisons are discussed in the indicated sections below. In addition, select samples from these trenches and specified borings for this current sampling event were also analyzed for TPH (2 samples), OCPs (8 samples), and VOCs (1 sample) where all of these samples indicated below their laboratory associated reporting limits except T38-3.5, that indicated a result of 52 mg/kg of TPHo, which is above the Waste-Based Remediation-Criteria (i.e., Tier 1 SSLs) but below the Risk-Based Remediation Criteria (i.e., SFBRWQCB ESLs). Therefore, if soil represented by sample T38-3.5 is exported from the Site, this soil would be considered a regulated waste and would likely be considered a non-hazardous regulated waste and would need to be disposed of at an appropriately permitted facility (e.g., landfill). Additionally, based on these samples collected and analyzed for TPH, VOCs, and OCPs in the former burn dump area, this soil is not considered to represent a human health risk to future residential users of the Site in comparison to these SSLs, although see below for details on comparison of the metals data from these samples and the extent of the higher concentrations of lead and metals found in this area of the Site.
- Hand Auger Samples Pesticide bearing soils at Soma and General Sampling of Dixieline Lumber, Salvation Army, and Sports Arena Contractor Service Yards - Soil samples were collected from the Soma parking lot (Parcel C), the maintenance area situated in the northeastern portion of Parcel A, and throughout the Dixieline property with hand auger borings HA-24-001 to HA-24-017, HA-24-019 to HA-24-034, and HA-24-015A. Select samples from these borings were collected during this sampling event to further delineate elevated concentrations of the OCP chlordane found in sample DP-23-038-2.5 in the southern portion of the Soma parking lot from a previous sampling event and the rest were collected for general Site screening purposes. OCP and metals result comparisons for these areas are discussed in the specified sections below. In addition, select hand auger samples were also analyzed for TPH (24 samples) and VOCs (4 samples). Eleven of the 24 soil samples analyzed for TPH in these areas were reported with detectable concentrations of TPH, with maximum concentrations of 13 mg/kg for TPHg, 20 mg/kg for TPHd, and 190 mg/kg for TPHo, which is above the Waste-Based Remediation-Criteria (i.e., Tier 1 SSLs) but below the Risk-Based Remediation Criteria (i.e., SFBRWQCB ESLs). Therefore, if soil represented by these samples with detectable concentrations of TPH are exported from the Site, this soil would be considered a regulated waste and would likely be considered a nonhazardous regulated waste and would need to be disposed of at an appropriately permitted facility (e.g., landfill). Additionally, based on these soil samples collected and analyzed for TPH and VOCs in these areas, this soil is not considered to represent a human health risk to future residential users of the Site in comparison to the Health Risk-Based Remediation Criteria, although see below for details on comparison of these samples to the OCP and metals data and the extent of the higher concentrations of OCPs and metals found in these areas of the Site, in particular in the Soma parking lot, for which exceedances to the Health Risk-Based Remediation Criteria were reported.

TPH in Soil for Discovered UST

Soil analytical results for TPH collected at the discovered UST located in the western portion of the Site were compared to Waste-Based Remediation-Criteria (i.e., Tier 1 SSLs) and Risk-Based Remediation Criteria (i.e., SFBRWQCB ESLs) as summarized in the table below.

	Maximum Site	Waste-Based Screening ¹		Health Risk-Based Screening ²	
Analyte	Concentration (mg/kg)	Tier 1 SSL (mg/kg)	Above Tier 1 SSL?	Remediation Criteria (mg/kg)	Above Remediation Criteria?
TPHg	73	ND	Yes	430	No
TPHd	1,900	ND	Yes	260	Yes
TPHo	130	ND	Yes	12,000	No

Notes:

mg/kg: milligrams per kilogram.

- 1: Waste-Based Screening Regional Water Quality Control Board (RWQCB) Tier 1 Soil Screening Levels (SSLs) for waste, March 2024. For inert waste soils that can be reused without restriction.
- 2: Risk-Based Remediation Criteria San Francisco Bay Regional Water Quality Control Board (SFBRWQCB), Environmental Screening Levels for residential users (ESLs) (2019, Rev. 2). Risk value was not established; the non-cancer hazard value was used.

TPHg: TPH as gasoline.

TPHd: TPH as diesel.

TPHo: TPH as oil.

ND: Not detected above the laboratory reporting limit.

Red font = the maximum Site concentration for a particular TPH exceeds the Waste-Based Remediation Criteria or Health Risk-Based Remediation Criteria.

Comparison of Reported TPH Concentrations to Health Risk-Based Screening Values for the Discovered UST

Although detectable concentrations of TPH were reported to be present in 4 of the 13 samples analyzed at the discovered UST, only two samples (samples SB-UST-24-1-7 and SB-UST-24-1-9) were reported to exceed the Health Risk-Based Remediation Criteria (i.e., SFBRWQCB ESLs) for TPH. Samples SB-UST-24-1-7 and SB-UST-24-1-9 were reported with TPHd concentrations of 1,900 mg/kg and 890 mg/kg respectively, which exceeds the ESL of 260 mg/kg. In addition, from previous sampling of trench T13, where the UST was found, sample T-13-3-NE and T13-7 indicated concentrations of TPHg and/or TPHd that exceed health risk criteria. SCS recommends this soil be excavated, segregated, and properly managed during grading and excavation activities (i.e., either managed on-Site under a clean soil cap under oversight and approval from the DEHQ, or exported to a properly licensed facility (e.g., landfill) as a regulated waste.

The estimated extent of TPH-bearing soil that exceeds the ESLs is depicted on Figure 10. It is likely that the extent of petroleum hydrocarbon-bearing soil is generally limited to the vicinity of the UST. Further assessment may be conducted at the time the UST is removed.

The remainder of soil samples analyzed for TPH were reported to be below the Health Risk-Based Remediation Criteria. Therefore, based on the remainder of soil samples collected and analyzed for TPH, this soil is not considered to represent a human health risk to future residential users of the Site in comparison to the ESLs, and can be freely graded on-Site during grading activities.

Comparison of Reported TPH Concentrations to Waste-Based Screening Values for the Discovered UST

The 4 soil samples collected in May 2024 reported with detectable concentrations of TPH (SB-UST-24-1-7, SB-UST-24-1-9, SB-UST-24-3-5, and SB-UST-24-3-10) exceed the Tier 1 SSLs as stipulated in the RWQCB Waiver. Therefore, if soil represented by these samples is exported from the Site, this soil would be considered a regulated waste and would likely be considered a non-hazardous regulated waste and would need to be disposed of at an appropriately permitted facility (e.g., landfill or treatment facility).

VOCs Soil for the Discovered UST

Soil analytical results for VOCs collected at the discovered UST located in the western portion of the Site were compared to Waste-Based Remediation-Criteria (i.e., Tier 1 SSLs) and Risk-Based Remediation Criteria (i.e., DTSC-SLs) as summarized in the table below.

	Maximum Site Waste-Based Screening ¹		Health Risk-Based Screening ²			
VOCs	Concentration	Tier 1 SSL	Above Tier 1 SSL?	Residential SFBRWQCB ESL/ DTSC RSL/ EPA RSL	Above SFBRWQCB ESL/ DTSC RSL/ EPA RSL?	
		(µg/kg)				
1,2,4- Trimethylbenzene	330	ND	Yes	300,000	No	
n-Butylbenzene	640	ND	Yes	2,400,000	No	

Notes:

µg/kg: micrograms per kilogram.

- 1) Waste-Based Screening Regional Water Quality Control Board (RWQCB) Tier 1 Soil Screening Levels (SSLs) for waste, May 2019. For inert waste soils that can be reused without restriction.
- 2) Health Risk-Based Criteria For VOCs the Human Health Risk Assessment Note 3 DTSC-Modified Screening Levels (DTSC-SLs), Table 3 Screening Levels for Soil Analytes. Residential. June 2020 Update, Revised May 2022.

ND = non-detect above the specified laboratory reporting limits.

Red font = the maximum Site concentration for a particular VOC exceeds the waste-based screening criteria or health risk-based screening criteria.

Comparison of VOC Concentrations to Health Risk-Based Remediation Criteria (i.e., for Soil That Remains on-Site) for the Discovered UST

Although detectable concentrations of VOCs were reported to be present in 1 of the 4 samples collected and analyzed in the area near the discovered UST, none of these concentrations were found to exceed the Health Risk-Based Remediation Criteria (i.e., DTSC SLs) for VOCs. Therefore, based on the soil samples collected and analyzed for VOCs, the soil is not considered to represent a human health risk to future residential users of the Site in comparison to the SLs, and can be freely graded on-Site during grading activities. This also indicates that elevated concentrations of naphthalene in sample T-13-7 that was reported in a previous assessment is limited to this sample area and is recommended to be excavated alongside the TPH bearing soil in the area (Figure 10).

Comparison of VOC Concentrations to Waste-Based Remediation Criteria (i.e., for Soil Export) for the Discovered UST

Regarding waste-based screening criteria, detectable concentrations of chemical constituents such as VOCs would be considered a regulated waste if exported from the Site per the RWQCB Tier 1

SSLs. A total of 1 of the 4 soil samples (sample SB-UST-24-1-9) analyzed for VOCs was reported with detectable concentrations of VOCs; soil represented by this sample would be considered a regulated waste if exported from the Site. Since hazardous waste criteria are not established based on the reported VOC constituents, the regulated waste soil would likely be considered a non-hazardous regulated waste if exported from the Site based on the VOC concentrations alone.

OCPs in Soil from the Hand Auger Samples

Soil analytical results for OCPs from the hand auger to borings at Soma and general soil sampling at the Dixieline Lumber, the Salvation Army and Sports Arena Contractor Service Yards were compared to Waste-Based Remediation-Criteria (i.e., Tier 1 SSLs) and Risk-Based Remediation Criteria (i.e., SFBRWQCB ESLs) as summarized in the table below.

	Maximum Site	Waste-Based Screening ¹		Health Risk-Bas	ed Screening ²		
VOCs	Concentration	Tier 1 SSL	Above Tier 1 SSL?	Residential SFBRWQCB ESL/ DTSC RSL/ EPA RSL	Above SFBRWQCB ESL/ DTSC RSL/ EPA RSL?		
		(µg/kg)					
DDE	8.7	ND	Yes	1,800	No		
Heptachlor	27	ND	Yes	130	No		
Heptachlor epoxide	6.0	ND	Yes	70	No		
Chlordane	1,800	ND	Yes	480	Yes		

Notes:

μg/kg: micrograms per kilogram.

- 1) Waste-Based Screening Regional Water Quality Control Board (RWQCB) Tier 1 Soil Screening Levels (SSLs) for waste, May 2019. For inert waste soils that can be reused without restriction.
- 2) Health Risk-Based Criteria For OCPs based on The San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) Environmental Screening Levels (ESLs) for residential users, dated 2019 (revised).

ND = non-detect above the specified laboratory reporting limits.

Red font = the maximum Site concentration for a particular OCP exceeds the waste-based screening criteria or health risk-based screening criteria.

Comparison of OCP Concentrations Collected by Hand Auger to Health Risk-Based Remediation Criteria (i.e., for Soil That Remains on-Site)

Although detectable concentrations of OCPs collected by hand auger were reported to be present in 47 of the 81 samples analyzed, 28 samples were reported to exceed the Health Risk-Based Remediation Criteria (i.e., SFBRWQCB ESLs) for chlordane of 480 µg/kg for residential land use.

The estimated extent of chlordane-bearing soil that exceeds the ESLs is depicted on Figure 15B. The lateral and vertical extent of this soil has been defined by samples to the north (from borings HA-24-016, HA-24-017, and HA-24-031), west (from borings HA-24-12, HA-24-32, and HA-24-33), east (HA-24-008, HA-24-011, and HA-24-017), and to the south by the Site property line. The vertical extent of this soil is estimated to be present from the ground surface down to depths ranging from approximately 1.5 feet deep to 6 feet deep plus (note that vertical delineation was not achieved in boring HA-24-015A to the maximum depth sampled of 5 feet bgs). It is recommended that soil represented by samples that exceed the Health Risk-Based Remediation Criteria be properly managed during construction and grading activities (i.e., either exported from the Site to a properly licensed facility, or reused on Site within a soil management zone upon approval from the overseeing regulatory agency).

The remainder of soil samples analyzed for OCPs were reported to be below the Health Risk-Based Remediation Criteria. Therefore, based on the remainder of soil samples collected and analyzed for OCPs, this soil is not considered to represent a human health risk to future residential users of the Site in comparison to the ESLs, and can be freely graded on-Site during grading activities.

Comparison of OCP Concentrations to Waste-Based Remediation Criteria (i.e., for Soil Export)

Regarding waste-based screening criteria, detectable concentrations of chemical constituents such as OCPs would be considered a regulated waste if exported from the Site per the RWQCB Tier 1 SSLs. A total of 41 of the 81 soil samples analyzed for OCPs were reported with detectable concentrations of OCPs; soil represented by these samples would be considered a regulated waste if exported from the Site.

Additionally, a total of 15 of the 81 soil samples analyzed for OCPs were reported to exceed the Hazardous Waste-Based Remediation Criteria (i.e., Total Threshold Limit Concentrations [TTLCs] as defined by CA Title 22) for chlordane of 2,500 μ g/kg. These 15 soil samples were collected from depths ranging from approximately 0.5 to 4 feet bgs at the Site and reported with chlordane concentrations ranging from 2,600 μ g/kg to 19,000 μ g/kg.

Chlordane leachability tests were completed on 14 soil samples, which were collected from depths ranging from approximately 0.5 to 4.0 feet below grade and reported with total chlordane concentrations ranging from 650 to 9,500 µg/kg. Samples HA-24-001-1.5, HA-24-001-3, HA-24-001-4, HA-24-004-0.5, and HA-24-005-0.5 were analyzed using the WET for chlordane and all indicated results below the laboratory reporting limit for WET chlordane, which is below the Hazardous Waste-Based Remediation Criteria (i.e., Soluble Threshold Limit Concentration [STLC] for chlordane of 250 micrograms per liter (µg/L). The toxicity characteristic leaching procedure (TCLP) analysis was completed for soil samples HA-24-002-0.5, HA-24-003-0.5, HA-24-006-0.5, HA-24-007-0.5, HA-24-009-0.5, HA-24-015A-0.5, HA-24-015A-2.5, HA-24-034-0.5, and HA-24-034-2.5. Note that due to insufficient sample volume, a TCLP test could not be completed for HA-24-015-0.5 and HA-24-015-1.5, although this area was resampled as indicated by boring HA-24-015A, and samples HA-24-015A-0.5 and HA-24-015A-2.5 were analyzed for TCLP for this area. The TCLP results for these samples were all below the laboratory reporting limit for TCLP chlordane except sample HA-24-007-0.5 is 3.9 µg/L, which was reported to be below the Hazardous Waste-Based Remediation Criteria (i.e., Maximum Concentration of Contaminants for the Toxicity Characteristic [MCCTC] for of 30 µg/L); therefore, soil represented by sample these samples would not be considered a California hazardous waste if excavated and exported from the Site. However, the TTLC exceedances for chlordane from these samples do indicate that soil represented by these samples would be considered a California hazardous waste if exported from the Site. A summary table including select samples that exceed the Waste-Based Remediation Criteria and all samples that exceed the Hazardous Waste-Based Criteria and leachability tests is presented below:

Sample	Depth (feet)	Total Chlordane Concentration (µg/kg)	Leaching Potential Testing Performed?	STLC WET (µg/l)	TCLP (µg/l)
HA-24-001-1.5	1.5	1,200	Yes	< 2.0	
HA-24-001-3	3	650	Yes	< 2.0	
HA-24-001-4	4	1,500	Yes	< 2.0	-
HA-24-002-0.5	0.5	3,800	Yes		< 2.0
HA-24-003-0.5	0.5	2,800	Yes		< 2.0

HA-24-004-0.5	0.5	2,400	Yes	< 2.0	
HA-24-005-0.5	0.5	1,700	Yes	< 2.0	
HA-24-006-0.5	0.5	5,400	Yes		< 2.0
HA-24-007-0.5	0.5	9,500	Yes		3.9
HA-24-009-0.5	0.5	3,400	Yes		< 2.0
HA-24-009-2.5	2.5	3,300	No		
HA-24-010-0.5	0.5	3,400	No		
HA-24-014-0.5	0.5	2,600	No		
HA-24-015-0.5	0.5	19,000	No		
HA-24-015-1.5	1.2	17,000	No		-
HA-24-015A-0.5	0.5	5,400	Yes		< 2.9
HA-24-015A-2.5	2.5	2,900	Yes		< 2.2
HA-24-015A-4	4	4,400	No		
HA-24-034-0.5	0.5	7,200	Yes		< 2.8
HA-24-034-2.5	2.5	5,800	Yes		< 2.6
Hazardous Waste Cri	teria	2,500		250	30

Notes:

Red font indicates results above Hazardous Waste-Based regulatory screening criteria.

Blue font indicates results above Health Risk-Based regulatory screening criteria.

μg/kg = micrograms per kilogram.

 μ g/L = micrograms per liter.

It is recommended that the soil represented by samples that exceed the Hazardous Waste-Based Criteria be properly managed during construction and grading activities (i.e., either exported from the Site to a properly licensed facility, or reused on Site within a soil management zone upon approval from the overseeing regulatory agency).

Comparison of Metals Concentrations to Waste-Based Remediation Criteria (i.e., for Soil Export) for the Former Burn Dump Area

The analytical results of the Title 22 metal analyses were compared to the respective Tier 1 SSL for each metal for the samples collected near the former burn dump located in the southwest portion of the Site, which are established in the San Diego RWQCB Waiver² and apply to waste export (i.e., for soil that is exported from the Site only). Tier 1 SSLs were exceeded in select sample results for antimony, arsenic, barium, copper, lead, mercury, silver, and zinc.

	Number of	Maximum Site	Waste-Base	Waste-Based Screening		Health Risk-Based Screening	
Title 22 Metal	Samples Analyzed	Concentration (mg/kg)	Tier 1 SSL (mg/kg)	Tier 1 SSL (mg/kg)	DTSC RSL/ EPA RSL (mg/kg)	Above DTSC RSL/ EPA RSL?	
Antimony	5	5.1	5	Yes	31	No	
Arsenic	5	9.7	3.5	Yes	12*	No	
Barium	5	1,300	509	Yes	15,000	No	
Beryllium	5	0.90	4.0	No	1,600	No	
Cadmium	5	0.93	4.0	No	910	No	
Chromium	5	35	122	No	NE	No	
Cobalt	5	10	20	No	23	No	
Copper	5	160	60	Yes	3,200	No	
Lead	38	1,600	23.9	Yes	80	Yes	
Mercury	5	3.0	0.26	Yes	1.0	Yes	
Molybdenum	5	ND	2.0	No	390	No	
Nickel	5	18	57	No	1 <i>5</i> ,000	No	

	Number of	Maximum Site	Waste-Based Screening		Health Risk-Based Screening	
Title 22 Metal	Samples Analyzed	Concentration (mg/kg)	Tier 1 SSL (mg/kg)	Tier 1 SSL (mg/kg)	DTSC RSL/ EPA RSL (mg/kg)	Above DTSC RSL/ EPA RSL?
Selenium	5	ND	0.21	No	390	No
Silver	5	2.2	2.0	Yes	390	No
Thallium	5	ND	0.78	No	12	No
Vanadium	5	68	112	No	1,200	No
Zinc	5	650	149	Yes	350,000	No

Notes:

mg/kg = milligrams per kilogram.

Waste-Based Screening - Tier 1 SSLs = Tier 1 Soil Screening Level for inert waste soils that can be reused without restriction. For exceedances, the 90 percent upper confidence limit was used to derive a Site-specific value, as discussed in the Report below.

Risk-Based Screening – DTSC RSL/ EPA RSL = Risk-Based Remediation Criteria - For metals, the DTSC HERO HHRA Note Number: 3, June 2020, revised May 2022, using the RSLs for residential soil and cancer endpoint, or, for other metals not listed in HHRA Note 3, the Regional Screening levels for residential soil, provided by the EPA and updated as of May 2023 were used.

- < Concentration reported below the listed laboratory reporting limit.
- * For arsenic, although the DTSC RSL is 0.11 mg/kg, concentrations of naturally occurring arsenic typically exceed human health risk screening criteria. Therefore, the DTSC upper-bound background concentration for arsenic of 12 mg/kg was used.

ND = Not detected above the respective laboratory reporting limits.

NE = Not established.

Red font - the maximum Site concentration for a particular metal exceeds the Tier 1 SSL.

Arsenic – For the trench samples and SG-SB-24-1, -2, and -3 samples collected during this sampling event, 4 of the 5 soil samples analyzed for metals were reported to exceed the Tier 1 SSL for arsenic (see Table 2); they were collected from depths of approximately 4.0 to 5.0 feet on Site and reported with arsenic concentrations ranging from 4.2 mg/kg to 9.7 mg/kg.

Although arsenic was reported to exceed the Tier 1 SSL for soil that is exported, the concentrations for the levels reported are within typical background concentration ranges. DTSC Human Health Risk Assessment (HHRA) Note Number 11, Southern California Ambient Arsenic Screening Level released December 28, 2020⁴ reports that the upper-bound background concentration for arsenic in southern California soil is 12 mg/kg. Therefore, the highest concentration of 9.7 mg/kg is below the upper-bound background concentration of 12 mg/kg established by the DTSC. Therefore, the reported arsenic concentrations in shallow soil at the Site during this sampling event are within the range of typical background concentrations and may not be indicative of a release of arsenic.

Note, however, from previous sampling events, 7 of the previous samples analyzed, reported concentrations of arsenic that exceeds the DTSC upper-bound background where these samples will likely require proper management during grading based on their concentrations. All of these samples, except sample DPV-23-051-0.5, also have high concentrations of lead, which is further discussed below.

In addition, one trench sample (T37-4) collected during this sampling event exceeds Waste-Based Remediation Criteria for antimony, arsenic, barium, copper, lead, mercury, silver, and zinc. This

Human Health Risk Assessment (HHRA) Note Number 11 Southern California Ambient Arsenic Screening Level California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO), Release date: December 28, 2020.

sample is located within the previously identified burned waste/burn ash deposit at the southwest corner of the Site and will likely require proper management during grading based on the concentrations (i.e., either exported from the Site to a properly licensed facility, or reused on Site within a soil management zone upon approval from the overseeing regulatory agency).

Comparison of Metals Concentrations to Health Risk-Based Remediation Criteria (i.e., for Soil that Remains on-Site) for the Former Burn Dump Area

Regarding the comparison of metals concentration from the former burn dump area to Health Risk-Based Remediation Criteria, with the exception of lead and mercury concentrations report during this sampling event of the burn dump area, the reported metals concentrations are below applicable residential Health Risk-Based Remediation Criteria (i.e., DTSC HERO HHRA Note Number 3 SLs, June 2020, revised May 2022, and EPA RSLs, May 2024).

For the metals lead and mercury, concentrations were reported above the DTSC RSL for lead of 80 mg/kg and for mercury of 1.0 mg/kg in 1 of the 38 soil samples analyzed for metals in this area. The one soil sample reported to exceed the DTSC RSL for lead of 80 mg/kg and for mercury of 1.0 mg/kg (sample T37-4) was collected from a depth of approximately 4.0 feet at the Site and reported with lead concentrations of 1,600 mg/kg and mercury concentrations of 3.0 mg/kg. This sample will require proper management during grading based on these concentrations.

In addition, from previous sampling of the burn dump area of the Site, samples A-23-012-2.5 and A-23-012-5.0 and 12 of the previous trench soil samples indicated concentrations of lead, and for some of these samples additional metals as well, in the same sample that exceed health risk criteria. Summary of the vertical extent of the burn ash soil in the southwest portion of the Site is as follows:

Boring ID	Concentration of Lead in mg/kg	Vertical delineation depth in feet below ground surface
A-23-012-2.5	3,500	7.5
A-23-012-5.0	1,400	7.5
T-3 3'	4,200	6
T-4 4'	630	6.5
T-6 4'	3,300	5.5
T-8 4'	2,600	5.5
T-9 4'	6,300	6
T-9 5'	5,000	6
T-11-4'	5,000	5.5
T-23-4	620	8.5
T-23 5'	2,800	8.5
T-23 6.5'	190	8.5
T-24-3.5	4,500	6
T-24-4.5	270	6
T37-4	1,600	5

Lateral delineation is provided by trenches T5, T7, T34, and T38-T42 to the north, and by soil borings SG-SB-24-1, -2, and -3 to the east. The burn dump waste was encountered essentially to the property boundaries to the west and south. SCS recommends this soil be excavated, segregated,

and properly managed during grading and excavation activities (i.e., either managed on-Site under a clean soil cap under oversight and approval from the overseeing regulatory agency, or exported to a properly licensed facility (e.g., landfill) as a regulated waste.

The remainder of soil samples analyzed for metals were reported to be below the Health Risk-Based Remediation Criteria. Therefore, based on the remainder of soil samples collected and analyzed for metals, this soil is not considered to represent a human health risk to future residential users of the Site in comparison to the ESLs, and can be freely graded on-Site during grading activities.

Comparison of Metals Concentrations to Health Risk-Based Remediation Criteria and Waste-Based Remediation Criteria for the Hand Auger Samples

The analytical results of the Title 22 metal analyses from the hand auger soil sampling from the 2024 sampling efforts were compared to the respective Waste-Based Remediation Criteria (i.e., Tier 1 SSL) for each metal, which are established in the San Diego RWQCB Waiver² and apply to waste export (i.e., for soil that is exported from the Site only). Tier 1 SSLs were exceeded in select sample results for arsenic, cobalt, lead, and molybdenum. In addition, SCS compared the concentrations of metals detected in the hand auger samples to the Health Risk-Based Remediation Criteria- with the exception of arsenic and cobalt, the reported metals concentrations are below applicable residential Health Risk-Based Remediation Criteria (i.e., DTSC HERO HHRA Note Number 3 SLs, June 2020, revised May 2022, and EPA RSLs, May 2024).

	Number of	Maximum Site	Waste-Base	d Screening	Health Ris Scree	
Title 22 Metal	Samples Analyzed	Concentration (mg/kg)	Tier 1 SSL (mg/kg)	Tier 1 SSL (mg/kg)	DTSC RSL/ EPA RSL (mg/kg)	Above DTSC RSL/ EPA RSL?
Antimony	28	ND	5	No	31	No
Arsenic	48	23	3.5	Yes	12*	Yes
Barium	28	500	509	No	15,000	No
Beryllium	28	0.80	4.0	No	1,600	No
Cadmium	28	ND	4.0	No	910	No
Chromium	28	25	122	No	NE	No
Cobalt	28	81	20	Yes	23	Yes
Copper	28	49	60	No	3,200	No
Lead	48	63	23.9	Yes	80	No
Mercury	28	ND	0.26	No	1.0	No
Molybdenum	28	2.9	2.0	Yes	390	No
Nickel	28	9.6	57	No	15,000	No
Selenium	28	ND	0.21	No	390	No
Silver	28	0.71	2.0	No	390	No
Thallium	28	ND	0.78	No	12	No
Vanadium	28	83	112	No	1,200	No
Zinc	28	68	149	No	350,000	No

Notes:

mg/kg = milligrams per kilogram.

Waste-Based Screening - Tier 1 SSLs = Tier 1 Soil Screening Level for inert waste soils that can be reused without restriction. For exceedances, the 90 percent upper confidence limit was used to derive a Site-specific value, as discussed in the Report below.

Risk-Based Screening – DTSC RSL/ EPA RSL = Risk-Based Remediation Criteria - For metals, the DTSC HERO HHRA Note Number: 3, June 2020, revised May 2022, using the RSLs for residential soil and cancer endpoint, or, for other metals not listed in HHRA Note 3, the Regional Screening levels for residential soil, provided by the EPA and updated as of May 2023 were used.

- < Concentration reported below the listed laboratory reporting limit.
- * For arsenic, although the DTSC RSL is 0.11 mg/kg, concentrations of naturally occurring arsenic typically exceed human health risk screening criteria. Therefore, the DTSC upper-bound background concentration for arsenic of 12 mg/kg was used.

ND = Not detected above the respective laboratory reporting limits.

NE = Not established.

Red font - the maximum Site concentration for a particular metal exceeds the Tier 1 SSL.

Statistics can be used in evaluating a data set when there are at least 8 to 10 observations, and the 90 percent upper confidence limit (90UCL) can be used per the Waiver to evaluate metals concentrations. Further, 95 UCL statistics, which are considered more conservative than the 90 UCL, can also be used for evaluating potential health risks, as further discussed below.

Arsenic Evaluation Using the 95 UCL – 3 of the 48 hand auger soil samples collected from the 2024 sampling events exceed the DTSC Southern California Ambient Arsenic Screening Level⁵ of 12 mg/kg, with concentrations ranging from 20 mg/kg in sample HA-24-023-0.5 to 23 mg/kg in sample HA-24-027-0.5. UCL statistics were used to further evaluate metals concentrations per the RWQCB Waiver regarding waste pre-characterization in the event this soil is exported off-site. Additionally, in following DTSC Risk Guidance,⁶ potential health risks related to arsenic can also be evaluated by comparing the Site-wide 95 UCL to the DTSC Southern California Ambient Arsenic Screening Level of 12 mg/kg.

95 UCL statistics were used to demonstrate that the dataset of arsenic concentrations representing soil intended for free reuse on-Site without restriction can have exceedances to the DTSC Southern California Ambient Arsenic Screening Level of 12 mg/kg. The 48 soil samples analyzed for arsenic, which represent soil that would potentially be freely reused on-Site during grading activities, were used to calculate the 95UCL concentration for arsenic in the hand auger samples of 6.989 mg/kg arsenic using the USEPA statistical software *ProUCL* version 5.2 (Appendix D), which is well below the DTSC Southern California Ambient Arsenic Screening Level of 12 mg/kg.

Therefore, the 95UCL arsenic concentration of 6.989 mg/kg is below the DTSC Southern California Ambient Arsenic Screening Level of 12 mg/kg, and the reported arsenic concentrations in shallow soil at the Site are considered to be acceptable for free reuse on-Site. Further, the Midway Rising project will require significant quantities of soil import for soil balance purposes, indicating that a soil buffer will be added to the existing grades at the Site.

Cobalt, Lead, and Molybdenum Evaluations Using the 95 UCL – As mentioned in the "Arsenic Evaluation Using the 95 UCL" section above, UCL statistics were used to further evaluate metals concentrations per the RWQCB Waiver regarding waste pre-characterization in the event this soil is exported off-site, as well as per DTSC Risk Guidance to evaluate potential health risks related to cobalt, lead, and molybdenum by comparing the Site-wide 95 UCL to Waste-Based Remediation Criteria and Health Risk-Based Remediation Criteria, respectively.

Human Health Risk Assessment (HHRA) Note Number 11 Southern California Ambient Arsenic Screening Level California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO), Release date: December 28, 2020.

⁶ DTSC Risk Guidance: DTSC. 2019. Human Health Risk Assessment Note Number 4. Issue Date: May 14, 2019. Issue: Guidance for Screening Level Human Health Risk Assessment. Sacramento.

Cobalt - the soil sample with 81 mg/kg cobalt represented by sample HA-24-034-0.5 is situated in the area of the reported chlordane-bearing soil that is recommended to be excavated and properly managed during construction. The remainder of reported cobalt exceedances to the Health Risk-Based Remediation Criteria (i.e., the residential EPA RSL) (i.e., samples HA-24-025-0.5, HA-24-028-0.5, HA-24-033-0.5) were reported to range in concentration from 24 to 62 mg/kg cobalt. The 95UCL concentration for cobalt in the hand auger samples for the 27 hand auger soil samples not including sample HA-24-034-0.5 is 16.04 mg/kg (Appendix D), which is below the Waste-Based Remediation Criteria (i.e., Tier 1 SSL) of 20 mg/kg for cobalt as well as the Health Risk-Based Remediation Criteria (i.e., EPA RSL) for cobalt of 23 mg/kg. Therefore, the 95UCL cobalt concentration of 16.04 mg/kg in shallow soil at the Site is considered to be acceptable for free reuse on- and off-Site. Further, the Midway Rising project will require significant quantities of soil import for soil balance purposes, which will ultimately add a soil buffer to the existing grades at the Site.

<u>Lead</u> - The 95UCL concentration for lead in the hand auger samples is 12.95 mg/kg (Appendix D), which is below the Waste-Based Remediation Criteria (i.e., Tier 1 SSL) of 23.9 mg/kg for lead, as well as the Health Risk-Based Remediation Criteria (i.e., residential DTSC SL) of 80 mg/kg lead. Therefore, the 95UCL lead concentration of 16.04 mg/kg in shallow soil at the Site is considered to be acceptable for free reuse on- and off-Site.

Molybdenum - The 95UCL concentration for lead in the hand auger samples is 1.256 mg/kg (Appendix D), which is below the Waste-Based Remediation Criteria (i.e., Tier 1 SSL) of 2.0 mg/kg for molybdenum, as well as the Health Risk-Based Remediation Criteria (i.e., residential EPA RSL) of 390 mg/kg molybdenum. Therefore, the 95UCL molybdenum concentration of 1.256 mg/kg in shallow soil at the Site is considered to be acceptable for free reuse on- and off-Site.

COMPARISON OF TPH, VOC, AND OCP CONCENTRATIONS IN GROUNDWATER TO REMEDIATION CRITERIA

TPH Groundwater

Groundwater analytical results for TPH were compared to Risk-Based Remediation Criteria (i.e., SFBRWQCB ESLs) as summarized in the table below.

Maximum Site		Health Risk-Based Screening ¹			
Analyte	Concentration (mg/L)	Remediation Criteria (mg/L)	Above Remediation Criteria?		
TPHg	0.84	100	No		
TPHd	3.4	100	No		
TPHo	ND	NE	No		

Notes:

mg/L: milligrams per liter.

1: Risk-Based Remediation Criteria - San Francisco Bay Regional Water Quality Control Board (SFBRWQCB), Environmental Screening Levels for residential users (ESLs) (2019, Rev. 2). Risk value was not established; the non-cancer hazard value was used.

TPHg: TPH as gasoline. TPHd: TPH as diesel. TPHo: TPH as oil.

ND: Not detected above the laboratory reporting limit.

NE: Not established.

Red font = the maximum Site concentration for a particular exceeds the Waste-Based Remediation Criteria or Health Risk-Based Remediation Criteria.

Comparison of Reported TPH Concentrations to Health Risk-Based Screening Values

Although detectable concentrations of TPH were reported to be present in the 2 samples analyzed during this sampling event, all of the groundwater samples analyzed for TPH were reported to be below the Health Risk-Based Remediation Criteria, which is also what was found from the groundwater samples analyzed for TPH during previous sampling events.

VOCs Groundwater

Groundwater analytical results for VOCs were compared to Risk-Based Remediation Criteria (i.e., DTSC-SLs) as summarized in the table below.

	Maximum Site	Health Risk-Bas	ed Screening ¹
VOCs	Concentration	Residential SFBRWQCB ESL/	Above SFBRWQCB ESL
	()	ug/L)	
m,p-Xylenes	1.6	20	No
o-Xylene	0.6	20	No
1,2,4-Trimethyl- benzene	0.9	NE	No
Naphthalene	5.4	0.17	Yes

Notes:

μg/L: micrograms per liter. NE: Not established

1) Health Risk-Based Criteria - For VOCs the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB),

Environmental Screening Levels for residential users (ESLs) (2019, Rev. 2).

Red font = the maximum Site concentration for a particular metal exceeds the waste-based screening criteria or health risk-based screening criteria.

Comparison of VOC Concentrations to Health Risk-Based Remediation Criteria

Detectable concentrations of VOCs were reported to be present in the 2 samples analyzed during this event. Except for the reported concentration of 5.4 μ g/L of naphthalene in sample SB-UST-24-2-W during this sampling event, all VOC analytes were reported either below the laboratory reporting limits or at concentrations below the reported Risk-Based Screening Criteria (i.e., SFRWQCB ESLs) for VOCs for all groundwater samples collected at the Site.

Groundwater sample SB-UST-24-2-W was reported with a concentration of naphthalene at 5.4 μ g/L, which is above the Health Risk-Based Screening Criteria (i.e., SFRWQCB ESLs) of 0.17 μ g/L. The location of this sample was collected approximately 16 feet to the north of the UST that was discovered in trench T13 near the UST in the western portion of the Site. Soil samples from previous sampling events also indicated elevated naphthalene in sample T-13-7 that was collected from trench T13, and is the likely source of naphthalene in this area that is impacting the groundwater. With the removal of the TPH and VOC impacted soil in this area, as described above, VOC impacts to the groundwater are expected to be mitigated. Confirmation groundwater sampling after the UST and impacted soil has been removed in this area can be collected to verify if naphthalene groundwater impacts remain a Health-Risk.

VAPOR INTRUSION RISK SCREENING (VIRS)

Since VOCs (including F12, chloromethane, carbon disulfide, MEK, chloroform, benzene, MIBK, toluene, MBK, chlorobenzene, ethylbenzene, m,p-xylene, styrene, o-xylene, PCE, 4-ethyltoluene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene) were reported to be present in soil vapor above

the laboratory reporting limits during the February and March 2023 and May 2024 sampling events, a VIRS was conducted for the Site (Table 4) to assess the potential for Significant human health risk posed to occupants of the existing and proposed commercial buildings and the proposed future residential buildings due to the upward migration of VOCs in soil vapor.

The LCC is a known leak check compound used during soil vapor sampling and was therefore not included in the screening.

Approach

VOC-bearing soil vapor may originate from impacted soil or groundwater. In this case, VOCs in soil vapor are interpreted to be from possible subsurface impacts in connection with the on-Site gasoline service station, the former Dixieline UST, and the discovered UST within the western parking lot at the Site for samples collected in these areas, and for samples in the other areas of the Site it is not clear whether these VOCs in soil vapor resulted from an on- or off-Site source. The VIRS was conducted using analytical soil vapor data collected during all sampling events (including February and March 2023 and May 2024) and the DTSC default Attenuation Factors (AF) for an existing commercial building and future residential building of 0.001, as well as 0.0005 for a possible future commercial building in the event that the Site is redeveloped, as recommended in DTSC's Final Guidance for the Evaluation and Remediation of Subsurface Vapor Intrusion to Indoor Air (DTSC 2011 Vapor Intrusion Guidance)7. In addition, a conservative AF of 0.03 is also considered based on the recommendation presented in the California Environmental Protection Agency's (Cal EPA) Final Draft Supplemental Guidance: Screening and Evaluating Vapor Intrusion (Supplemental Draft Guidance)8. To be conservative, the AFs were then applied to the highest reported concentration of each constituent reported in soil vapor. The resulting values were compared against the DTSC-Modified Screening Levels (DTSC-SLs) provided in DTSC Human Health Risk Assessment (HHRA) Note 39 in conjunction with DTSC HHRA Note 410. For chemicals not listed in HHRA Note 3, the USEPA Regional Screening Levels (RSLs)¹¹ were used.

DTSC/CalEPA VIRS Results

In the table below, the highest reported concentration of each constituent reported in soil vapor was multiplied by the default attenuation factors for an existing commercial use/future residential use and a proposed commercial use as recommended in the DTSC 2011 Vapor Intrusion Guidance, as well as the CalEPA recommended attenuation factor of 0.03 from the Supplemental Draft Guidance, to obtain a predicted indoor air concentration. To evaluate for a potential vapor intrusion risk, the resulting values were compared against the DTSC-Modified Screening Levels (DTSC-SLs) provided in DTSC Human Health Risk Assessment (HHRA) Note 3, or, if a DTSC-SL has not been established for a constituent (e.g., chloroform), the Environmental Protection Agency (EPA) Regional Screening Level (RSL) dated May 2024, was used.

Department of Toxic Substances Control (DTSC), State of California Vapor Intrusion Guidance Document - Final, dated October 2011. Table 2 - Attenuation Factors for Preliminary Screening Evaluations of the Vapor Intrusion Guidance.

Supplemental Guidance: Screening and Evaluating Vapor Intrusion, Final Draft, (Supplemental Draft Guidance) February 2023, prepared by California Environmental Protection Agency (Cal EPA).

⁹ Human Health Risk Assessment Note 3 - DTSC-Modified Screening Levels (DTSC-SLs), Table 3 - Screening Levels for Ambient Air, June 2020 Update Revised May 2022.

Human Health Risk Assessment Note 4 – Guidance for Screening Level Human Health Risk Assessments, March 29,

Regional Screening Levels (RSLs) for commercial/industrial soil, provided by the EPA and updated as of May 2022.

		DTSC 201	1 Guidance	Supplemental CalEPA 2023 Draft Guidance	- DTSC/EPA	Action
voc	Maximum Concentration Detected at the Site	Predicted Indoor Air Concentration for Existing Commercial and Future Residential Use ¹	Predicted Indoor Air Concentration for Future Commercial Use ²	Predicted Indoor Air Concentration using 0.03 Attenuation Factor ³	Screening Levels ⁴ Commercial/ Residential	Recommended (based on attenuation factors described herein)
			(µg/m3)			
F12	5.5	0.087	0.00275	0.165	440/100	No
Chloromethane	2.1	0.0021	0.00105	0.063	390/94	No
Carbon disulfide	24	0.024	0.012	0.72	3,100/730	No
MEK	84	0.084	0.042	2.52	22,000/5,200	No
Chloroform	8.4	0.0084	0.0042	0.252	0.53/0.12	Yes
Benzene	38,000	38	19	1,140	0.42/0.097	Yes
MIBK	61	0.061	0.0305	1.83	13,000/3,100	No
Toluene	130	0.13	0.065	3.9	1,300/310	No
MBK	13	0.013	0.0065	0.39	130/31	No
Chlorobenzene	8.2	0.0082	0.0041	0.246	220/52	No
Ethylbenzene	870	0.870	0.435	26.1	4.9/1.1	Yes
m,p-Xylene	9,100	9.1	4.6	273	440/110	Yes
Styrene	17	0.017	0.009	0.51	3,900/940	No
o-Xylene	990	0.990	0.495	29.7	440/100	No
PCE	79	0.079	0.040	2.4	2/0.46	Yes
4-Ethyltoluene	26	0.026	0.013	0.78	NE	No
1,3,5- Trimethyl- benzene	31	0.031	0.0155	0.93	260/63	No
1,2,4- Trimethyl- benzene	82	0.082	0.041	2.46	260/63	No

Notes:

µg/m³ - micrograms per cubic meter.

Red font indicates an exceedance of a commercial and residential screening levels for the constituent. Blue font indicates an exceedance of the residential screening level only for the constituent.

- 1 Maximum soil vapor concentration multiplied by the default Department of Substances Control (DTSC) attenuation factor of 0.001 for an existing commercial building and future residential building, per Table 2 Attenuation Factors for Preliminary Screening Evaluations of the *Final Guidance for the Evaluation and Remediation of Subsurface Intrusion to Indoor Air* (Vapor Intrusion Guidance), prepared by the DTSC and dated October 2011.
- 2 Maximum soil vapor concentration multiplied by the default DTSC attenuation factor of 0.0005 for a future commercial building, per Table 2 Attenuation Factors for Preliminary Screening Evaluations of the Vapor Intrusion Guidance.
- 3 As recommended in the Supplemental Guidance: Screening and Evaluating Vapor Intrusion, Final Draft, February 2023, (Supplemental Draft Guidance) prepared by California Environmental Protection Agency (Cal EPA).
- 4 Human Health Risk Assessment Note 3 DTSC-Modified Screening Levels (DTSC-SLs), Table 3 Screening Levels for Ambient Air. Commercial/Industrial June 2020 Update, Revised May 2022. For constituents for which a DTSC-SL is not available (F12, chloromethane, carbon disulfide, MEK, MIBK, MBK, chlorobenzene, ethylbenzene, xylenes, 1,3,5- and

1,2,4-trimethylbenzene, and chloroform), the Regional Screening Level (RSL) provided by the U.S. Environmental Protection Agency (EPA) and updated May 2024 was used.

DTSC 2011 Attenuation Factor Results

After applying the applicable DTSC attenuation factors of 0.001 for the existing commercial and future residential land use and 0.0005 for the future commercial land use to the maximum reported concentrations of VOCs in soil vapor beneath the Site (F12, chloromethane, carbon disulfide, MEK, chloroform, benzene, MIBK, toluene, MBK, chlorobenzene, ethylbenzene, m,p-xylene, styrene, o-xylene, PCE, 4-ethyltoluene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene), the maximum theoretical concentrations of benzene in indoor air at the Site exceed the commercial screening level of 0.42 μ g/m³ and the residential screening level of 0.097 μ g/m³, indicating a potential Significant human health risk for both the current commercial and possible future commercial and residential buildings at the Site as a result of vapor intrusion of benzene.

Supplemental Draft Guidance 2023 Attenuation Factor Results

After applying the applicable CalEPA-recommended attenuation factor of 0.03 to the maximum reported concentrations of VOCs in soil vapor beneath the Site (F12, chloromethane, carbon disulfide, MEK, chloroform, benzene, MIBK, toluene, MBK, chlorobenzene, ethylbenzene, m,p-xylene, styrene, o-xylene, PCE, 4-ethyltoluene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene), the maximum theoretical concentrations of benzene, ethylbenzene, and PCE in indoor air at the Site exceed the commercial and residential screening levels (DTSC-SLs and RSLs) and chloroform, m,p-xylene and PCE in indoor air at the Site exceed the residential screening levels (DTSC-SLs and RSLs).

VIRS Recommendations – Existing Buildings

Provided the soil vapor sampling is representative of soil vapor conditions beneath the Site (an additional round of soil vapor sampling can be completed to confirm this) and based on current regulatory standards and guidance, several soil vapor samples that are located near existing commercial buildings at the Site exceeded commercial screening levels for benzene, including SV-24-001-5, SV-24-006-5, SV-24-011-5, SV-24-018-5 SV-24-021-5, SV-24-022-5, and SV-24-023-5 (Figure 14C), indicating a potential human health risk due to vapor intrusion at these buildings.

In our experience, the possible human health risk as a result of vapor intrusion for the existing commercial buildings at the Site can be mitigated through the use of engineering controls, such as:

- Increasing building pressurization and/or ventilation
- Sealing potential conduits where vapors may be entering the building
- Treating indoor air (carbon filtration, air purifiers)
- Installing and operating engineered exposure controls (sub-slab depressurization systems)
- Temporarily relocating building occupants

Alternatively, to further assess the findings above, since several USTs are known to have currently or formerly been located at the Site, additional lines of evidence can be obtained such as completing an additional round of soil vapor sampling that would include analysis for fixed gases to assess for compliance with the State Water Resources Control Board Low-Threat Underground Storage Tank Case Closure Policy (LTCP). If soil vapor concentrations comply with the LTCP as well as the applicable vapor intrusion guidance cited above, the

additional round of soil vapor sampling can be considered an additional line of evidence and may obviate the need for vapor intrusion remediation.

VIRS Recommendations – Future Buildings

Provided the soil vapor sampling is representative of soil vapor conditions beneath the Site (an additional round of soil vapor sampling can be completed to confirm this) and based on current regulatory standards and guidance; vapor intrusion remediation will likely be recommended for certain future buildings being considered for the Site due to the reported exceedances of PCE, benzene, chloroform, ethylbenzene, and m,p-xylenes in soil vapor.

Future commercial and residential buildings constructed above areas of exceedances of commercial and residential screening levels at the Site should include vapor intrusion remediation system (VIMS) for all enclosed occupied ground floor spaces. The VIMS should be designed by a licensed Professional Engineer (PE) and consist of a passive-vented system with the option to convert to an active system should the future need arise, with a gas-tight horizontal membrane barrier above.

Based on SCS's understanding of the proposed development plans for the Site (Figure 14C), VIMS may be recommended for all enclosed occupied ground floor spaces of the residential buildings proposed for the western portion of the Site, particularly the southeastern-most proposed residential buildings due to the high concentrations of benzene in soil vapor in that area. In addition, VIMS may be recommended for ground-floor enclosed occupied commercial spaces of two of the proposed mixed-use buildings at the Site (in locations of soil vapor samples SV-24-006-5 and SV-24-011-5), as well as the proposed San Diego Entertainment Center at the eastern portion of the Site. VIMS may also be recommended for any enclosed occupied ground-floor residential spaces for all proposed mixed-use buildings except the one in the location of soil vapor sample SV-024-015-5.

Alternatively, to further assess the findings above, since several USTs are known to have currently or formerly been located at the Site, additional lines of evidence can be obtained such as completing an additional round of soil vapor sampling that would include analysis for fixed gases to assess for compliance with the LTCP, within focused areas representative of proposed slab-on-grade occupied commercial or residential units. If soil vapor concentrations for certain proposed buildings comply with the LTCP as well as the applicable vapor intrusion guidance cited above, the additional round of soil vapor sampling can be considered an additional line of evidence and may obviate the need for a VIMS for certain buildings.

7 CONCLUSIONS

Based on the data obtained and reviewed as part of this Report, laboratory results, and current regulatory guidelines, and SCS' experience and professional judgment, SCS concludes the following:

Background

- SCS performed additional Phase II ESA activities consisting of the following:
 - A total of 10 trenches were excavated and advancement of 3 direct push soil borings (SG-SB-24-1, -2, -3) to maximum depths of 7 feet below ground surface (bgs) during this sampling event to assess for constituents of concern (CoCs) including total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), organochlorine pesticides (OCPs), and Title 22 metals to further delineate the former burn dump area identified as the West Point Loma Dump in the southwestern portion of the Site and for general assessment purposes.

- Advancement of 3 direct push soil borings (SB-UST-24-1, -2, and -3) to maximum depths of 13 feet bgs at the Site to assess the soils for CoCs including TPH and VOCs to further delineate CoC impacts found near the underground storage tank (UST) that was previously discovered in the western parking lot area at the Site.
- Soil borings SB-UST-24-2 and -3 also had temporary wells installed with PVC casing so that groundwater could be sampled. Note that groundwater was encountered at depths of approximately 9 to 10 feet bgs.
- Advancement and sampling of 24 soil vapor probes (identified as SV-24-001-5 through SV-24-024-5) within the footprint of the proposed Midway Rising buildings and the collection of 26 soil vapor samples (including 2 replicate samples) from 5 feet below grade for analysis of VOCs.
- Advancement of 34 hand auger soil borings (HA-24-001 through HA-24-034) at depths up to approximately 6 feet bgs to further delineate OCP impacts from chlordane found in previous sampling events located in the southern portion of Parcel C (Soma parcel) and also for general assessment in the eastern portion of the Site.

Geophysical Survey

A geophysical survey was conducted to evaluate the subsurface of portions of the Site for the presence of previously unidentified USTs, piping, UST pits, and undocumented fills including burn pits associated with the Frontier Housing barracks-style temporary housing and was focused on the area immediately south and west of the arena and the accessible portions of the Chic-fil-A and Chilis lots in Parcel B.

Specific features called out in the geophysics report (Appendix A) are depicted on Figure 13 as anomaly A and B. Most of these features are not interpreted to represent subsurface features of concern. However, two EM anomalies were noted as follows:

- A: Near the southern arena entrance.
- B: Southwest of the arena near the entrance driveway along Summit Gas.

Exploratory trenches were excavated in the location of each of these anomalies. At the location of Trench T35 (anomaly A), a vertical metal pipe (interpreted to be a possible water line riser) was encountered. No metallic objects were encountered in Trench T38 (anomaly B). The information collected from the geophysical survey was added to the broader geophysical survey completed to date.

Soil Investigation

Detectable concentrations of TPH, VOCs, and OCPs and somewhat elevated concentrations
of the metals antimony, arsenic, barium, cobalt, copper, lead, mercury, molybdenum, silver,
and zinc were reported to be present in certain samples collected at the Site and exceed
Waste-Based Remediation Criteria (i.e., Regional Water Quality Control Board [RWQCB] Tier 1
Soil Screening Levels [SSLs]). Reported concentrations of TPH include relatively low
concentrations in the gasoline, diesel, and oil carbon chain lengths, except in the area of the
discovered UST as further discussed below. Reported concentrations of VOCs include 1,2,4trimethylbenzene and n-butylbenzene. Reported concentrations of OCPs include

concentrations of 4,4'-dichlorodiphenyldichloroethylene (DDE), heptachlor, heptachlor epoxide, and elevated concentrations of chlordane.

Various soil samples were reported with detectable chemical constituents such as TPH, VOCs, OCPs, and metals in soil exceed applicable Waste-Based Remediation Criteria (i.e., the RWQCB Tier 1 SSLs), which applies to soil that is exported from the Site. In the event that the soil that exceeds the Waste-Based Remediation Criteria is exported from the Site, it should be exported to a properly licensed facility as a regulated waste.

• **Discovered UST**- TPH diesel was detected above the Health Risk-Based Remediation criteria in two samples (SB-UST-24-1-7 and SB-UST-24-1-9) collected at approximately 7 and 9 feet below the ground surface near the discovered UST at concentrations of 1,900 milligrams per kilogram (mg/kg) and 890 mg/kg respectively, which exceeds the SFBRWQCB ESL of 260 mg/kg. This is in addition samples (T-13-3-NE and T-13-7) collected from trench T13 that was excavated in 2023 in the area where the UST was encountered, which indicated concentrations of TPH, along with the VOC naphthalene in sample T13-7 only, that exceed the Health Risk-Based Remediation criteria. SCS recommends this UST be removed under regulatory oversight from the County of San Diego Department of Environmental Health and Quality and the San Diego Fire Department, and the petroleum hydrocarbon-bearing soil that exceeds Remediation Criteria be excavated, segregated, and properly managed during grading and excavation activities and exported to a properly licensed facility (e.g., landfill) as a regulated waste.

The estimated extent of TPH and VOC-bearing soil that exceeds the ESLs near the UST in the western portion of the Site is depicted on Figure 10.

Hand Auger Samples - Pesticide bearing soils at Soma and General Sampling of Dixieline Lumber, Salvation Army, and Sports Arena Contractor Service Yards. Several soil borings were advanced in the southern portion of the Soma parking lot within Parel C to further delineate elevated concentrations of the OCP chlordane found in sample DP-23-038-2.5 from a previous sampling event, and the rest of the soil samples in the Dixieline, Salvation Army, and Sports Arena Contractor Service Yards were collected for general analysis purposes. In the area of the Soma parking lot, the OCP chlordane was detected above the Health Risk-Based Remediation criteria in 28 of the 81 samples analyzed for OCPs for samples collected at approximately 0.5 to 5 feet below the ground surface, with reported chlordane concentrations ranging from 530 micrograms per kilogram (µg/kg) to 19,000 µg/kg, which exceeds the ESL of 480 µg/kg for residential land use. Additionally, a total of 15 of the 81 soil samples analyzed for OCPs were reported to exceed the Hazardous Waste-Based Remediation Criteria (i.e., Total Threshold Limit Concentrations [TTLCs] as defined by CA Title 22) for chlordane of 2,500 µg/kg. SCS recommends this soil be excavated, segregated, and properly managed during grading and excavation activities (i.e., either managed on-Site under a clean soil cap under oversight and approval from the overseeing regulatory agency, or exported to a properly licensed facility (e.g., landfill) as a regulated waste.

The estimated extent of chlordane-bearing soil that exceeds the Health Risk-Based Remediation Criteria (i.e., SFBRWQCB ESLs) as well as the Hazardous Waste Remediation Criteria is depicted on Figure 15B.

In addition, the metals arsenic and cobalt were detected above the Health Risk-Based Remediation criteria in several of the hand auger soil samples. 95 percent upper confidence

limit (95 UCL) statistics were used per the RWQCB Waiver to evaluate metals concentrations for soil export purposes, and were also used for evaluating potential health risks in following DTSC Risk Guidance. The 95UCL concentrations for both arsenic and cobalt (excluding samples collected within the chlordane-bearing soil at the Soma lot that is recommended to be exported from the Site) in shallow soil at the Site are below Health Risk-Based Remediation Criteria as well as the Waste-Based Remediation Criteria, and are considered to be acceptable for free reuse on- and off-Site. Further, the Midway Rising project will require significant quantities of soil import for soil balance purposes, which will ultimately add a soil buffer to the existing grades at the Site.

Burn ash dump in southwest area of Site- additional samples were obtained from the burn ash deposits that were reported with metals concentrations that exceed both the Health Risk-Based Remediation Criteria as well as the Hazardous Waste-Based Remediation Criteria. Additionally, soil samples collected from other trench locations were reported with metals concentrations that are below the Remediation Criteria, facilitating a further delineation of the burn ash deposits. Lead and mercury were detected above the Health Risk-Based Remediation criteria in one sample (T37-4) collected at approximately 4 feet below the ground surface in the burn dump in the southwest portion of the Site at concentrations of 1,600 mg/kg lead and 3.0 mg/kg respectively, which exceeds the Health Risk-Based Remediation Criteria (i.e., the residential DTSC SL) of 80 mg/kg for lead and 1.0 mg/kg mercury, as well as the Hazardous Waste-Based Criteria (i.e., TTLC for lead of 1,000 mg/kg). This is in addition to samples A-23-012-2.5 and A-23-012-5.0 and 12 of the previous trench soil sampling event that indicated concentrations of lead and other metals exceed Health Risk-Based Remediation Criteria as well as the Hazardous Waste-Based Criteria for lead. SCS recommends this soil be excavated, segregated, and properly managed during grading and excavation activities (i.e., either managed on-Site under a clean soil cap under oversight and approval from the overseeing regulatory agency and the Local Enforcement Agency, or exported to a properly licensed facility (e.g., landfill) as a regulated waste.

The remaining samples analyzed for metals in this area during this event were reported with concentrations that are below Health Risk-Based Remediation Criteria and Hazardous Waste-Based Criteria, and therefore further delineated the burn ash area. The estimated extent of metals-bearing soil that exceeds the Remediation Criteria in the burn dump area in the southwest portion of the Site is depicted on Figures 8 and 9. Summary of the vertical extent of the burn ash soil in the southwest portion of the Site is as follows:

Boring ID	Concentration of Lead in mg/kg	Vertical delineation depth in feet below ground surface
A-23-012-2.5	3,500	7.5
A-23-012-5.0	1,400	7.5
T-3 3'	4,200	6
T-4 4'	630	6.5
T-6 4'	3,300	5.5
T-8 4'	2,600	5.5
T-9 4'	6,300	6
T-9 5'	5,000	6
T-11-4'	5,000	5.5
T-23-4	620	8.5
T-23 5'	2,800	8.5
T-23 6.5'	190	8.5

T-24-3.5	4,500	6
T-24-4.5	270	6
T37-4	1,600	5

Lateral delineation is provided by trenches T5, T7, T34, and T38-T42 to the north, and by soil borings SG-SB-24-1, -2, and -3 to the east. The burn dump waste was encountered essentially to the property boundaries to the west and south.

Groundwater Investigation

Although detectable concentrations of TPH and VOCs (i.e., m,p-xylenes, o-xylene, 1,2,4-trimethylbenzene, naphthalene) were reported to be present in both of the 2 groundwater samples that were collected and analyzed, all of the groundwater samples analyzed for TPH and VOCs were reported to be below the Health Risk-Based Remediation Criteria, except for the VOC naphthalene in sample SB-UST-24-2-W.

Groundwater sample SB-UST-24-2-W reported concentrations of naphthalene at $5.4~\mu g/L$, which is above the Health Risk-Based Screening Criteria (i.e., SFRWQCB ESLs) of $0.17~\mu g/L$. The location of this sample was collected approximately 16 feet to the north of the UST that was discovered in trench T13 in the western portion of the Site. Soil samples from previous sampling events also indicated elevated naphthalene in sample T-13-7 that was collected from trench T13 near the UST, and is the likely source of naphthalene in this area that is interpreted to be impacting the groundwater. With the removal of the TPH and VOC impacted soil in this area, as described above, VOC impacts to the groundwater are expected to be mitigated. Confirmation groundwater sampling after the soil and UST has been removed in this area is recommended to determine if naphthalene groundwater impacts remain a Health-Risk.

Soil Vapor Investigation

- Since VOCs (including dichlorodifluoromethane [F12], chloromethane, carbon disulfide, 2-butanone (MEK), chloroform, benzene, 4-methyl-2-pentanone (MIBK), toluene, 2-hexanone (MBK), chlorobenzene, ethylbenzene, m,p-xylene, styrene, o-xylene, tetrachloroethene (PCE), 4-ethyltoluene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene) were reported to be present in soil vapor above the laboratory reporting limits, a vapor intrusion risk screening was conducted on the Site to assess the potential for Significant human health risk posed to occupants of the existing and proposed commercial land use and the future Midway Rising residential use due to the upward migration of VOCs in soil vapor.
- 1,1-Difluoroethane (leak check compound or LCC) was found to be above the tolerance of the relevant quality analysis/quality control parameters for the laboratory analytical method for only one sample, SV-24-017-5. This indicates at least some of the sample came from ambient air and not soil vapor, which bias concentrations of VOCs detected in this sample to be low, so that what is actually in the soil vapor may be higher than what is indicated in the results. Conversely, some of the detected VOCs in SV-24-017-5 may have been derived from ambient air and not from soil vapor. All the other samples with LCC concentrations above laboratory limits were within the relevant quality analysis/quality control parameters for the laboratory analytical method, and therefore are considered representative of subsurface soil vapor conditions.

- After applying the applicable 2011 Department of Substances Control (DTSC) attenuation factors for the existing commercial and future residential land use (0.001 and 0.0005 respectively) to the maximum reported concentrations of VOCs in soil vapor beneath the Site, the maximum theoretical concentrations of VOCs in indoor air at the Site exceed the commercial screening level for benzene of 0.42 $\mu g/m^3$ and the residential screening level for benzene of 0.097 $\mu g/m^3$ indicating a potential Significant human health risk for portions of the current commercial and future commercial and residential buildings at the Site as a result of vapor intrusion of benzene.
- After applying the applicable CalEPA-recommended attenuation factor of 0.03 to the
 maximum reported concentrations of VOCs in soil vapor beneath the Site (i.e., benzene,
 ethylbenzene, m,p-xylene, o-xylene, and PCE), the maximum theoretical concentrations of
 benzene and ethylbenzene in indoor air at the Site exceed the commercial and residential
 screening levels (DTSC-SLs) and m,p-xylene and PCE in indoor air at portions of the Site
 exceed the residential screening levels (DTSC-SLs).

Based on SCS's understanding of the proposed development plans for the Site (Figure 14C), installation of a Vapor Intrusion Remediation System (VIMS) may be recommended for the enclosed occupied ground floor spaces of the proposed residential buildings proposed on the western portion of the Site, particularly the southeasternmost proposed residential buildings due to the high concentrations of benzene in soil vapor in that area. The VIMS should be designed by a licensed Professional Engineer (PE) and consist of a passive-vented system with the option to convert to an active system should the future need arise, with a gas-tight horizontal membrane barrier above. In addition, VIMS may be recommended for ground-floor enclosed occupied commercial spaces of two of the proposed mixed-use buildings at the Site (in locations of soil vapor samples SV-24-006-5 and SV-24-011-5), as well as the proposed San Diego Entertainment Center at the eastern portion of the Site. In addition, VIMS may be recommended for any enclosed occupied ground-floor residential spaces for all proposed mixed-use buildings except the proposed building in the location of soil vapor sample SV-024-015-5.

Alternatively, to further assess the findings above, since several USTs are known to have currently or formerly been located at the Site, additional lines of evidence can be obtained such as completing an additional round of soil vapor sampling that would include analysis for fixed gases to assess for compliance with the State Water Resources Control Board Low-Threat Underground Storage Tank Case Closure Policy (LTCP), within focused areas representative of proposed slab-on-grade occupied commercial or residential units. If soil vapor concentrations for certain proposed buildings comply with the LTCP as well as the applicable vapor intrusion guidance cited above, the additional round of soil vapor sampling can be considered an additional line of evidence and may obviate the need for vapor intrusion remediation for certain proposed buildings.

Overall, under the current commercial land use at the Site, based on the lack of open exposure routes due to the presence of asphalt paving and structures across the Site, no further action is recommended relative to the features of potential concern and investigation results from this Phase II ESA.

For the proposed redevelopment of the Site with a mixed-use land use, further assessment and Site remediation (e.g., impacted soil excavation and proper management, installation of VIMS) is recommended during the proposed grading and construction activities.

For the proposed construction and development of the Midway Rising project at the Site, particularly in the areas of historical concern (former gasoline service station, former inground sump, and historical agricultural uses), excavated soil impacted with petroleum hydrocarbons, elevated metals, and OCPs will require proper management that may include but is not necessarily limited to reuse under a clean soil cap subject to the approval of the overseeing regulatory agency(ies), or disposal as a hazardous or regulated waste at a properly licensed disposal facility. If such occurs, confirmation sampling should be done to verify conditions after soil excavation, and additional soil sampling may be needed to further delineate the extent of subsurface impacts or profile export soil for disposal.

8 RECOMMENDATIONS

Based on the data obtained during this Assessment and our conclusions, current regulatory guidelines, and our experience and professional judgment, SCS recommends the following:

Considering that the Site is proposed to be redeveloped with the Midway Rising Project, SCS
recommends that the issues identified above be incorporated into a comprehensive Soil
Management Plan (SMP) to address regulated waste criteria, worker exposure issues, and the
proposed future residential and commercial development plans and land uses. The SMP will
describe the methods and details and other aspects of the proper handling and management
of soils that exceed the Remediation Criteria that will be encountered during the grading and
construction of the proposed Project.

Additional post-demolition soil sampling is recommended as well in focused areas of the Site for further characterization of soil proposed to be graded within the Project redevelopment footprint, particularly in areas where soil borings could not be advanced during this Assessment due to the presence of the existing Site buildings. Additional soil vapor sampling can be completed as well be that would be considered an additional line of evidence that may obviate the need for vapor intrusion remediation (i.e., installation of VIMS) for certain proposed buildings.

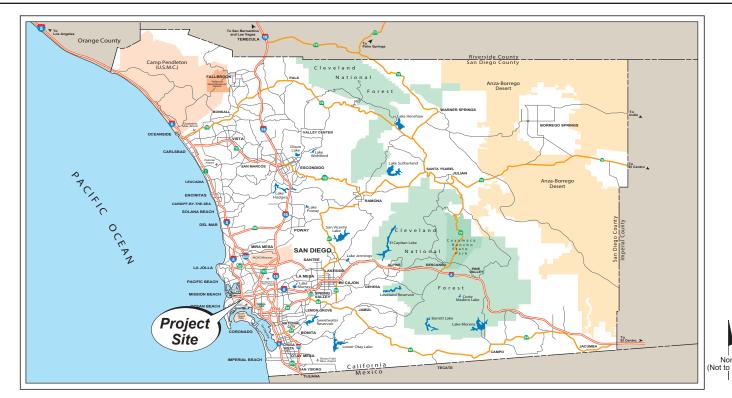
In conjunction with the SMP, and pursuant to the requirements of the San Diego Local Enforcement Agency (LEA), a Community Health and Safety Plan (CHSP) should be prepared that will address issues of off-Site impacts, particularly the monitoring and suppression of dust generated by on-Site activities. The principal health and safety issue associated with the excavation of impacted soil is the potential generation of dust that may occur during the handling of the impacted soil. In addition, the CHSP can also address odor assessment and remediation measures to be carried out during the proposed grading activities in the area of the Point Loma Burn Dump area, although odors are not anticipated to be encountered during grading based on trenching activities SCS has completed within this area to date, the age and nature of the waste (i.e., burn waste from the late 1800s to early 1900s), and the observed thickness of the burned material being limited to approximately 1 to 2 feet thick. The CHSP will also include public notifications to the adjacent property owners advising them of the excavation activities.

SCS also recommends that the Client enter into oversight agreements with the San Diego
Local Enforcement Agency (LEA) and other applicable regulatory agency (such as the County
of San Diego Department of Environmental Health and Quality [DEHQ], Regional Water Quality
Control Board [RWQCB], and/or Department of Toxic Substances Control [DTSC]) prior to
grading and development activities to ensure the former waste areas of the Point Loma

Dump and other areas with known environmental impacts are properly managed during construction activities.

9 REPORT USAGE AND FUTURE SITE CONDITIONS

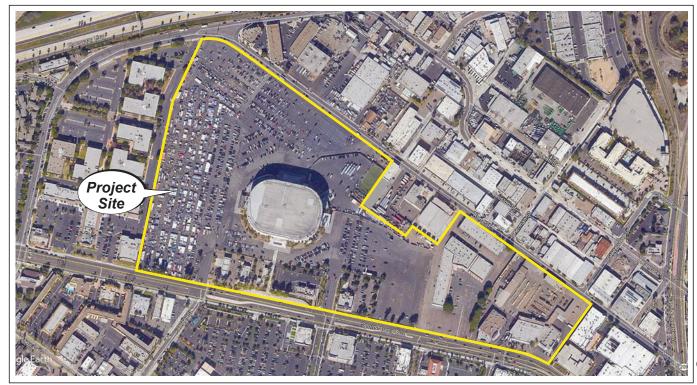
This Report is intended for the sole usage of the Client and other parties designated by SCS. The methodology used during the referenced assessments by SCS was in general conformance with the requirements of the Client and the specifications and limitations presented in the Agreement between the Client and SCS. This Report contains information from a variety of public and other sources, and SCS makes no representation or warranty about the accuracy, reliability, suitability, or completeness of the information. Any use of this Report, whether by the Client or by a third party, shall be subject to the provisions of the Agreement between the Client and SCS. Any misuse of or reliance upon the Report shall be without risk or liability to SCS.

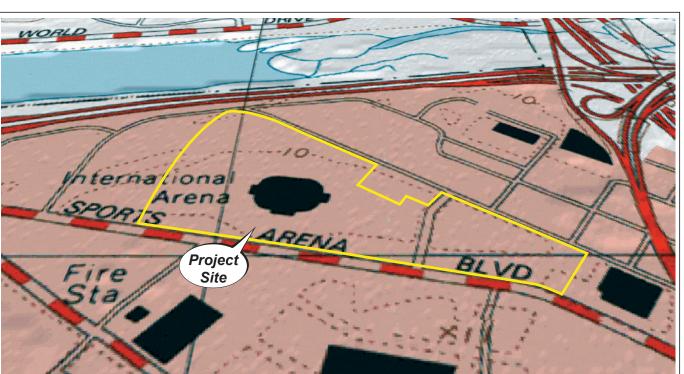

The conclusions of this Report are judged to be relevant at the time the work described in this Report was conducted. Future conditions may differ and this Report should not be relied upon to represent future Site conditions unless a qualified consultant familiar with the practice of Phase II environmental assessments in San Diego County is consulted to assess the necessity of updating this Report.

Although this Assessment has attempted to assess the likelihood that the Site has been impacted by a hazardous material/waste release, potential sources of impact may have escaped detection for reasons which include, but are not limited to: 1) our reliance on inadequate or inaccurate information rightfully provided to SCS by third parties such as public agencies and other outside sources; 2) the limited scope of this Assessment; and 3) the presence of undetected, unknown, or unreported environmental releases.

10 SPECIAL CONTRACTUAL CONDITIONS BETWEEN USER AND ENVIRONMENTAL PROFESSIONAL

There were no special contractual conditions between the user of this Assessment, the environmental professional, and SCS.




REGIONAL SITE LOCATION

2-DIMENSIONAL SITE LOCATION

SITE AERIAL PHOTOGRAPH

Reference: U.S.G.S. 7.5 Minute Quadrangle Map La Jolla, California

3-DIMENSIONAL SITE LOCATION

SCSENGINEERS

Environmental Consultants 8799 Balboa Avenue, Suite 290 San Diego, California 92123

FOUR-WAY SITE LOCATION MAP

Midway Rising, LLC 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

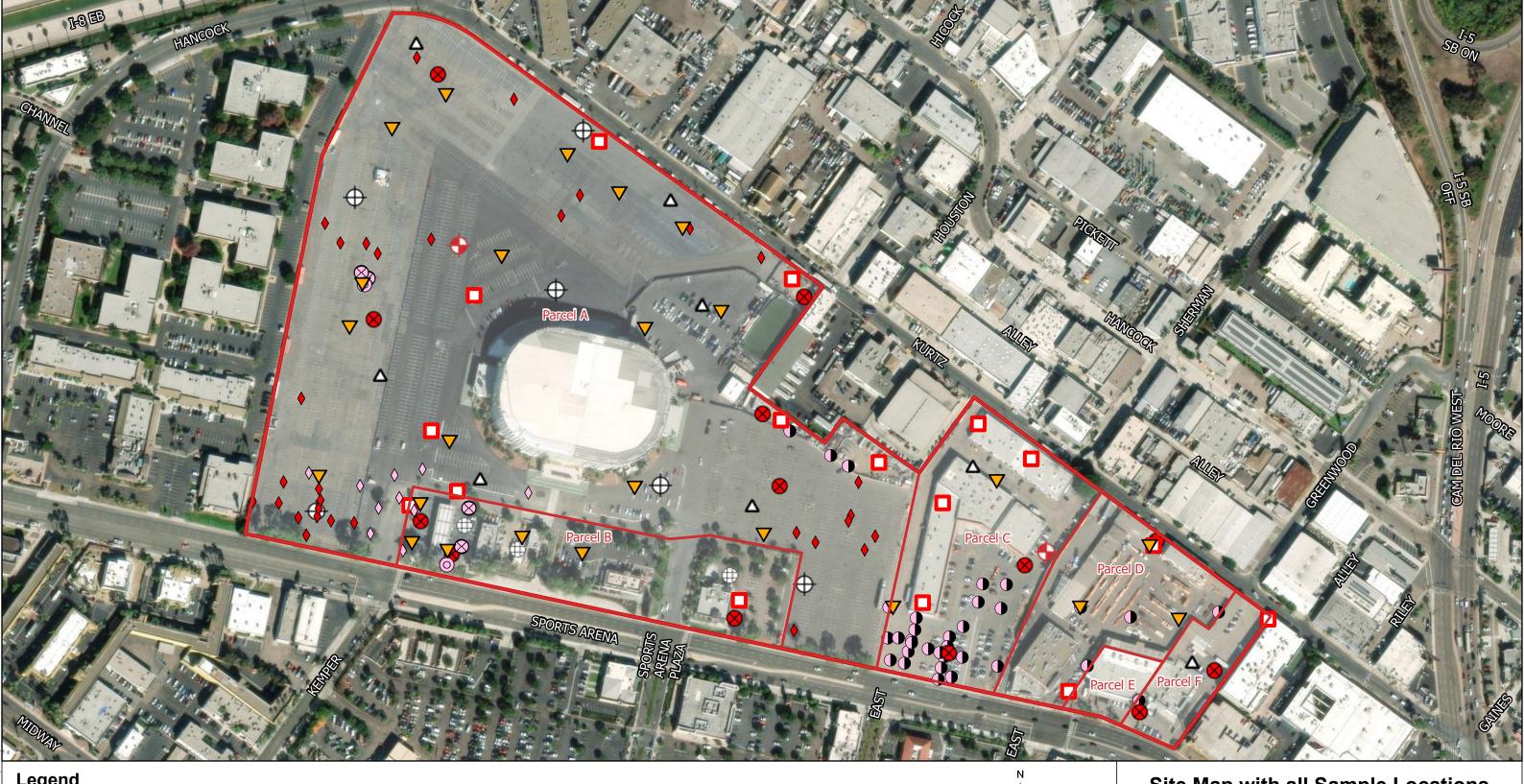

Project No.: 01213320.07

Figure 1

Date Drafted: 9/11/24

Disclaimer: This figure is based on available data. Actual conditions may differ. All locations and dimensions are approximate.

Google Earth Aerial Photograph San Diego, California - November 2018

Legend

Approx. Limits of Site Development

> Approximate Soil Vapor Boring

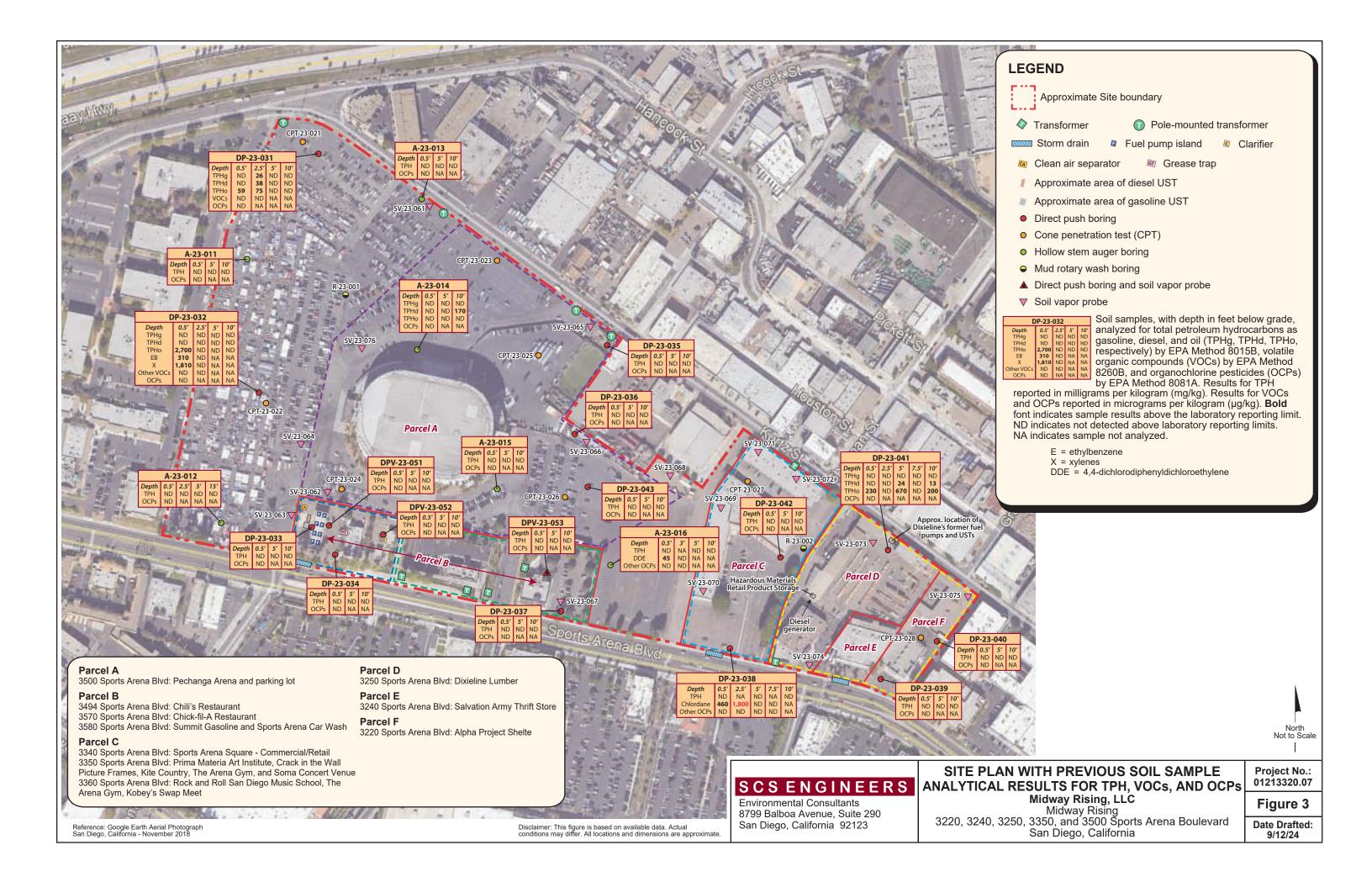
- ▼ Locations 2024
- Approximate Trench Locations 2024
- **Direct Push Boring** 2024
- Direct Push Boring and Grab Groundwater
- 2024

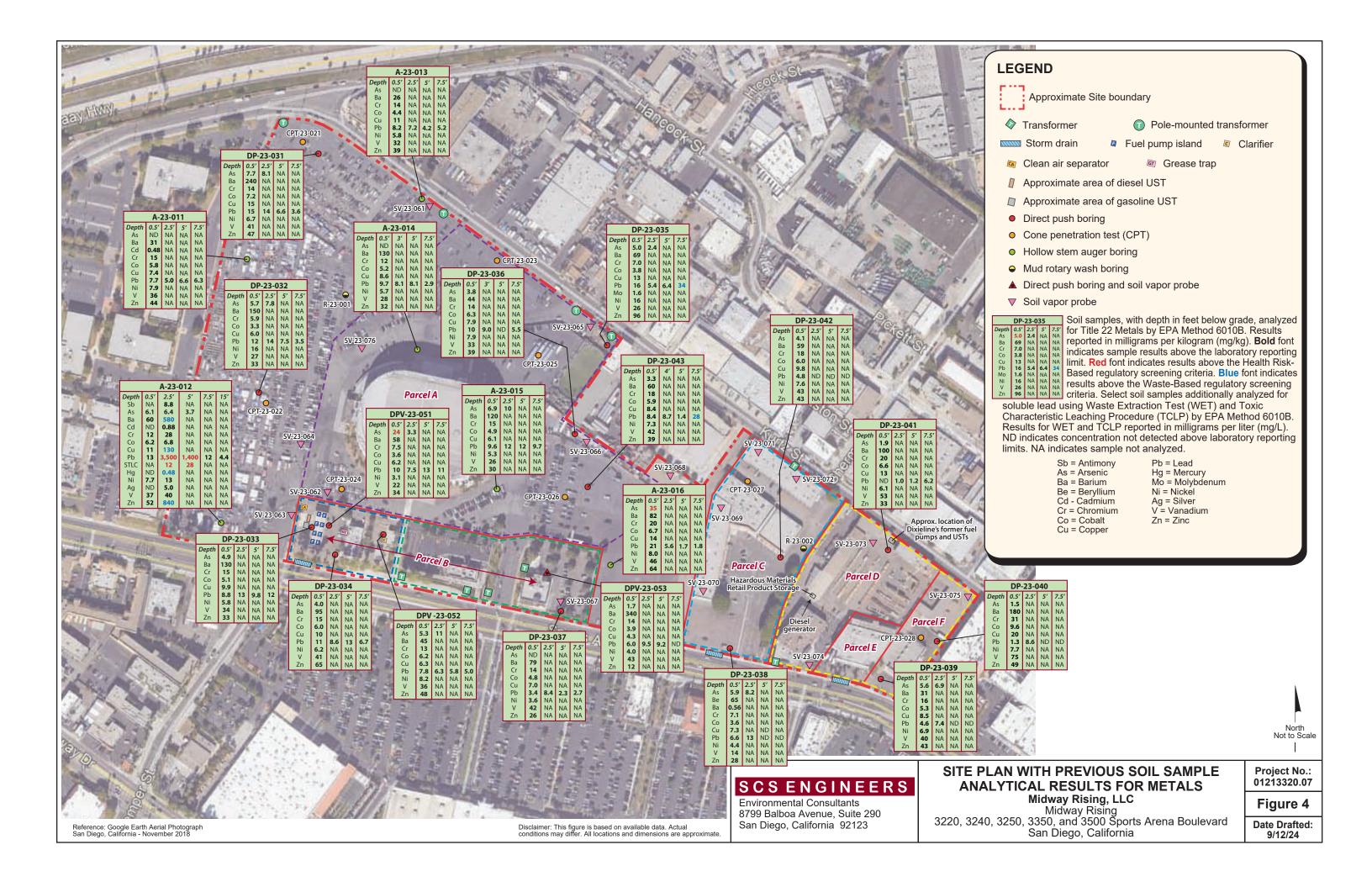
Hand Auger Borings

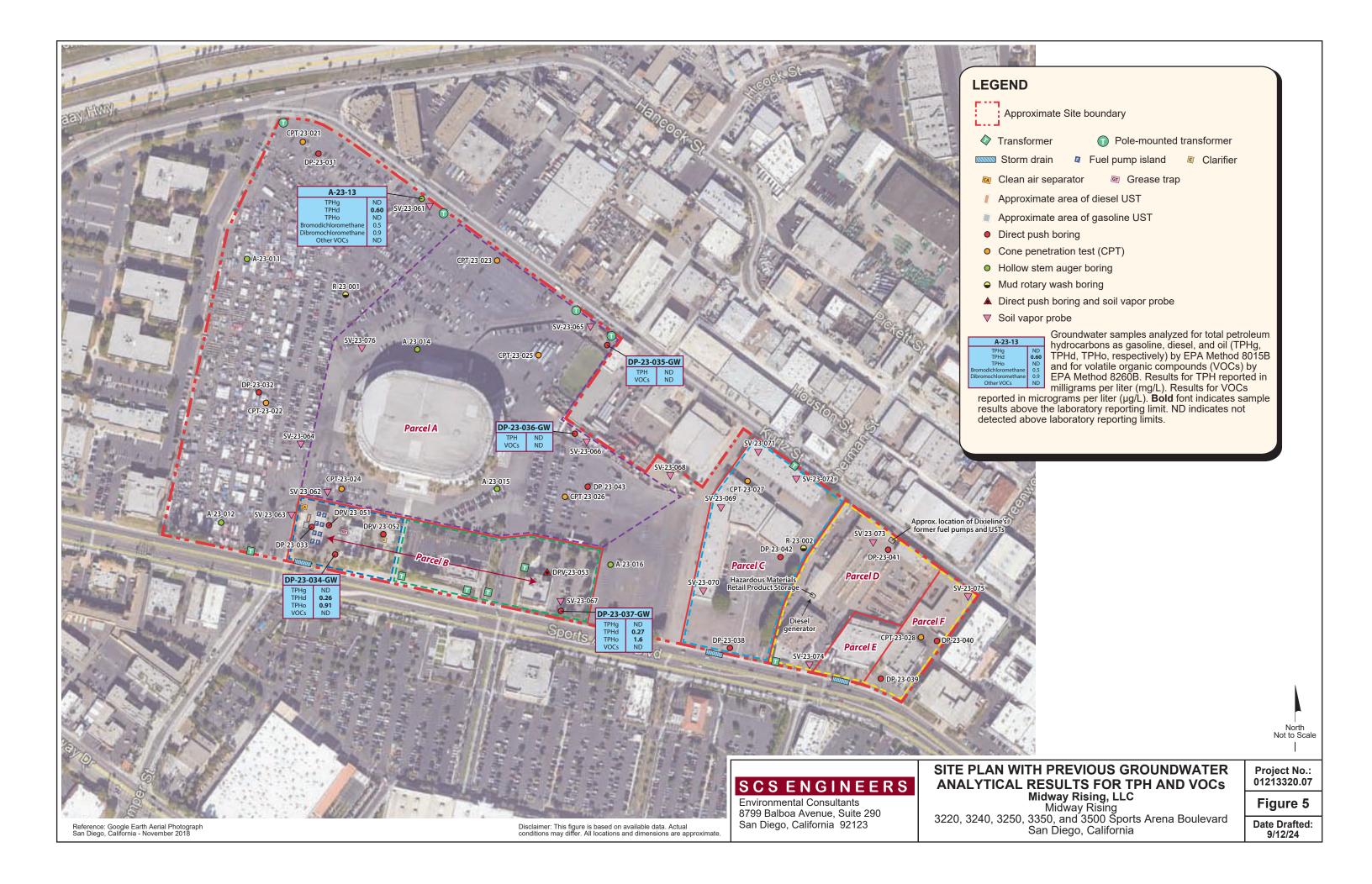
2024

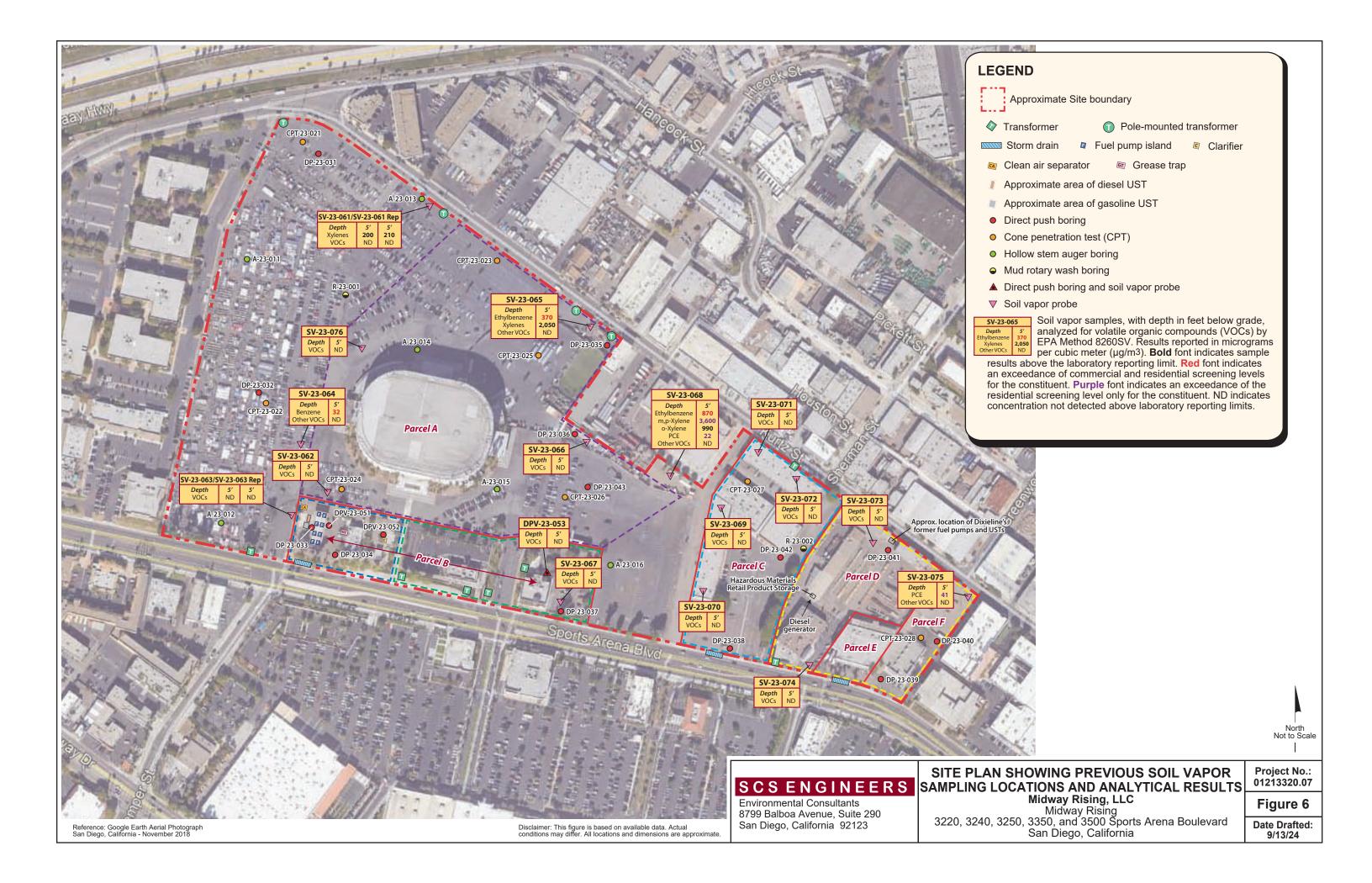
- Cone Penetration Test Δ 2023
- **Direct Push Boring** 2023
 - Direct Push Boring and Soil Vapor Probe 2023
- Hollow Stem Auger Boring 2023
- Mud Rotary Wash Boring 2023
 - Soil Vapor Probe
 - Approximate Trench ♦ Location June 2023

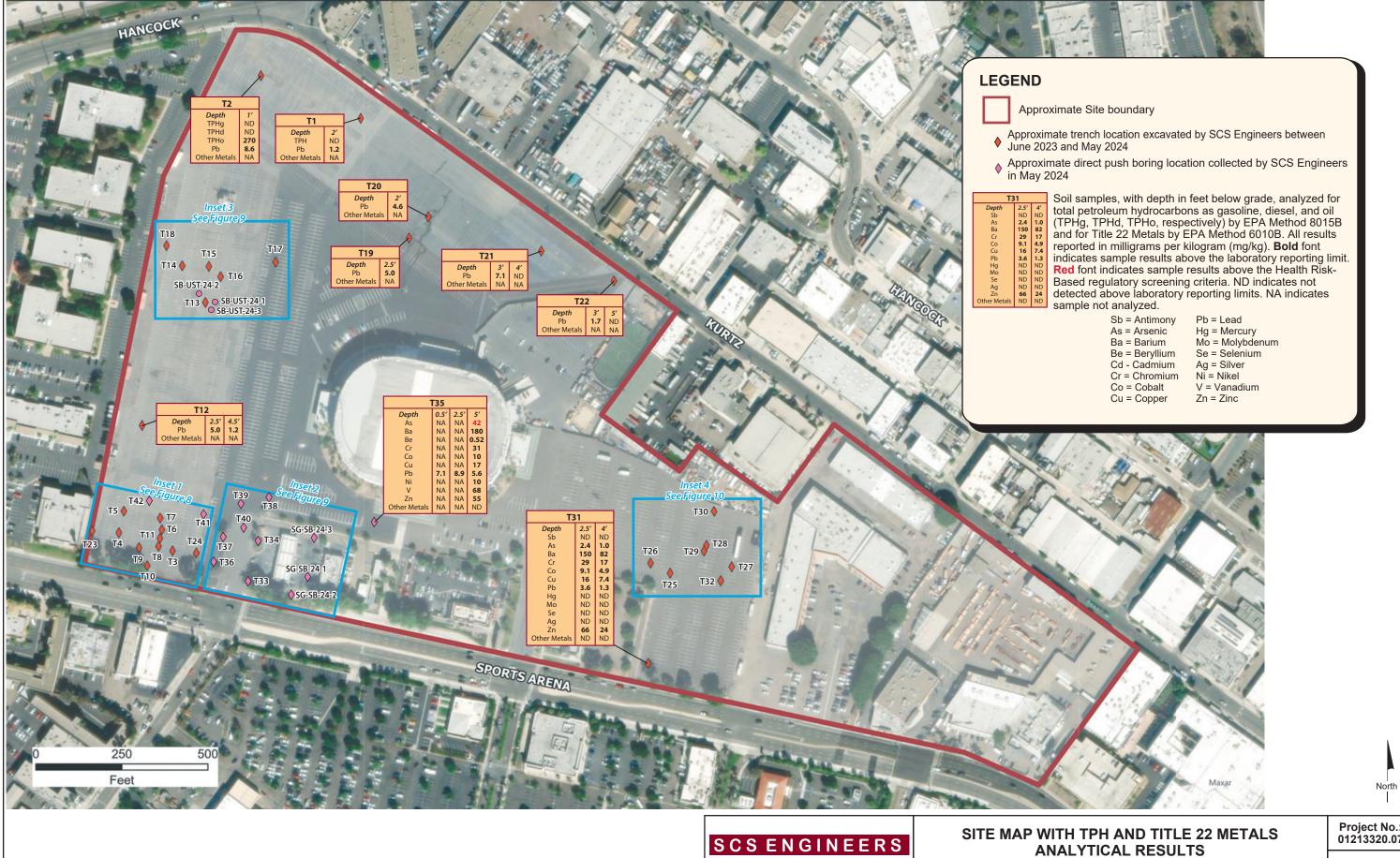
1 inch = 275 feet


Site Map with all Sample Locations


Midway Rising, LLC 3220, 3240, 3250, 3350 and 3500 **Sports Arena Boulevard** San Diego, California

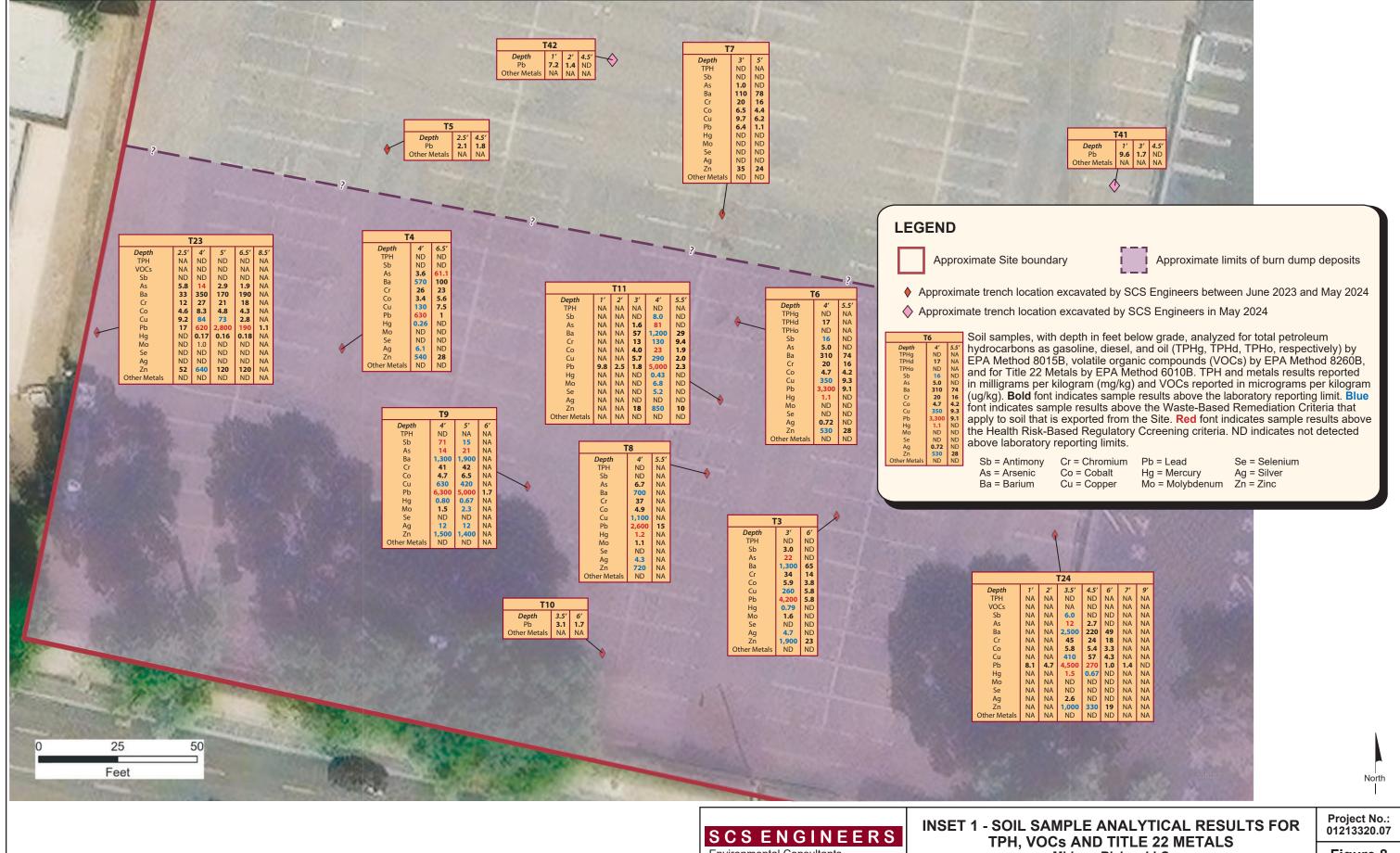

Figure 2


Sep 2024


SCS ENGINEERS

Disclaimer: This figure is based on available data. Actual conditions may differ. All locations and dimensions are approximate.

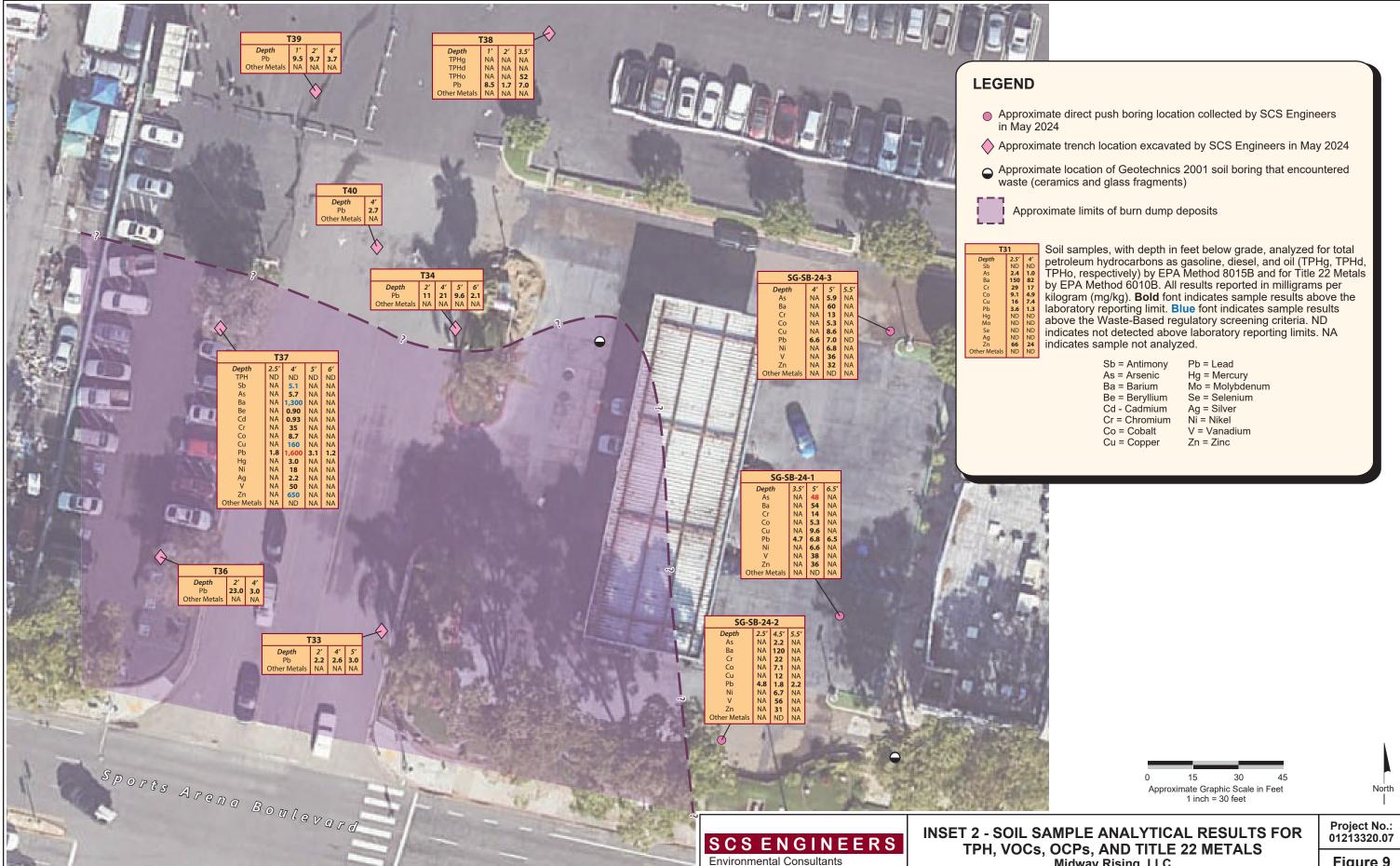
Environmental Consultants 8799 Balboa Avenue, Suite 290 San Diego, California 92123


Midway Rising, LLC

3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Project No.: 01213320.07

Figure 7


Date Drafted: 9/13/24

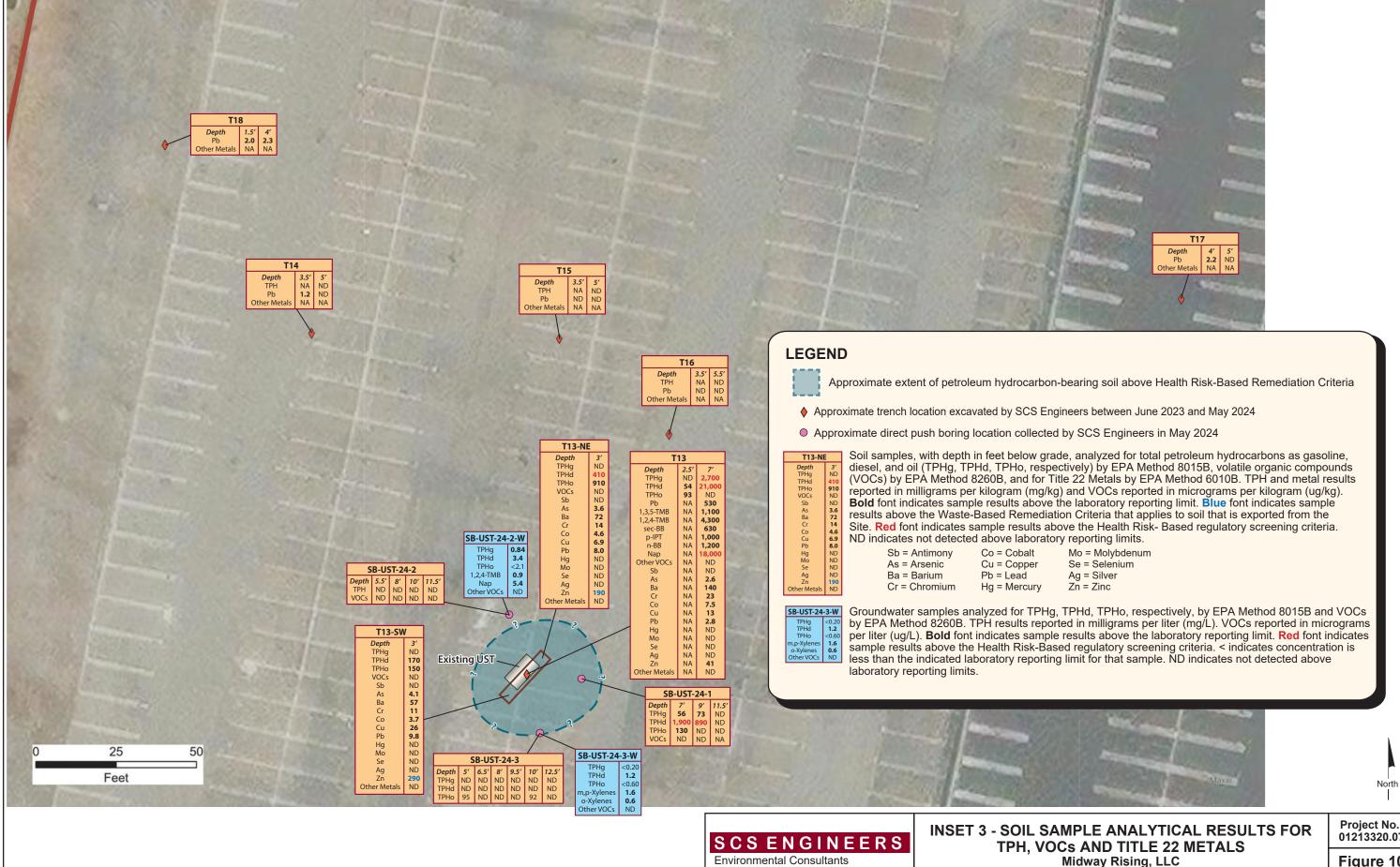
Environmental Consultants 8799 Balboa Avenue, Suite 290 San Diego, California 92123 Midway Rising, LLC

3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California Figure 8

Date Drafted: 9/30/24

8799 Balboa Avenue, Suite 290

San Diego, California 92123


Disclaimer: This figure is based on available data. Actual conditions may differ. All locations and dimensions are approximate

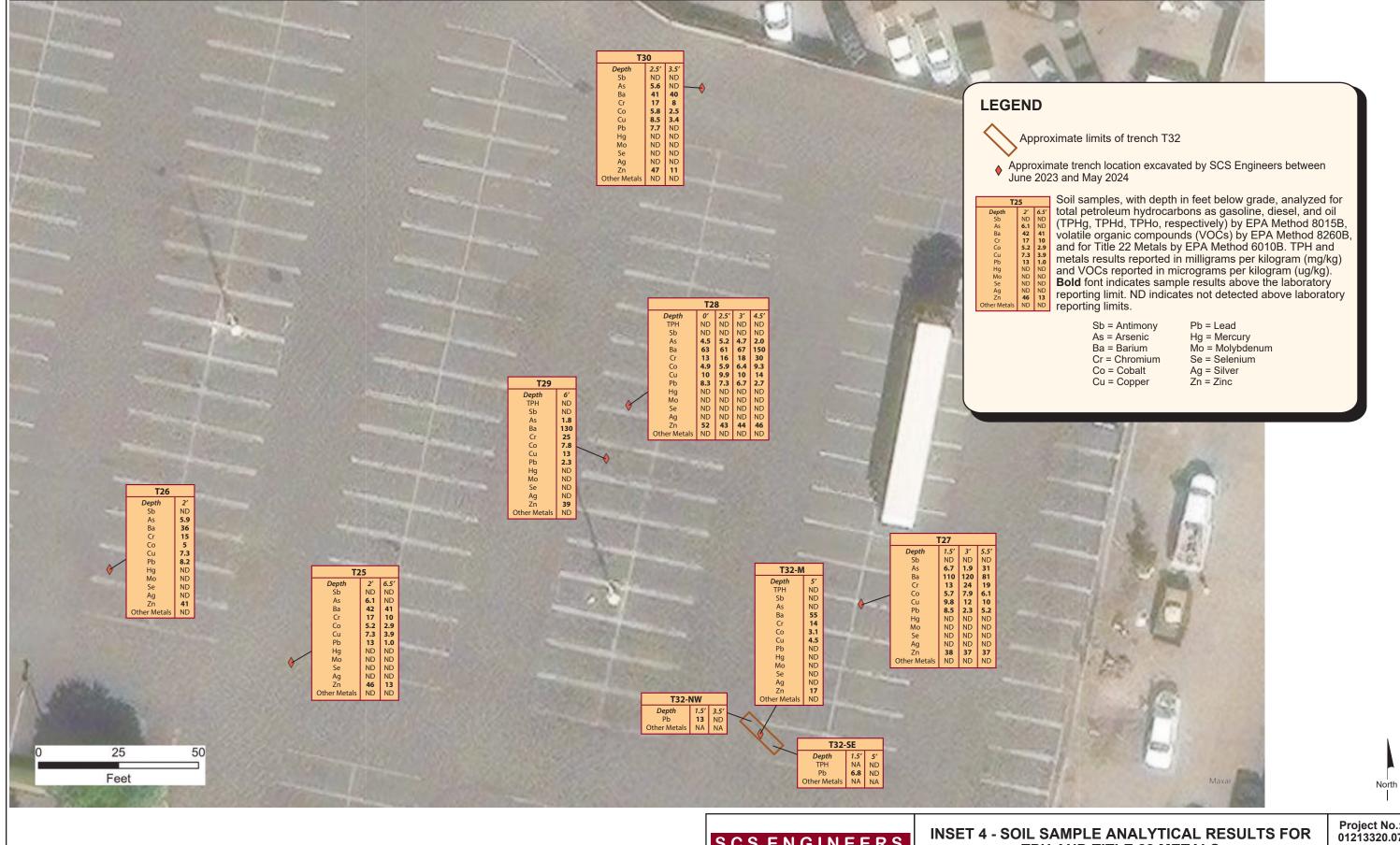
Midway Rising, LLC

3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Figure 9

Date Drafted: 9/12/24

Disclaimer: This figure is based on available data. Actual conditions may differ. All locations and dimensions are approximate


8799 Balboa Avenue, Suite 290 San Diego, California 92123

3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Project No.: 01213320.07

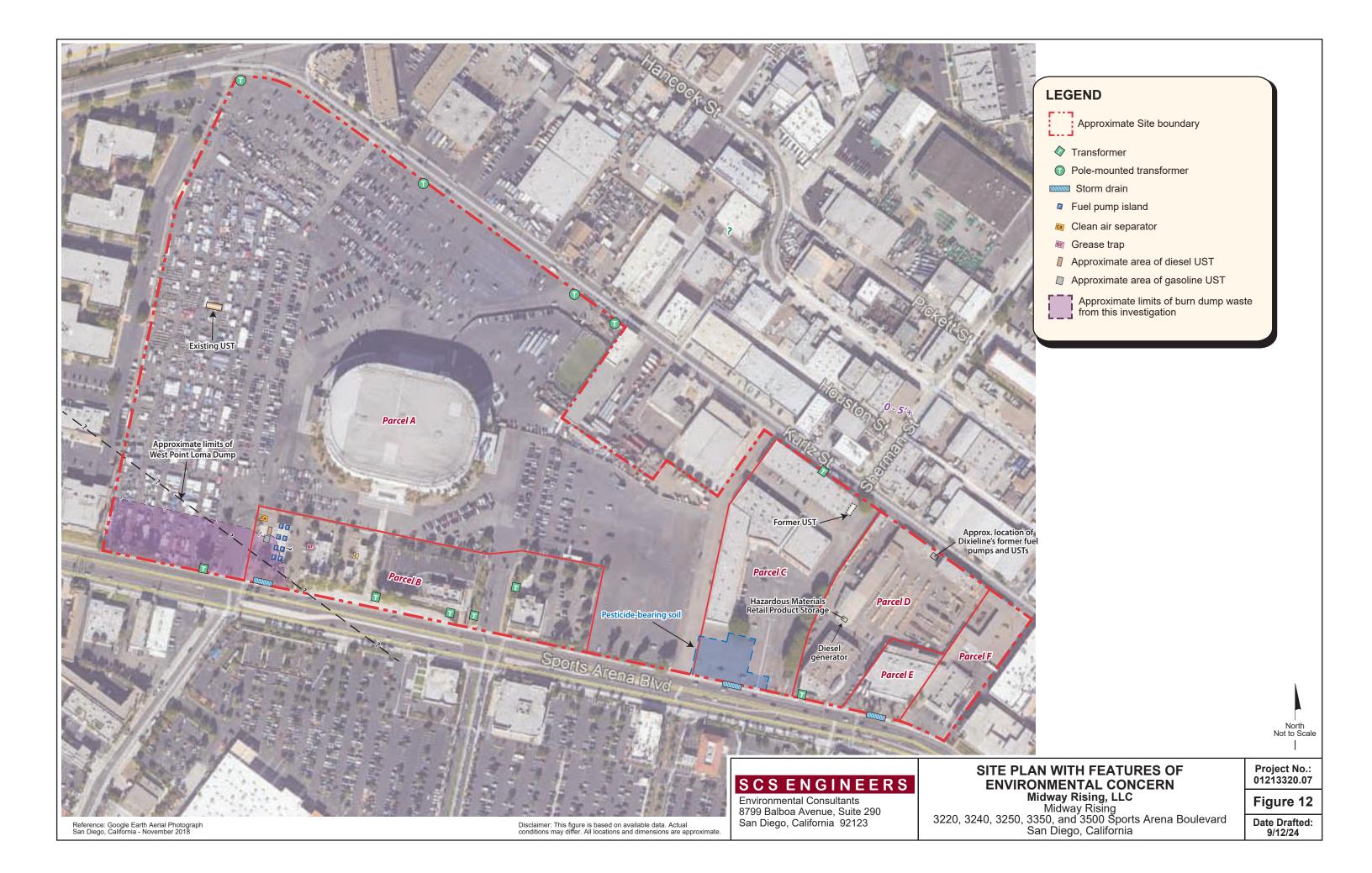
Figure 10

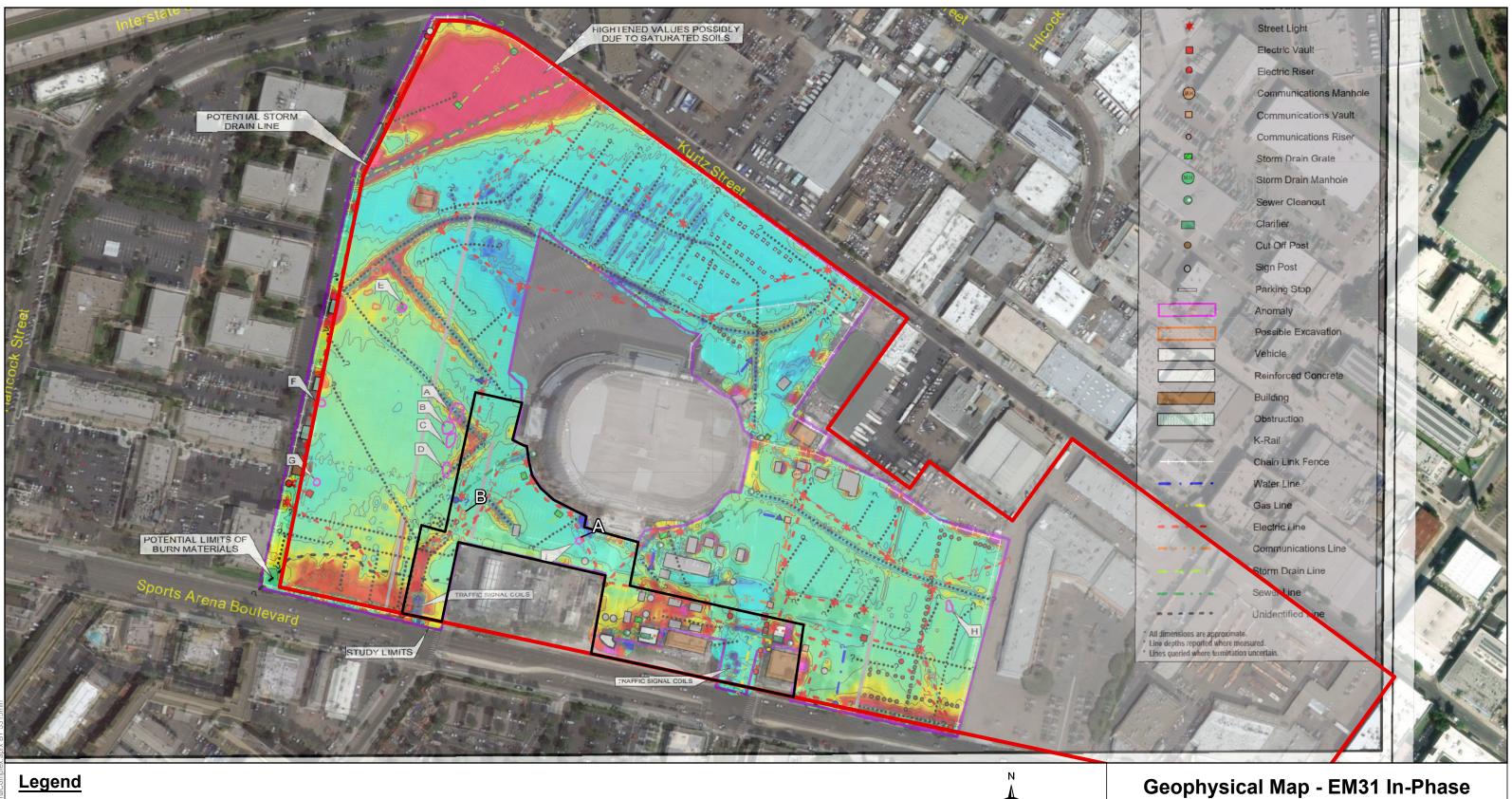
Date Drafted: 9/30/24

SCSENGINEERS

Environmental Consultants 8799 Balboa Avenue, Suite 290 San Diego, California 92123

TPH AND TITLE 22 METALS


Midway Rising, LLC


3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Project No.: 01213320.07

Figure 11

Date Drafted: 9/11/24

Approximate Site Boundary

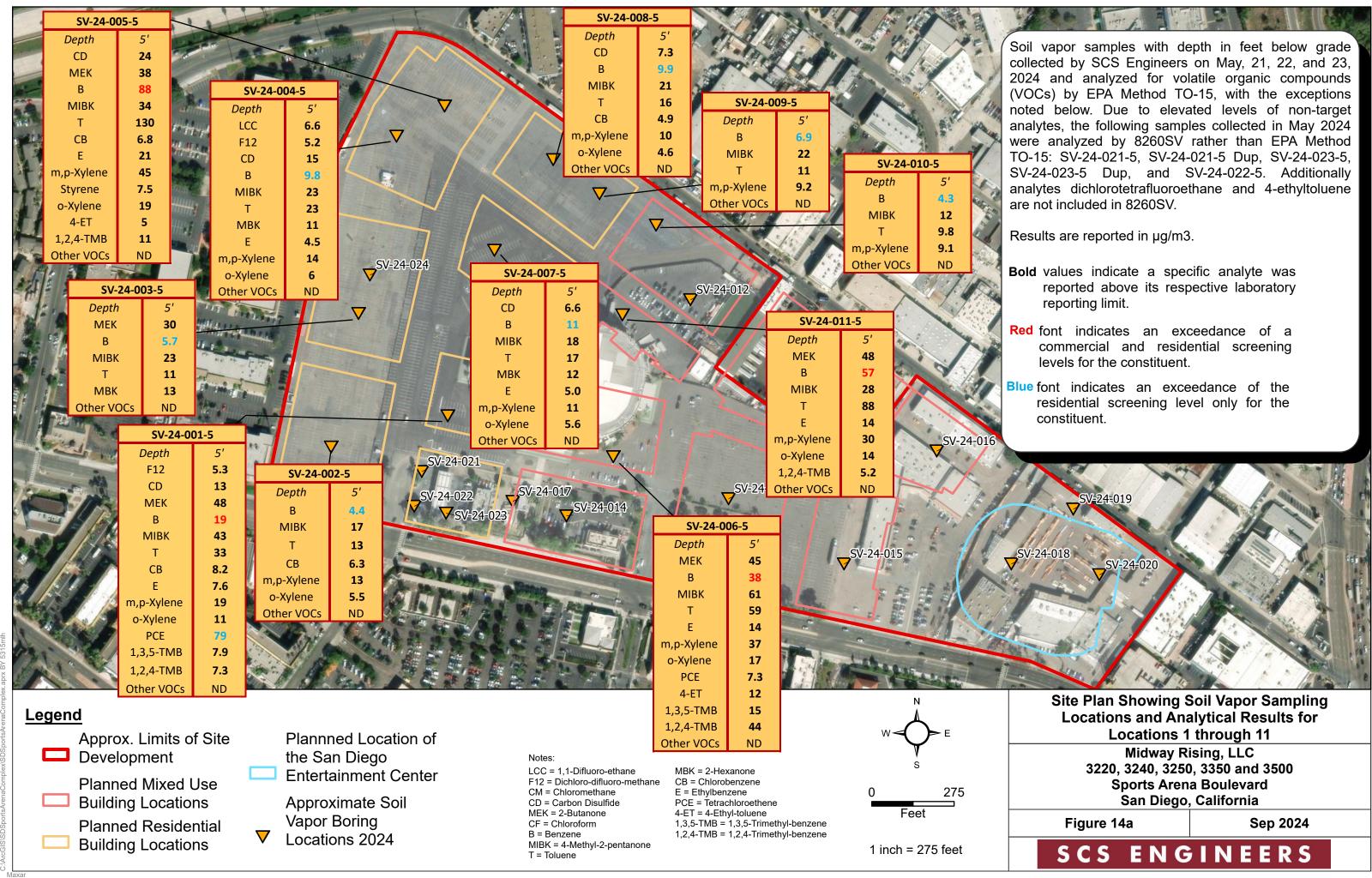
Approximate Area of 2024 Geophysical

☐ Survey

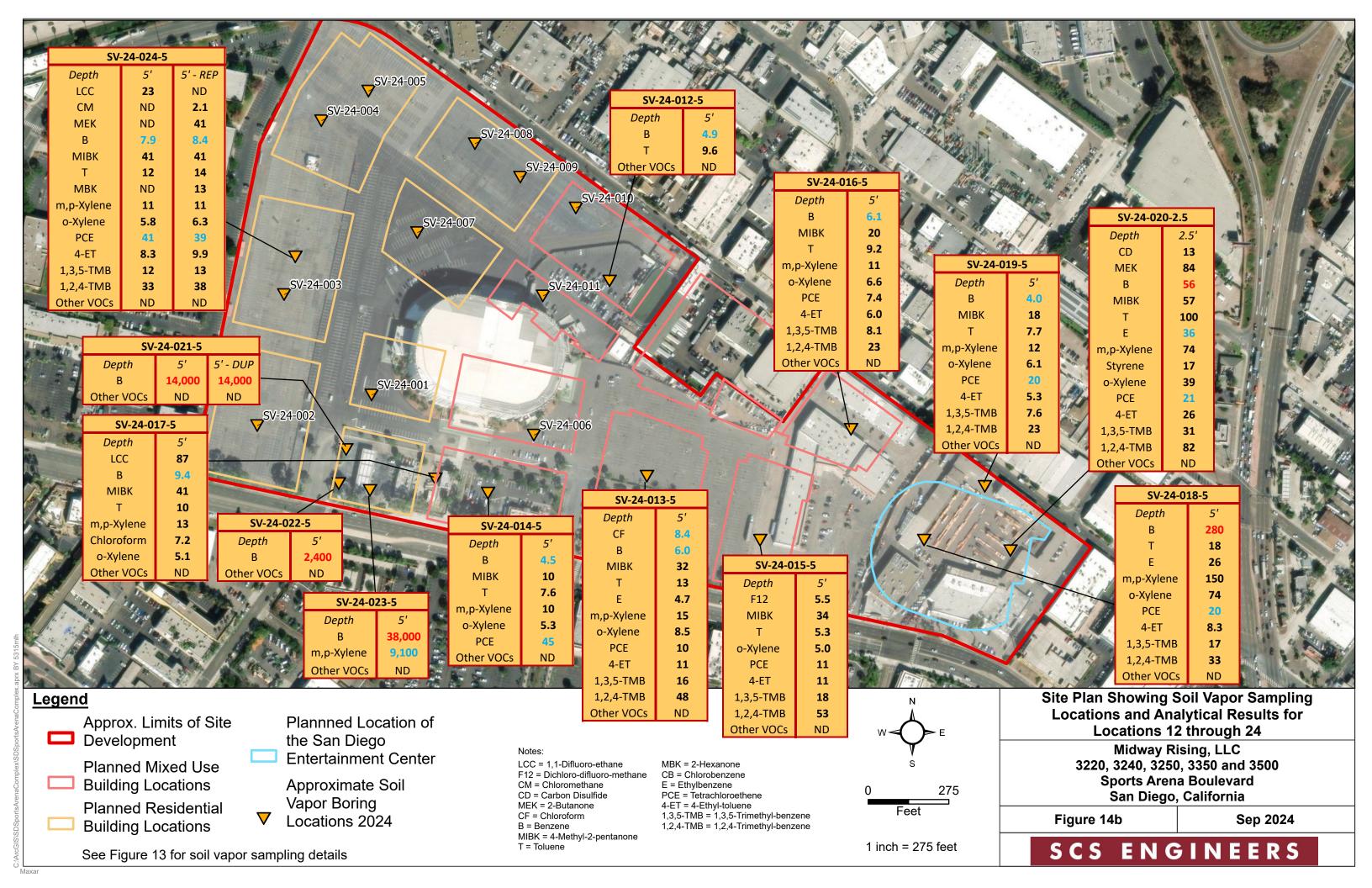
Note:

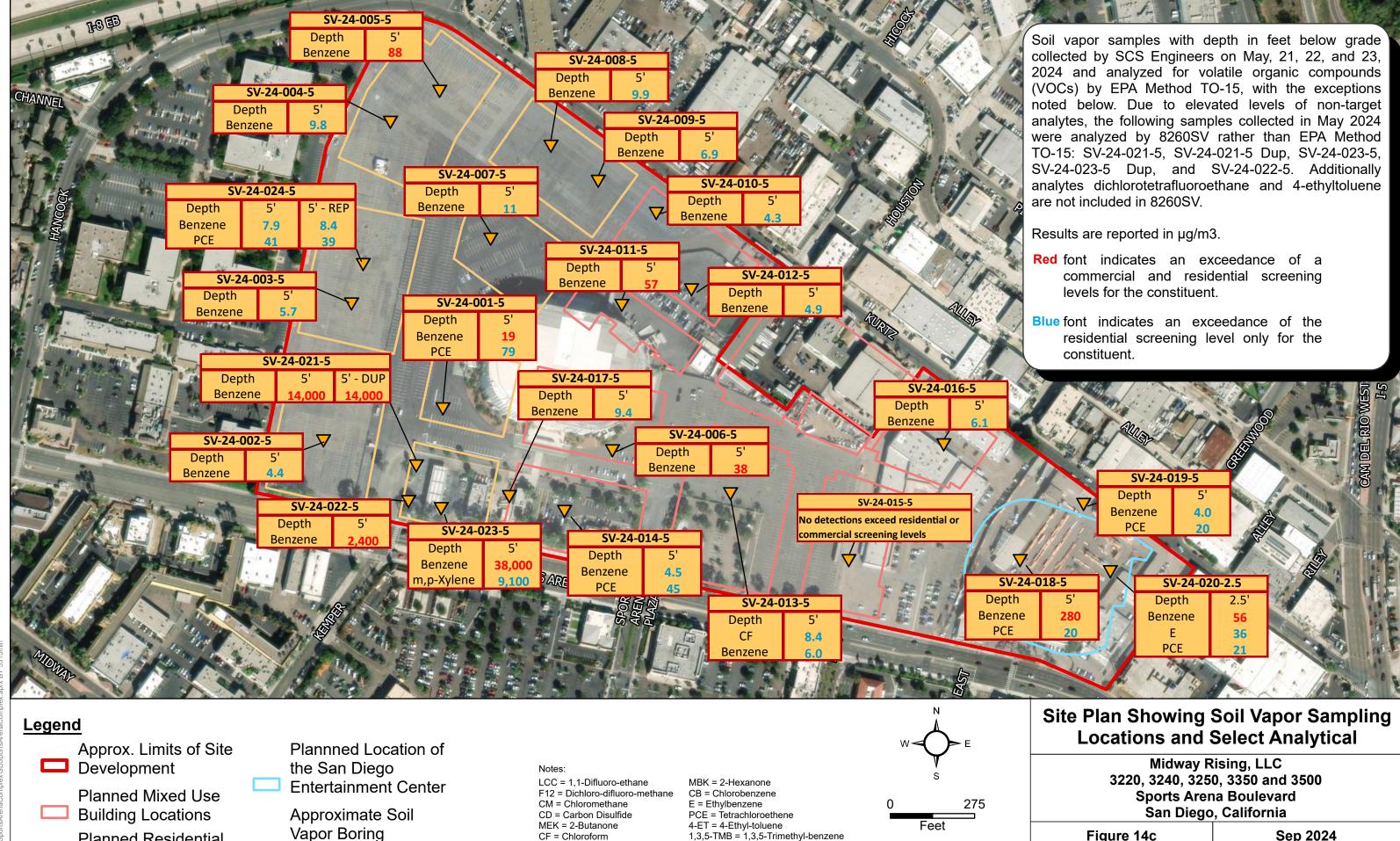
A and B show the approximate location of anomalies detected during the geophysical survey

0 250


1 inch = 250 feet

Midway Rising, LLC 3220, 3240, 3250, 3350 and 3500 Sports Arena Boulevard San Diego, California


Figure 13


Sep 2024

SCS ENGINEERS

1000/2012 RECOGNIZED A STOCK OF CONTRACT O

1,3,5-TMB = 1,3,5-Trimethyl-benzene

1,2,4-TMB = 1,2,4-Trimethyl-benzene

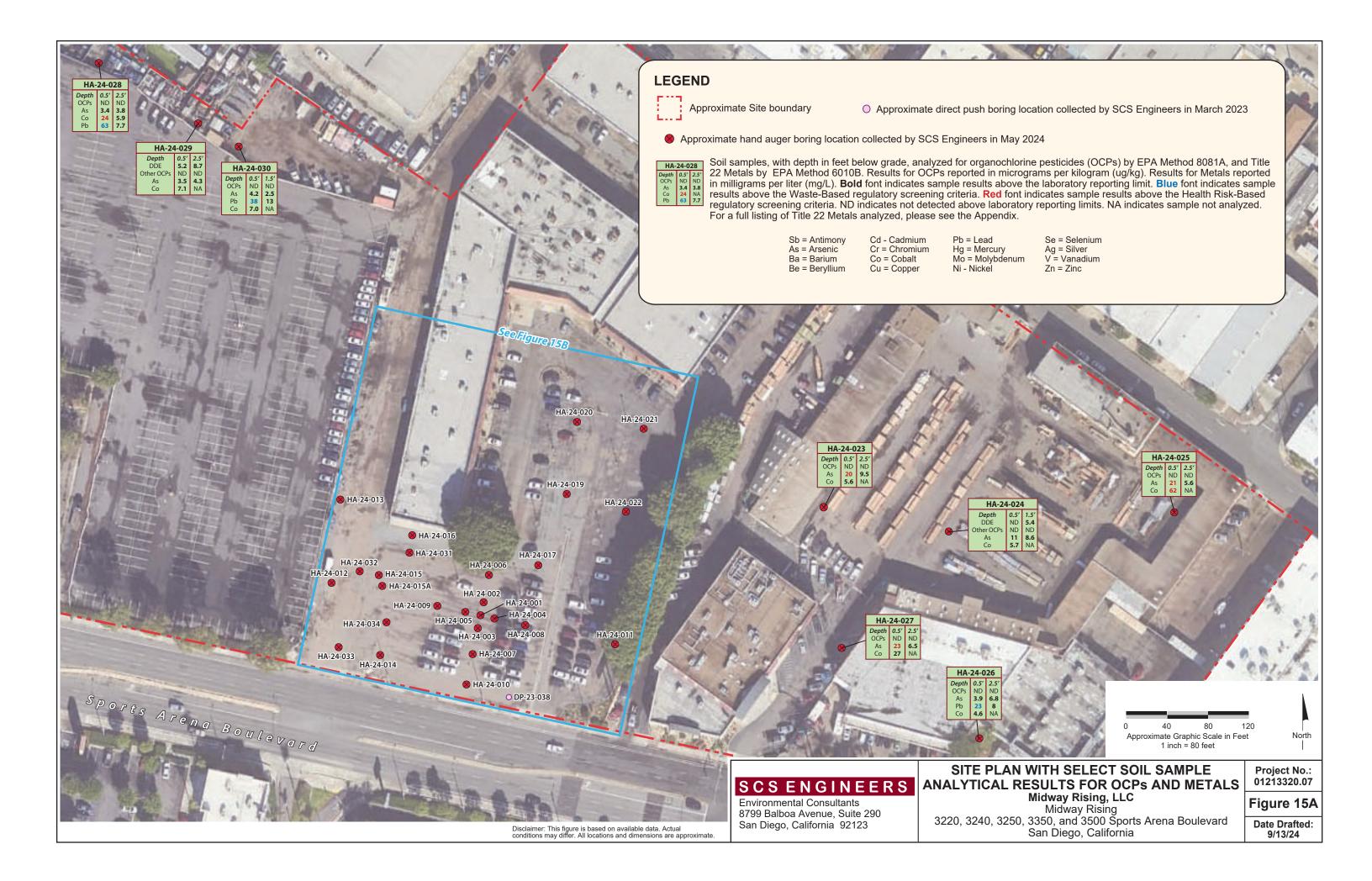
1 inch = 275 feet

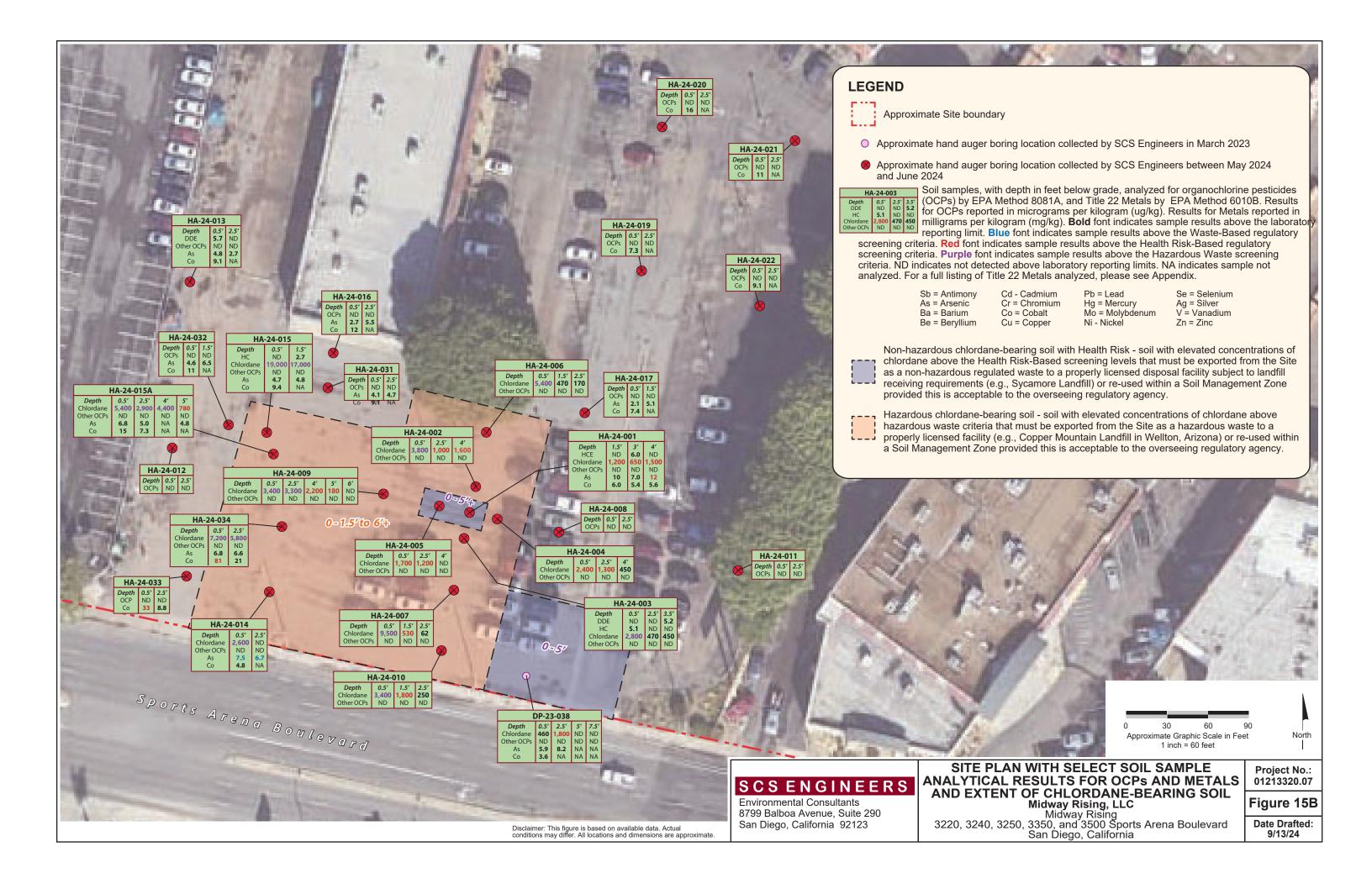
CF = Chloroform

T = Toluene

MIBK = 4-Methyl-2-pentanone

Figure 14c


SCS ENGINEERS


Sep 2024

Planned Residential

Building Locations

Locations 2024

Soil Sample Analytical Results for TPH, VOCs, OCPs Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

																	-	_				_				
Sample Identifier	Sample Depth	Sample Date	Sampled by	TPH GROs		TPH OROs	DDE	Hepta- chlor	Hepta- chlor epoxide	Chlordane	Chlordane TCLP	Chlordane WET/STLC	Other OCPs	Ethylbenzene	m,p- Xylenes	o-Xylene	Propylbenzene	1,3,5-TMB		sec-Butyl- benzene	para- Isopropyl Toluene	n-Butyl- benzene	Naphthalene	Other VOCs	Phenol	Other SVOCs
Health Risk-B	ased Remed	liation Criteria	(Residential) ¹	430	mg/kg 260	12,000	1,800	1,900	1,900	480	NΑ	g/L NA	NA	5,800^	550,000^	640,000^	3,800,000^	270,000^	μg/k 300,000∧	2,200,000	NE	2,400,000	2,000	NA	19,000,000	NA
Health Risk-Bo	ased Remedi	ation Criteria (Commercial) ¹	2,000	1,200	180,000	8,300	8,500	8,500	2,200	NA	NA	NA	25,000^	2,400,000^	2,800,000^	24,000,000^	1,500,000^	1,800,000^	12,000,000	NE	18,000,000	6,500	NA	1,600,000,000	NA
Was	ste-Based Re	mediation Crite	eria ²											Any detectable	e concentrat	ion above labo	l ratory reporting lim	its								
551/00/00/00	1	Waste Criteria		NA	NA	NA	NA	NA	NA	2,500	30	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-031-0.5 DPV-23-031-2.5	0.5 2.5	2/7/2023 2/7/2023	SCS Engineers SCS Engineers	< 10 26	< 10 38	59 75	< 9.8 NA	< 9.8 NA	< 9.8 NA	< 98 NA	NA NA	NA NA	ND NA	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.1	< 5.0 <5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 <5.0	< 5.0 < 5.0	< 5.0 <5.0	ND ND	NA NA	NA NA
DPV-23-031-5.0	5	2/7/2023	SCS Engineers	< 10	< 10	< 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NA	NA	NA	NA	NA	\NA	~3.0 NA	\NA	NA NA	NA NA	NA
DPV-23-031-10	10	2/7/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-032-0.5	0.5	2/7/2023	SCS Engineers	< 500	< 500	2,700	< 10	< 10	< 10	< 100	NA	NA	ND	310	1,400	410	<25	<25	<25	<25	<25	<25	<25	ND	NA	NA
DPV-23-032-2.5	2.5	2/7/2023	SCS Engineers	< 10	< 10	< 50	NA	NA_	NA	NA	NA	NA	NA	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	ND	NA NA	NA
DPV-23-032-5.0 DPV-23-032-10	10	2/7/2023 2/7/2023	SCS Engineers SCS Engineers	< 10 < 9.9	< 10 < 9.9	< 50 < 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-033-0.5	0.5	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	< 5.0	< 5.0	< 5.0	< 50	NA NA	NA	ND	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA
DP-23-033-5.0	5	2/6/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-033-10	10	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-034-0.5	0.5	2/6/2023	SCS Engineers	< 10	< 10	< 50	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
DP-23-034-5.0 DP-23-034-10	10	2/6/2023 2/6/2023	SCS Engineers SCS Engineers	< 9.9 < 9.9	< 9.9 < 9.9	< 50 < 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DPV-23-035-0.5	0.5	2/7/2023	SCS Engineers	< 10	< 10	< 50	< 50	< 50	< 50	< 500	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
DPV-23-035-5.0	5	2/7/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-035-10	10	2/7/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-036-0.5	0.5	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
DP-23-036-5.0 DP-23-036-10	10	2/6/2023 2/6/2023	SCS Engineers SCS Engineers	< 9.9 < 9.9	< 9.9 < 9.9	< 50 < 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-037-0.5	0.5	2/6/2023	SCS Engineers	< 10	< 10	< 50	< 5.0	< 5.0	< 5.0	< 50	NA NA	NA NA	ND ND	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA
DP-23-037-5.0	5	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
DP-23-037-10	10	2/6/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-038-0.5	0.5	3/23/2023	SCS Engineers	< 9.9	< 9.9	< 50	< 4.9	< 4.9	< 4.9	460	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-038-2.5 DP-23-038-5.0	2.5	3/23/2023 3/23/2023	SCS Engineers	NA < 10	NA < 10	NA 150	< 5.0	< 5.0	< 5.0	1,800 < 50	NA NA	NA NA	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-038-7.5	7.5	3/23/2023	SCS Engineers SCS Engineers	< 10 NA	< 10 NA	< 50 NA	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 50 < 50	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-038-10	10	3/23/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-039-0.5	0.5	3/23/2023	SCS Engineers	< 9.9	< 9.9	< 50	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-039-5.0	5	3/23/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-039-10	10	3/23/2023	SCS Engineers	< 10	< 10	< 50	NA < 4.0	NA c.1.0	NA < 4.0	NA < 40	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
DP-23-040-0.5 DP-23-040-5.0	5	3/23/2023	SCS Engineers SCS Engineers	< 10 < 9.9	< 10 < 9.9	< 50 < 50	< 4.9 NA	< 4.9 NA	< 4.9 NA	< 49 NA	NA NA	NA NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<u>NA</u> NA	NA NA
DP-23-040-10	10	3/23/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-041-0.5	0.5	3/23/2023	SCS Engineers	< 10	< 10	230	< 50	< 50	< 50	< 500	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-041-2.5	2.5	3/23/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-041-5.0 DP-23-041-7.5	5 7.5	3/23/2023 3/23/2023	SCS Engineers SCS Engineers	< 10	24	670	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-041-7.5	7.5	3/23/2023	SCS Engineers	< 10 < 9.9	< 10 13	< 50 200	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-042-0.5	0.5	3/23/2023	SCS Engineers	< 9.9	< 9.9	< 50	< 4.9	< 4.9	< 4.9	< 49	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
DP-23-042-5.0	5	3/23/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-042-10	10	3/23/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-043-0.5	0.5	2/6/2023	SCS Engineers	< 10 < 10	< 10	< 50	< 5.0	< 5.0	< 5.0	< 50	NA NA	NA NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-043-5.0 DP-23-043-10	10	2/6/2023 2/6/2023	SCS Engineers SCS Engineers	< 10	< 10 < 10	< 50 < 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DPV-23-051-0.5	0.5	2/6/2023	SCS Engineers	< 10	< 10	< 50	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
DPV-23-051-5.0	5	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-051-10	10	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA	NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-052-0.5 DPV-23-052-5.0	0.5	2/6/2023 2/6/2023	SCS Engineers SCS Engineers	< 10 < 10	< 10 < 10	< 50 < 50	< 4.9 NA	< 4.9 NA	< 4.9 NA	< 49 NA	NA NA	NA NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DPV-23-052-3.0	10	2/6/2023	SCS Engineers	< 10	< 10	< 50	NA NA	<u>NA</u> NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DPV-23-053-0.5	0.5	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
DPV-23-053-5.0	5	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-053-10	10	2/6/2023	SCS Engineers	< 10	< 10	< 50	NA . 05	NA	NA . 05	NA . 050	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-11-0.5' A-23-11-5'	0.5	2/6/2023	SCS Engineers SCS Engineers	< 10	< 10	< 50 < 50	< 25	< 25 NA	< 25	< 250	NA NA	NA NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A-23-11-10'	10	2/6/2023	SCS Engineers	< 10	< 10	< 50 < 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A-23-012-0.5	0.5	2/7/2023	SCS Engineers	< 9.9	< 9.9	< 50	< 25	< 25	< 25	< 250	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
A-23-012-2.5	2.5	2/7/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-012-5	5	2/7/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-012-15	15	2/7/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA < 5.0	NA < F.O.	NA < 5.0	NA < FO	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A-23-13-0.5' A-23-13-5'	0.5 5	2/6/2023 2/6/2023	SCS Engineers SCS Engineers	< 10 < 10	< 10 < 10	< 50 < 50	< 5.0 NA	< 5.0 NA	< 5.0 NA	< 50 NA	NA NA	NA NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A-23-13-10'	10	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
A-23-14-0.5'	0.5	2/6/2023	SCS Engineers	< 9.9	< 9.9	< 50	< 9.9	< 9.9	< 9.9	< 99	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-14-5'	5	2/6/2023	SCS Engineers	< 10	< 10	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-14-10'	10	2/6/2023	SCS Engineers	< 9.9	170	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	·								<u> </u>											·			·			<u> </u>

Soil Sample Analytical Results for TPH, VOCs, OCPs Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Servi Frances Control																		3									
March Property P		-		Sampled by	TPH GROs		TPH OROs	DDE	chlor	chlor epoxide	Chlordane	TCLP	WET/STLC	Other OCPs	Ethylbenzene	-	o-Xylene	Propylbenzene	1,3,5-TMB		benzene	Isopropyl	_	Naphthalene	Other VOCs	Phenol	Other SVOCs
	5:1.5				100		10.000	1.000			400				5,0004	550,0004		0.000.0004	070 0004			NE.	0.400.000	0.000		10,000,000	
Control Cont	Health Risk-B	ased Remed	liation Criteria (Residential)'	430	260	12,000	1,800	1,900	1,900	480	NA	NA	NA	5,800^	550,000^	640,000^	3,800,000^	270,000^	300,000^	2,200,000	NE	2,400,000	2,000	NA	19,000,000	NA
Column C	Health Risk-Bo	ased Remedi	ation Criteria (C	Commercial) ¹	2,000	1,200	180,000	8,300	8,500	8,500	2,200	NA	NA	NA	25,000^	2,400,000^	2,800,000^	24,000,000^	1,500,000^	1,800,000^	12,000,000	NE	18,000,000	6,500	NA	1,600,000,000	NA
	Was		1	eria ²													I			1							
April Apri	A 23 015 0 5	T		SCS Engineers							-	00							+								NA NA
Column C		5				- 00							. ,, ,											 			NA NA
	A-23-015-10	10	2/7/2023	SCS Engineers		, , , ,	< 50	NA	NA	NA	1773	NA	. ,, ,	NA	1 17 1	NA	. ,, ,		. , ,	. , ,	1.0.4	1.0.3	NA	1.07.	. ,, ,	, .	NA
April Apri		0.5			. •	. 10						i e	, .						<u> </u>					 			NA NA
		5								1		i e															NA
March Color Colo		10		J						1	1 17 1		, .		1 (7 (, .				, .						NA
According Column		1.5						0.1	-0.1		-/=													 			NA NA
The content of the		4										i												 			NA
Application		0.0)	, .					0.0	3,800													 			NA
MAINTAIN		2.5			1	, .					, , , , , , , , , , , , , , , , , , , ,													 			NA NA
	HA-24-003-0.5	0.0	3/4/2024	SCS Engineers						1	2,800			1													NA
		1				1.0.1							. ,, ,											 			NA
Abs.		0.0		J		, .							. ,, ,		1 (7 (, .	, .	. , , ,	. , , ,		, .		, .			NA NA
MO STATE									· · · ·	<u> </u>	,	i e	•		. ,, ,			†						 			NA
		4											, .														NA
Index-2016 6 2007-2018 10 2007-2018 10 2007-2018 10 2007-2018 2007-201		2.5)				-0.1	-0.1	0.1	-7. 00													 			NA NA
		4				NA		•••		1	<51	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA
		0.5				, .				0.0	5,400		_,,														NA
Index 60/08 52 32/2004 SSS Engineer 10. 94						1 17 1		•••	•••	<u> </u>			1 (7 (1			NA NA
HAZ-PATE 1.5	HA-24-007-0.5	0.5	3/4/2024			NA				1	9,500		NA	1	NA		NA	NA		NA	NA	NA		NA			NA
IAS 100 150		1.5		<u> </u>		, .			0.0	0.0			. ,, ,											1			NA NA
		0.5	-, , -	_ · · · · · · · ·		, .		٠,,	0,,	• • • • • • • • • • • • • • • • • • • •	V2		, .		1 17 1		, .				. ,, ,	,					NA NA
IDAZ 607925 2.5 5559702 SSE Pigleren SA NA NA NA NA NA NA NA	HA-24-008-2.5	2.5	3/5/2024	SCS Engineers	NA	NA	NA	<5.1	<5.1	<5.1		NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10 2-007-4		0.5)				011	01.	<u> </u>	3,400		. ,, ,											 			NA NA
He-54/09/1-5 0.5 S/7/70/24 S.S. Engineers NA NA NA NA NA NA NA N		4		<u> </u>				011	01 .	<u> </u>	2,200		. ,, ,														NA
HAZ-24010-35		5	-,,)									, .		, .		. ,, ,										NA
Int 24 Int 3 5		0.5	· ·							1	<50 3.400			1													NA NA
H-02-011-03 0.5 35/5/224 SS. Engineers NA NA NA NA NA NA NA N		1.5						•••		<u> </u>	1,800	, .	1 (7 (NA
In 24 011 25 25 35/2024 SCS Engineers NA NA NA NA NA NA NA N		2.5								1			. , , ,								. ,, ,	1.0.3					NA
HA-24012-55 0.5 3/5/2024 SCS Engineer; N.A. N.A. N.A. S.S.1 4-5.1		0.5		<u> </u>		101		0.1	-0.1	<u> </u>	\ 01		. ,, ,											1			NA NA
HA-24013-S2 2.5 5/17/2024 SCS Engineers 9.9 4.9		0.5	-, -, -	_ · · · · · · · ·				٠,,	0,,				. , , ,														NA
HA24010425 2.5 S. 51/17/2024 S.CS Impinens NA		2.5				1.0.1	, .	0.1	-0.1	· · · ·	-01		1 17 1		1 17 1	1 17 1	1 (7 (1.07.1		1 0 1	100	1.0.3			. ,, ,	, .	NA
HA-24014-05 0.5 \$1/47/024 \$C.S. Engineers \$1.0 \$1.0 \$2.0 \$5.0		0.5							0.0	0.0	100		. ,, ,														NA NA
HA-24-015-0.5 5.5 5.16/2024 SCS Engineers Cl Cl Cl Cl Cl Cl Cl C		0.5		U				· · · ·	0.1	• • • • • • • • • • • • • • • • • • • •	2,600		. ,, ,														NA NA
HA-24-015-1.5 1.5 5/16/2024 SCS Engineers NA NA NA SQ 27 < 5.0 17.000 NA		2.5								.,,			. ,, ,														NA
HA-24015A-0.5 0.5 7797024 SCS Engineers < 9.9 < 9.9 130 < 10 < 10 < 10 5.600 NA < 2.9 ND NA		0.5		0		1.0					11/555	, .	1 17 1	. , 2													NA NA
HA-24-015A-5		0.5		<u> </u>		100	, .			0.0	5,400		1 17 1	1	1.0.1						, .						NA NA
HA-24-016-4-5 5.0 7/9/2024 SCS Engineers NA NA NA NA HA-24-016-0-5 0.5 5/17/2024 SCS Engineers NA NA N		2.5				101		٠٠.٥	-0.0	.0.0	2,900			. , 2													NA
HA-24-016-0.5 0.5 5/17/2024 SCS Engineers <10 <10 <20 <5.1 <5.1 <5.1 <5.1 <5.1 NA		.,,				, .			0.0	0.0	4,400 780																NA NA
HA-24-017-0.5 0.5 5/20/2024 SCS Engineers < 10 < 10 < 20 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 NA		0.5				1 17 1		0.0	-0.0	0.0	700		, .		. ,, ,		. ,, ,				. ,, ,						NA NA
HA-24-017-1.5 1.5 5/20/2024 SCS Engineers NA NA NA NA S.1 <.5.1 <.5.1 <.5.1 <.5.1 <.5.1 NA			-,,	U				0.0	0.0	1	.00		. ,, ,		1 (7)						1.07						NA
HA-24-019-0.5 0.5 5/20/2024 SCS Engineers < 9.9 < 9.9 35 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 NA					- 10							N.1.A															NA NA
HA-24-020-0.5 0.5 5/20/2024 SCS Engineers 13 < 10 54 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 NA														î													NA NA
HA-24-020-2.5 2.5 5/20/2024 SCS Engineers NA				<u> </u>			1							1										+			NA
HA-24-021-0.5 0.5 5/17/2024 SCS Engineers <10 <10 59 <5.0 <5.0 <5.0 <5.0 NA NA<										1																	NA NA
HA-24-022-0.5 0.5 5/17/2024 SCS Engineers < 9.9 < 9.9 < 9.0 < 5.0 < 5.0 < 5.0 NA				J			1			ì																	NA
HA-24-022-2.5 2.5 5/17/2024 SCS Engineers NA NA NA S.0 <5.0 <5.0 <5.0 NA		2.5		J										1													NA
				-			1			1	- 55													1			NA NA
	HA-24-023-0.5	0.5	5/16/2024	SCS Engineers	< 9.9	< 9.9	<20	<5.1	<5.1	<5.1	<51	NA NA	NA NA	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
HA-24-023-2.5 2.5 5/16/2024 SCS Engineers NA NA NA S.0 <5.0 <5.0 <5.0 NA	HA-24-023-2.5	2.5	5/16/2024		NA	NA	NA	<5.0	<5.0	<5.0	<50	i	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Soil Sample Analytical Results for TPH, VOCs, OCPs Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Sample Identifier	Sample Depth	Sample Date	Sampled by	TPH GROs		TPH OROs	DDE		Hepta- chlor epoxide	Chlordane	Chlordane TCLP	Chlordane WET/STLC	Other OCPs	Ethylbenzene	m,p- Xylenes	o-Xylene	Propylbenzene	1,3,5-TMB	1,2,4-TMB	sec-Butyl- benzene	para- Isopropyl Toluene	n-Butyl- benzene	Naphthalene	Other VOCs	Phenol	Other SVOCs
Health F	sk-Based Remed	diation Criteria	(Pesidential) ¹	430	mg/kg 260	12,000	1,800	1,900	1,900	480	NA NA	g/L NA	NA	5,800^	550,000^	640,000^	3,800,000^	270,000^	μ g/k 300,000^	g 2,200,000	NE	2,400,000	2,000	NA	19,000,000	NA
			· · · · · · · · · · · · · · · · · · ·															·								
	k-Based Remed			2,000	1,200	180,000	8,300	8,500	8,500	2,200	NA	NA	NA	25,000^	2,400,000^	2,800,000^	24,000,000^	1,500,000^	1,800,000^	12,000,000	NE	18,000,000	6,500	NA	1,600,000,000	NA
	Waste-Based Re Hazardous Y	emediation Crite Waste Criteria ¹	eria	NA	NA	NA	NA	NA	NA	2,500	30	250	NA	NA NA	NA	NA	oratory reporting lim	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-024-	.5 0.5	5/16/2024	SCS Engineers	< 9.9	< 9.9	<20	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-024- HA-24-025-		5/16/2024 5/16/2024	SCS Engineers SCS Engineers	NA <10	NA <10	NA 45	5.4 <9.8	< 4.9 < 9.8	< 4.9 < 9.8	< 49 <98	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HA-24-025-		5/16/2024	SCS Engineers	NA	NA	NA 57	< 4.9	< 4.9	< 4.9	< 49	NA	NA	ND	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA
HA-24-026-		7/9/2024 7/9/2024	SCS Engineers SCS Engineers	<10 NA	<10 NA	57	< 5.0 < 5.0	< 5.0 <5.0	< 5.0 < 5.0	63 <50	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HA-24-027-		7/9/2024 7/9/2024	SCS Engineers SCS Engineers	< 9.9 NA	< 9.9 NA	<20 NA	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<50 <50	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HA-24-028-	.5 0.5	5/16/2024	SCS Engineers	<20	20	110	<5.1	<5.1	<5.1	<51	NA NA	NA NA	ND	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	ND	NA NA	NA
HA-24-028-		5/16/2024 5/16/2024	SCS Engineers SCS Engineers	<20 < 9.9	<20 < 9.9	190 <20	<5.0 5.2	<5.0 <5.1	<5.0 <5.1	<50 <51	NA NA	NA NA	ND ND	NA < 5.0	NA < 10	NA < 5.0	NA < 5.0	NA < 5.0	NA < 5.0	NA < 5.0	NA < 5.0	NA < 5.0	NA < 5.0	NA ND	NA NA	NA NA
HA-24-029-	.5 2.5	5/16/2024	SCS Engineers	<10	<10	<20	8.7	<5.0	<5.0	<50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-030-		5/16/2024 5/16/2024	SCS Engineers SCS Engineers	< 9.9 NA	< 9.9 NA	130 NA	< 10 < 4.9	< 10 < 4.9	< 10 < 4.9	< 100 < 49	NA NA	NA NA	ND ND	< 5.0 NA	< 10 NA	< 5.0 NA	< 5.0 NA	< 5.0 NA	< 5.0 NA	< 5.0 NA	< 5.0 NA	< 5.0 NA	< 5.0 NA	ND NA	NA NA	NA NA
HA-24-031-	.5 0.5	7/9/2024	SCS Engineers	< 9.9	< 9.9	<20	<5.0	<5.0	<5.0	100	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-031-		7/9/2024 7/9/2024	SCS Engineers SCS Engineers	NA < 9.9	NA < 9.9	NA <20	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<50 <50	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HA-24-032-	.5 1.5	7/9/2024	SCS Engineers	NA	NA	NA	<5.0	<5.0	<5.0	<50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-033-		7/9/2024 7/9/2024	SCS Engineers SCS Engineers	<10 NA	<10 NA	<20 NA	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<50 <50	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HA-24-034-			SCS Engineers	<10	<10	110	< 10	< 10	< 10	7,200	NA 2.7	<2.8	ND	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
HA-24-034-1 SB-UST-24-1		7/9/2024 5/23/2024	SCS Engineers SCS Engineers	NA 56	NA 1,900	130	< 10 NA	< 10 NA	< 10 NA	5,800 NA	NA	NA NA	ND NA	< 5.0	NA < 10	NA < 5.0	NA < 5.0	NA < 5.0	NA < 5.0	NA < 5.0	< 5.0	NA < 5.0	< 5.0	NA ND	NA NA	NA NA
SB-UST-24-1 SB-UST-24-1-		5/23/2024 5/23/2024	SCS Engineers SCS Engineers	73 < 9.9	890 < 9.9	<20 <20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<250 NA	<500 NA	<250 NA	<250 NA	<250 NA	330 NA	<250 NA	<250 NA	<250 NA	640 NA	ND NA	NA NA	NA NA
SB-UST-24-1-		5/23/2024	SCS Engineers	< 9.9	< 9.9	<20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SB-UST-24-2 SB-UST-24-2		5/23/2024 5/23/2024	SCS Engineers SCS Engineers	< 9.9 <10	< 9.9 <10	<20 <20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 5.0 < 5.0	< 10 < 10	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	ND ND	NA NA	NA NA
SB-UST-24-2-	1.5 11.5	5/23/2024	SCS Engineers	< 9.9	< 9.9	<20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-UST-24-3 SB-UST-24-3-		5/23/2024 5/23/2024	SCS Engineers SCS Engineers	<10 <10	<10 <10	95 <20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SB-UST-24-3	-8 8	5/23/2024	SCS Engineers	<10	<10	<20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-UST-24-3- SB-UST-24-3-		5/23/2024 5/23/2024	SCS Engineers SCS Engineers	< 9.9 < 9.9	< 9.9 < 9.9	<20 92	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SB-UST-24-3-	2.5 12.5	5/23/2024	SCS Engineers	<10 <10	<10 <10	<20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-1~2 T-2~1	1	6/23/2023 6/23/2023	SCS Engineers SCS Engineers	<20	<20	<50 270	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-3 3' T-4 4'	3	6/26/2023 6/26/2023	SCS Engineers	<10 <9.9	<10 <9.9	<50 <50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1-4 4 T-6 4'	4	6/26/2023	SCS Engineers SCS Engineers	<9.9 <10	17	<50 <50	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
T-7 3' T-8 4'	3	6/26/2023 6/26/2023	SCS Engineers SCS Engineers	<9.9 <10	<9.9 <10	<50 <50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1-0 4 T-9 4'	4	6/26/2023	SCS Engineers	<10	<10	<50	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
T-11-4' T-13-2.5	4	6/26/2023 6/27/2023	SCS Engineers SCS Engineers	<20 <10	<20 54	<100 93	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-13-3-NE	3	6/27/2023	SCS Engineers	<100	410	910	NA	NA	NA	NA	NA	NA	NA	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	ND	NA	ND
T-13-3-SW T-13-7	7	6/27/2023 6/27/2023	SCS Engineers SCS Engineers	<10 2,700	170 21,000	150 <1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 <250	<10 <500	<5.0 <250	<5.0 530	<5.0 1,100	<5.0 4,300	<5.0 630	<5.0 1,000	<5.0 1,200	<5.0 18.000	ND ND	NA NA	ND ND
T-14-5	5	6/27/2023	SCS Engineers	<10	<10	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA	ŇA	NA	NA	NA	NA	NA	NA	NA
T-15-5 T-16-5.5	5 5.5	6/27/2023 6/27/2023	SCS Engineers SCS Engineers	<9.9 <10	<9.9 <10	<20 <20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-23-4	4	6/28/2023	SCS Engineers	<10	<10	<50	NA	NA	NA	NA	NA	NA	NA	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	ND	<250	ND
T-23 5' T-23 6.5'	6.5	6/28/2023 6/28/2023	SCS Engineers SCS Engineers	<9.9 <9.9	<9.9 <9.9	<50 <50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 NA	<10 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	ND NA	<250 NA	ND NA
T-24-3.5	3.5	6/28/2023	SCS Engineers	<9.9	<9.9	<50	NA	NA	NA	NA NA	NA	NA NA	NA	NA v5.0	NA 440	NA	NA 15.0	NA <5.0	NA -F.O	NA	NA -F 0	NA <5.0	NA -F.O	NA	NA	NA
T-24-4.5 T-24-6	4.5 6	6/28/2023 6/28/2023	SCS Engineers SCS Engineers	<9.9 <9.9	<9.9 <9.9	<50 <50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5.0 NA	<10 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	<5.0 NA	ND NA	<250 NA	ND NA
T-28 0'	0	6/29/2023	SCS Engineers	<99	<99	390	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-28 2.5' T-28 3'	2.5	6/29/2023 6/29/2023	SCS Engineers SCS Engineers	<9.9 <10	<9.9 <10	<20 <20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-28 4.5' T-29 4'	4.5 4	6/29/2023 6/29/2023	SCS Engineers SCS Engineers	<9.9 <10	<9.9 <10	<20 <20	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-32 M 5'	5	6/30/2023	SCS Engineers	<9.9	<9.9	<20	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA
T-32 SE 5'	5	6/30/2023 5/7/2024	SCS Engineers SCS Engineers	<10 NA	<10 NA	<20 NA	NA < 5.0	NA < 5.0	NA < 5.0	NA < 50	NA NA	NA NA	NA ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T34-2	2	5/7/2024	SCS Engineers	NA NA	NA NA	NA NA	< 5.0 < 5.0	< 5.0	< 5.0	< 50	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA

Soil Sample Analytical Results for TPH, VOCs, OCPs

Midway Rising - Sports Arena

3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Sample Identifier	Sample Depth	Sample Date	Sampled by	TPH GROs	TPH DROs	TPH OROs	DDE	Hepta- chlor	Hepta- chlor epoxide	Chlordane	Chlordane TCLP	Chlordane WET/STLC	Other OCPs	Ethylbenzene	m,p- Xylenes	o-Xylene	Propylbenzene	1,3,5-TMB	1,2,4-TMB	sec-Butyl- benzene	para- Isopropyl Toluene	n-Butyl- benzene	Naphthalene	Other VOCs	Phenol	Other SVOCs
					mg/kg			μ	ıg/kg		μς	j/L							μg/k	g						
Health Risk-E	Based Remedi	iation Criteria (Residential) ¹	430	260	12,000	1,800	1,900	1,900	480	NA	NA	NA	5,800^	550,000^	640,000^	3,800,000^	270,000^	300,000^	2,200,000	NE	2,400,000	2,000	NA	19,000,000	NA
Health Risk-B	ased Remedic	ation Criteria (C	Commercial) ¹	2,000	1,200	180,000	8,300	8,500	8,500	2,200	NA	NA	NA	25,000^	2,400,000^	2,800,000^	24,000,000^	1,500,000^	1,800,000^	12,000,000	NE	18,000,000	6,500	NA	1,600,000,000	NA
Wa	ıste-Based Rer	mediation Crite	eria ²		•									Any detectab	e concentrat	ion above labo	ratory reporting limi	ts								
	Hazardous W	Vaste Criteria ¹		NA	NA	NA	NA	NA	NA	2,500	30	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T35-0.5	0.5	5/7/2024	SCS Engineers	NA	NA	NA	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T35-5	5.0	5/7/2024	SCS Engineers	<10	<10	<20	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T36-2	2	5/7/2024	SCS Engineers	NA	NA	NA	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T37-4	4	5/7/2024	SCS Engineers	<10	<10	<20	NA	NA	NA	NA	NA	NA	NA	< 5.0	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	ND	ND	ND
T38-1	1	5/7/2024	SCS Engineers	NA	NA	NA	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T38-3.5	3.5	5/7/2024	SCS Engineers	<10	<10	52	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T39-1	1	5/7/2024	SCS Engineers	NA	NA	NA	< 5.0	< 5.0	< 5.0	< 50	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T40-1 T41-1	1 1	5/8/2024 5/8/2024	SCS Engineers	NA	NA NA	NA NA	<5.1 < 4.9	<5.1 < 4.9	<5.1 < 4.9	<51 < 49	NA NA	NA NA	ND ND	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Based Remedi	iation Criteria (SCS Engineers Residential) ¹	NA 430	260	12,000	1,800	130	70	480	NA NA	NA NA	NA NA	5,800^	550,000^	640,000^	3,800,000^	270,000^	300,000^	2,200,000	NE NE	2,400,000	2,000	NA NA	19,000,000	NA NA
Health Risk-B	ased Remedic	ation Criteria (C	Commercial) ¹	2,000	1,200	180,000	8,300	630	130	2,200	NA	NA	NA	25,000^	2,400,000^	2,800,000^	24,000,000^	1,500,000^	1,800,000^	12,000,000	NE	18,000,000	6,500	NA	1,600,000,000	NA
Wa	iste-Based Rer	mediation Crite	eria ²											Any detectab	e concentrat	ion above labo	ratory reporting limi	ts								
	Hazardous W	Vaste Criteria ¹		NA	NA	NA	NA	NA	NA	2,500	30	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Soil samples collected by SCS Engineers on 2/6-7/2023, 3/23/2023, 3/4-5/2024, 5/7-5/8/2024 and 5/16- 5/23/24, and 7/9/24.

Samples analyzed for total petroleum hydrocarbons (TPH) in general accordance with U.S. Environmental Protection Agency (EPA) Method 8015B, volatile organic compounds (VOCs) in general accordance with

EPA Method 8260B, and/or organochlorine pesticides (OCPs) with EPA Method 8081A, with select samples further analyzed for chlordane leachability using the Waste Extraction Test (WET) or Toxicity Characteristic Leaching Procedure (TCLP).

TPH: total petroleum hydrocarbons, GROs: gasoline-range organics; DROs: diesel-range organics OROs: oil-range organics.

Results for TPH reported in milligrams per kilogram (mg/kg); results for VOCs and OCPs reported in micrograms per kilogram (µg/kg).

Bold values indicate a specific analyte was reported above its respective laboratory reporting limit.

< indicates specific analyte was reported below its respective laboratory reporting limit; ND indicates group of analytes was reported below their respective laboratory reporting limits.

NA: Not applicable/not analyzed.

1,3,5-TMB: 1,3,5-trimethylbenzene.

1,2,4-TMB: 1,2,4-trimethylbenzene.

1: Health Risk-Based Criteria: For TPH and OCPs, the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial users, dated 2019 (revised).

For VOCs, the Human Health Risk Assessment Note 3 - Department of Toxic Substances Control (DTSC)-Modified Screening Levels (DTSC-SLs), Table 3 - Screening Levels for Soil Analytes. Residential. June 2020 Update, Revised May 2022.

^ A DTSC-SL has not been established for this constituent. The EPA Regional Screening Level (RSL) dated May 2024 was used for this constituent.

2: Waste-Based Criteria: for chemical constituents such as organochlorine pesticides, detectable concentrations would be considered a regulated waste if exported from the Site,

per the Regional Water Quality Control Board (RWQCB) Tier 1 Soil Screening Levels (SSLs) for waste, March 13, 2024. 3: Hazardous Waste Criteria: Values shown from CA code of regulations, Title 22 Article 3, July 20, 2005 regarding characteristics of hazardous waste.

Red font: Constituent result above the Health Risk-Based regulatory screening criteria. : Yellow highlight indicates the constituent result above the Hazardous Waste Criteria.

1) Hazardous Waste Criteria: Values shown from CA code of regulations, Title 22 Article 3, July 20, 2005 regarding characteristics of hazardous waste. Exceedances of the Total Threshold Limit Concentration

(TTLC) or Soluble Threshold Limit Concentration (STLC) would be considered a California hazardous waste, at a minimum.

Table 2 Soil Sample Analytical Results for Title 22 Metals Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard

San Diego, California

Sample Identifier	Depth	Date	Sampled by	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Total Lead	WET/STLC Arsenic	WET/STLC Barium	WET/STLC Chro- mium	WET/STLC Copper	WET/STLC Lead	WET/TCLP Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
						-1	1	mg/kg	l			1		1	mg	/L		l				mg/	kg			
		ed Criteria ¹		31	12*	15,000	1,600	910	NE	23	3,200	80	NA	NA	NA	NA	NA	NA	1.0	390	15,000	390	390	12	1,200	350,000
		te Criteria ²	3	500	500	10,000	75	100	2,500	8,000	2,500	1,000	5	5	5	5	5	5	20	3,500	2,000	100	500	700	2,400	5,000
DPV-23-031-0.5	1	ening Criterio 2/7/2023	SCS Engineers	5.0 < 2.9	7.7	509 240	4.0 < 0.49	< 0.49	122	7.2	60 15	23.9 15	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.26	2.0 < 0.98	57 6.7	< 2.9	2.0 < 0.49	0.78 < 2.9	112 41	149 47
DPV-23-031-0.5	0.5 2.5	2/7/2023	SCS Engineers	NA	8.1	NA	NA	NA	NA	NA	NA	14	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-031-5.0	5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	6.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-031-7.5	7.5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	3.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-032-0.5	0.5	2/7/2023	SCS Engineers	< 2.9	5.7	150	< 0.49	< 0.49	5.9	3.3	6.0	12	NA	NA	NA	NA	NA	NA	< 0.16	< 0.98	16	< 2.9	< 0.49	< 2.9	27	33
DPV-23-032-2.5	2.5	2/7/2023	SCS Engineers	NA	7.8	NA	NA	NA	NA	NA	NA	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-032-5.0	5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	7.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-032-7.5	7.5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-033-0.5	0.5	2/6/2023	SCS Engineers	< 2.9	4.9	130	< 0.49	< 0.49	15	5.1	9.9	8.8	NA	NA	NA	NA	NA NA	NA	< 0.15	< 0.98	5.8	< 2.9	< 0.49	< 2.9	34	33
DP-23-033-2.5	2.5	2/6/2023	SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	13 9.8	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-033-5.0 DP-23-033-7.5	7.5	2/6/2023	SCS Engineers SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	12	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
DP-23-034-0.5	0.5	2/6/2023	SCS Engineers	< 2.9	4.0	95	< 0.49	< 0.49	15	6.0	10	11	NA	NA	NA	NA	NA	NA	< 0.14	< 0.98	6.2	< 2.9	< 0.49	< 2.9	41	65
DP-23-034-2.5	2.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	8.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-034-5.0	5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-034-7.5	7.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	6.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-035-0.5	0.5	2/7/2023	SCS Engineers	< 3.0	5.0	69	< 0.50	< 0.50	7.0	3.8	13	16	NA	NA	NA	NA	NA	NA	< 0.15	1.6	16	< 3.0	< 0.50	< 3.0	26	96
DPV-23-035-2.5	2.5	2/7/2023	SCS Engineers	NA	2.4	NA	NA	NA	NA	NA	NA	5.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-035-5.0	5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	6.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-035-7.5 DP-23-036-0.5	7.5	2/7/2023	SCS Engineers	NA < 2.0	NA 3.8	NA 44	NA - 0.49	NA < 0.40	NA 14	6.3	NA 7.9	34 10	NA	NA	NA	NA NA	NA NA	NA	NA < 0.17	NA < 0.07	7.9	NA < 2.0	NA - 0.40	NA < 2.0	NA 33	NA 39
DP-23-036-0.5 DP-23-036-3.0	0.5 3.0	2/6/2023	SCS Engineers SCS Engineers	< 2.9 NA	NA	NA	< 0.49 NA	< 0.49 NA	NA	NA	NA	9.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.16 NA	< 0.97 NA	NA	< 2.9 NA	< 0.49 NA	< 2.9 NA	NA	NA
DP-23-036-5.0	5.0	2/6/2023	SCS Engineers	NA NA	NA	NA NA	NA	NA NA	NA NA	NA.	NA	< 0.96	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA NA
DP-23-036-7.5	7.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	5.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-037-0.5	0.5	2/6/2023	SCS Engineers	< 2.9	< 0.97	79	< 0.49	< 0.49	14	4.8	7.0	3.4	NA	NA	NA	NA	NA	NA	< 0.16	< 0.97	3.6	< 2.9	< 0.49	< 2.9	42	26
DP-23-037-2.5	2.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	8.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-037-5.0	5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-037-7.5	7.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	2.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-038-0.5	0.5	3/23/2023	SCS Engineers	< 2.9	5.9	65	0.56	< 0.48	7.1	3.6	7.3	6.6	NA	NA	NA	NA	NA	NA	< 0.15	< 0.95	4.4	< 2.9	< 0.48	< 2.9	14	28
DP-23-038-2.5	2.5	3/23/2023	SCS Engineers	NA NA	8.2	NA	NA	NA NA	NA NA	NA NA	NA	13	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA
DP-23-038-5.0 DP-23-038-7.5	5 7.5	3/23/2023	SCS Engineers SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.98 < 0.98	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-039-0.5	0.5	3/23/2023	SCS Engineers	< 2.9	5.6	31	< 0.49	< 0.49	16	5.3	8.5	4.6	NA	NA	NA	NA	NA	NA	< 0.17	< 0.97	6.9	< 2.9	< 0.49	< 2.9	40	43
DP-23-039-2.5	2.5	3/23/2023	SCS Engineers	NA	6.9	NA	NA	NA	NA	NA	NA	7.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-039-5.0	5	3/23/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	< 0.97	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-039-7.5	7.5	3/23/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-040-0.5	0.5	3/23/2023	SCS Engineers	< 2.9	1.5	180	< 0.49	< 0.49	31	9.6	20	1.3	NA	NA	NA	NA	NA	NA	< 0.15	< 0.97	7.7	< 2.9	< 0.49	< 2.9	75	49
DP-23-040-2.5	2.5	3/23/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	8.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-040-5.0			SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	< 0.97	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-040-7.5	7.5	3/23/2023	SCS Engineers	NA < 2.0	NA 1.0	NA 100	NA - 0.49	NA	NA 20	NA 6.6	NA 12	< 0.97	NA	NA	NA	NA	NA NA	NA	NA < 0.14	NA < 0.07	NA 4.1	NA < 2.0	NA	NA < 2.0	NA E2	NA 33
DP-23-041-0.5 DP-23-041-2.5	0.5 2.5	3/23/2023 3/23/2023		< 2.9 NA	1.9 NA	100 NA	< 0.49 NA	< 0.49 NA	NA	NA	13 NA	< 0.97 1.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.14 NA	< 0.97 NA	6.1 NA	< 2.9 NA	< 0.49 NA	< 2.9 NA	53 NA	33 NA
DP-23-041-5.0	5	3/23/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
DP-23-041-7.5	7.5	3/23/2023		NA	NA	NA	NA	NA	NA	NA	NA	6.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-042-0.5	0.5	3/23/2023	SCS Engineers	< 3.0	4.1	59	< 0.50	< 0.50	18	6.0	9.8	4.8	NA	NA	NA	NA	NA	NA	< 0.14	< 0.99	7.6	< 3.0	< 0.50	< 3.0	43	43
DP-23-042-2.5	2.5	3/23/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	< 0.96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-042-5.0	5	3/23/2023		NA	NA	NA	NA	NA	NA	NA	NA	< 0.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-042-7.5	7.5	3/23/2023	SCS Engineers	NA	NA	NA	NA	NA 10.10	NA	NA	NA	< 0.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DP-23-043-0.5	0.5	2/6/2023	SCS Engineers	< 2.9	3.3	60	< 0.48	< 0.48	18	5.9	8.4	8.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.14	< 0.96	7.3	< 2.9	< 0.48	< 2.9	42	39
DP-23-043-4.0 DP-23-043-5.0	4.0 5	2/6/2023	SCS Engineers SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.7 1.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DP-23-043-7.5	7.5	2/6/2023		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	28	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
DPV-23-051-0.5	0.5	2/6/2023	SCS Engineers	< 3.0	24	58	< 0.50	< 0.50	7.5	3.6	6.2	10	NA	NA	NA	NA	NA	NA	< 0.17	< 0.99	3.9	< 3.0	< 0.50	< 3.0	22	34
DPV-23-051-2.5	2.5	2/6/2023	SCS Engineers	NA	3.3	NA	NA	NA	NA	NA	NA	7.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-051-5.0	5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-051-7.5	7.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-052-0.5		2/6/2023	SCS Engineers	< 2.9	5.3	45	< 0.49	< 0.49	13	6.2	6.3	7.8	NA	NA	NA	NA	NA	NA	< 0.15	< 0.98	8.2	< 2.9	< 0.49	< 2.9	36	48
DPV-23-052-2.5	2.5	2/6/2023	SCS Engineers	NA	11	NA	NA	NA	NA	NA	NA	6.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
DPV-23-052-5.0	5 7.5	2/6/2023		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5.8	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DPV-23-052-7.5	7.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 2 Soil Sample Analytical Results for Title 22 Metals Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Sample Identifier	Depth	Date	Sampled by	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Total Lead	WET/STLC Arsenic	WET/STLC Barium	WET/STLC Chro- mium	WET/STLC Copper	WET/STLC Lead	WET/TCLP Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Hogiti	h Risk-Base	d Critoria ¹		31	12*	15,000	1,600	mg/kg 910	NE	23	3,200	80	NA	NA	MA NA	NA NA	NA	NA	1.0	390	15,000	mg/k 390	g 390	12	1,200	350,000
	rdous Wast			500	500	10,000	75	100	2,500	8,000	2,500	1,000	5	5	5	5	5	5	20	3,500	2,000	100	500	700	2,400	5,000
		ning Criteria	3	5.0	12**	509	4.0	4	122	20	60	23.9	NA	NA	NA	NA	NA	NA	0.26	2.0	57	0.21	2.0	0.78	112	149
DPV-23-053-0.5	0.5	2/6/2023	SCS Engineers	< 2.9	1.7	340	< 0.48	< 0.48	14	3.9	4.3	6.0	NA	NA	NA	NA	NA	NA	< 0.15	< 0.95	4.0	< 2.9	< 0.48	< 2.9	43	12
DPV-23-053-2.5	2.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	9.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-053-5.0	5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	9.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DPV-23-053-7.5	7.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	< 0.97	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-11-0.5'	0.5	2/6/2023	SCS Engineers	< 2.9	< 9.5	31	< 0.48	0.48	15	5.8	7.4	7.7	NA	NA	NA	NA	NA	NA	< 0.16	< 0.95	7.9	< 2.9	< 0.48	< 2.9	36	44
A-23-11-2.5'	2.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-11-5.0'	5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	6.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
A-23-11-7.5' A-23-012-0.5	7.5 0.5	2/6/2023	SCS Engineers SCS Engineers	NA < 2.9	6.1	60	NA < 0.48	NA < 0.48	NA 12	6.2	NA 11	6.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA < 0.15	NA < 0.95	7.7	NA < 2.9	NA < 0.48	NA < 2.9	NA 37	NA 52
A-23-012-0.5 A-23-012-2.5	2.5	2/7/2023	SCS Engineers	8.8	6.4	580	< 0.40	0.88	28	6.8	130	3,500	NA NA	NA	NA	NA NA	12	0.65	0.48	< 0.99	13	< 3.0	5.0	< 3.0	40	840
A-23-012-5.0	5	2/7/2023	SCS Engineers	NA	3.7	NA	NA	NA	NA	NA	NA	1,400	NA	NA	NA	NA	28	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-012-7.5	7.5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-012-15	15	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	4.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-13-0.5'	0.5	2/6/2023	SCS Engineers	< 2.9	< 9.6	26	< 0.48	< 0.48	14	4.4	11	8.2	NA	NA	NA	NA	NA	NA	< 0.15	< 0.96	5.8	< 2.9	< 0.48	< 2.9	32	39
A-23-13-2.5'	2.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	7.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-13-5'	5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-13-7.5'	7.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	5.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-14-0.5'	0.5	2/6/2023	SCS Engineers	< 2.9	< 9.6	130	< 0.48	< 0.48	12	5.2	8.6	9.7	NA	NA	NA	NA	NA	NA	< 0.16	< 0.96	5.7	< 2.9	< 0.48	< 2.9	28	32
A-23-14-2.5'	2.5	2/6/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	8.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-14-5' A-23-14-7.5'	7.5	2/6/2023	SCS Engineers SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.1 2.9	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A-23-015-0.5	0.5	2/7/2023	SCS Engineers	< 2.9	6.9	120	< 0.49	< 0.49	15	4.9	6.1	9.6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.15	< 0.98	5.3	< 2.9	< 0.49	< 2.9	26	30
A-23-015-0.5 A-23-015-2.5	2.5	2/7/2023	SCS Engineers	NA	10	NA	NA	NA	NA	NA	NA	12	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-015-5.0	5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-015-7.5	7.5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	9.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-016-0.5	0.5	2/7/2023	SCS Engineers	< 2.9	3.5	82	< 0.48	< 0.48	20	6.7	14	21	NA	NA	NA	NA	NA	NA	< 0.16	< 0.96	8.0	< 2.9	< 0.48	< 2.9	46	64
A-23-016-2.5	2.5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	5.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-016-5.0	5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A-23-016-7.5	7.5	2/7/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-001-1.5	1.5	3/4/2024	SCS Engineers	< 2.9	10	84	< 0.48	< 0.48	16	6.0	11	12	NA	NA	NA	NA	NA	NA	< 0.15	<1.1	7.8	< 2.9	< 0.48	< 2.9	36	51
HA-24-001-3	3	3/4/2024	SCS Engineers	< 3.0	7.0	87	< 0.50	< 0.50	12	5.4	9.1	11	NA	NA	NA	NA	NA	NA	< 0.16	<1.1	5.8	< 3.0	< 0.50	< 3.0	29	37
HA-24-001-4	4	3/4/2024	SCS Engineers	< 2.9 < 2.9	12 4.8	76 73	< 0.49 < 0.48	< 0.49 < 0.48	13 19	5.6 9.1	8.9 14	8.9 9.9	NA NA	NA NA	NA	NA NA	NA NA	NA NA	< 0.15 < 0.15	<1.1 <0.95	5.9 8.0	< 2.9 < 2.9	< 0.49 < 0.48	< 2.9 < 2.9	32 45	33 46
HA-24-013-0.5 HA-24-013-2.5	0.5 2.5	5/17/2024 5/17/2024	SCS Engineers SCS Engineers	NA	2.7	NA	NA	NA	NA	NA	NA	1.9	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-014-0.5	0.5	5/16/2024	SCS Engineers	< 3.0	7.5	93	0.53	< 0.50	7.3	4.8	8.7	11	NA	NA	NA	NA	NA	NA	< 0.16	<1.0	5.0	< 3.0	< 0.50	< 3.0	18	31
HA-24-014-2.5	2.5	5/16/2024	SCS Engineers	NA	6.7	NA	NA	NA	NA	NA	NA	7.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-015-0.5	0.5	5/16/2024	SCS Engineers	< 3.0	4.7	74	< 0.50	< 0.50	18	9.4	46	7.0	NA	NA	NA	NA	NA	NA	< 0.15	<1.0	5.7	< 3.0	< 0.50	< 3.0	34	30
HA-24-015-1.5	1.5	5/16/2024	SCS Engineers	NA	4.8	NA	NA	NA	NA	NA	NA	8.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COMP HA-24-015-0.5, 1.5	5 0.5, 1.5	5/16/2024	SCS Engineers	< 2.9	5.2	77	< 0.49	< 0.49	16	17	49	8.5	NA	NA	NA	NA	<0.15	<0.015	<0.14	<0.97	8.0	< 2.9	< 0.49	< 2.9	35	39
HA-24-015A-0.5	0.5	7/9/2024	SCS Engineers	< 3.0	6.8	79	< 0.50	< 0.50	14	15	21	10	NA	NA	NA	NA	NA	NA	<0.14	<1.0	7.0	< 3.0	< 0.50	< 3.0	32	40
HA-24-015A-2.5	2.5	7/9/2024	SCS Engineers	< 2.9	5.0	100	< 0.49	< 0.49	22	7.3	13	8.7	NA	NA	NA	NA	NA	NA	<0.16	<0.98	7.6	< 2.9	< 0.49	< 2.9	53	43
HA-24-016-0.5	0.5	5/17/2024		< 3.0	2.7	92	< 0.50	< 0.50	15	12	30	2.8	NA	NA	NA	NA	NA	NA	< 0.17	<0.99	5.8	< 3.0	< 0.50	< 3.0	66	33
HA-24-016-2.5	2.5	5/17/2024		NA	5.5	NA 00	NA 10.10	NA 10.10	NA 12	NA	NA 15	9.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 10.10	NA	NA 5	NA 10
HA-24-017-0.5	0.5	5/20/2024		< 2.9	2.1	98	< 0.49	< 0.49	13	6.7	15	2.8 14	NA	NA	NA	NA	NA	NA	< 0.16	<0.98	4.6	< 2.9	< 0.49	< 2.9	56	19
HA-24-017-1.5 HA-24-019-0.5	1.5 0.5	5/20/2024 5/20/2024	SCS Engineers SCS Engineers	NA < 3.0	5.1 1.3	NA 110	NA < 0.50	NA < 0.50	6.0	7.3	NA 30	1.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA < 0.16	NA <1.0	NA 3.1	NA < 3.0	NA < 0.50	NA < 3.0	NA 65	NA 24
HA-24-019-0.5	2.5	5/20/2024	SCS Engineers	NA	2.1	NA	\ 0.30	NA	NA	NA	NA	<0.99	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-020-0.5	0.5	5/20/2024		< 2.9	1.5	74	< 0.48	< 0.48	10	16	42	1.6	NA	NA	NA	NA	NA	NA	< 0.16	<0.95	6.0	< 2.9	< 0.48	< 2.9	49	20
HA-24-020-2.5	2.5	5/20/2024		NA	2.2	NA	NA	NA	NA	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-021-0.5	0.5	5/17/2024		< 3.0	1.4	120	< 0.50	< 0.50	6.9	11	30	1.2	NA	NA	NA	NA	NA	NA	< 0.16	<0.99	3.4	< 3.0	< 0.50	< 3.0	69	26
HA-24-021-2.5	2.5	5/17/2024		NA	3.2	NA	NA	NA	NA	NA	NA	2.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-022-0.5	0.5	5/17/2024	SCS Engineers	< 2.9	1.2	140	< 0.49	< 0.49	5.9	9.1	34	<0.98	NA	NA	NA	NA	NA	NA	<0.14	<0.98	3.3	< 2.9	< 0.49	< 2.9	83	28
HA-24-022-2.5	2.5	5/17/2024	SCS Engineers	NA	2.6	NA	NA	NA	NA	NA	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-023-0.5	0.5	5/16/2024		< 3.0	20	120	0.80	< 0.50	5.5	5.6	8.2	9.6	NA	NA	NA	NA	NA	NA	< 0.16	2.0	4.3	< 3.0	< 0.50	< 3.0	19	30
HA-24-023-2.5	2.5	5/16/2024		NA	9.5	NA 70	NA	NA 10.10	NA	NA 5.7	NA 0.4	14	NA	NA	NA	NA	NA	NA	NA	NA	NA . 7	NA	NA . o. to	NA	NA 24	NA 45
HA-24-024-0.5	0.5	5/16/2024		< 2.9	11	73	< 0.48	< 0.48	14	5.7	9.4	11	NA	NA	NA	NA	NA	NA	< 0.16	<0.95	6.7	< 2.9	< 0.48	< 2.9	34	45
HA-24-024-1.5	1.5	5/16/2024	SCS Engineers	NA <30	8.6	NA 500	NA 0.74	NA < 0.50	NA 4.8	NA 42	NA 34	13	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA 20	NA • n	NA < 3.0	NA 0.50	NA <3.0	NA 20	NA 37
HA-24-025-0.5 HA-24-025-2.5	0.5 2.5	5/16/2024 5/16/2024		< 3.0 NA	21 5.6	500 NA	NA	< 0.50 NA	4.8 NA	62 NA	34 NA	23 14	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.17 NA	2.9 NA	9.0 NA	< 3.0 NA	0.50 NA	< 3.0 NA	20 NA	NA
HA-24-025-2.5 HA-24-026-0.5	0.5		SCS Engineers SCS Engineers	< 2.9	3.9	54	< 0.48	< 0.48	14	4.6	11	23	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.16	< 0.96	6.6	< 2.9	< 0.48	< 2.9	33	68
II 177 27 020-0.3	1 0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	200 FURNICEIS		1	1 -	1	0.10		٠.٠٠			1,	,	ı '"'	1,	1,	1,	1 3.10	1		1/	0.10	1/		

Table 2 Soil Sample Analytical Results for Title 22 Metals Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard

San Diego, California

Sample Identifier	Depth	Date	Sampled by	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Total Lead	WET/STLC Arsenic	WET/STLC Barium	WET/STLC Chro- mium	WET/STLC Copper	WET/STLC Lead	WET/TCLP Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
					ı			mg/kg	l .	ı		1			mg,	/L						mg/l	kg			
Health R	Risk-Base	ed Criteria ¹		31	12*	15,000	1,600	910	NE	23	3,200	80	NA	NA	NA	NA	NA	NA	1.0	390	15,000	390	390	12	1,200	350,000
		te Criteria²	3	500	500	10,000	75	100	2,500	8,000	2,500	1,000	5	5	5	5	5	5	20	3,500	2,000	100	500	700	2,400	5,000
	1	ening Criteria		5.0	12**	509	4.0	4	122	20	60	23.9	NA NA	NA NA	NA	NA NA	NA NA	NA NA	0.26	2.0	57	0.21	2.0	0.78	112	149
HA-24-026-2.5	2.5	7/9/2024	SCS Engineers	NA < 2.9	6.8 23	NA 130	1.0	NA < 0.48	9.4	NA 15	NA 14	8.1 12	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA < 0.16	NA 1.8	6.4	NA < 2.9	NA < 0.48	NA < 2.9	NA 39	NA 53
HA-24-027-0.5 HA-24-027-2.5	0.5 2.5	7/9/2024 7/9/2024	SCS Engineers SCS Engineers	NA	6.5	NA	NA	NA	NA	NA	NA	5.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-028-0.5	0.5	5/16/2024	SCS Engineers	< 2.9	3.4	76	< 0.49	< 0.49	18	24	19	63	NA NA	NA	NA	NA.	NA.	NA	< 0.16	<0.97	9.6	< 2.9	< 0.49	< 2.9	46	30
HA-24-028-2.5	2.5	5/16/2024	SCS Engineers	NA	3.8	NA	NA	NA	NA	5.9	NA	7.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-029-0.5	0.5	5/16/2024	SCS Engineers	< 3.0	3.5	100	< 0.50	< 0.50	22	7.1	12	5.9	NA	NA	NA	NA	NA	NA	< 0.15	<0.99	7.7	< 3.0	< 0.50	< 3.0	52	40
HA-24-029-2.5	2.5	5/16/2024	SCS Engineers	NA	4.3	NA	NA	NA	NA	NA	NA	6.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-030-0.5	0.5	5/16/2024	SCS Engineers	< 3.0	4.2	98	< 0.50	< 0.50	21	7.0	13	38	NA	NA	NA	NA	NA	NA	< 0.15	<0.99	9.4	<3.0	< 0.50	<3.0	52	48
HA-24-030-1.5	1.5	5/16/2024	SCS Engineers	NA	2.5	NA	NA	NA	NA	NA	NA	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HA-24-031-0.5	0.5	7/9/2024	SCS Engineers	< 2.9	4.1	120	< 0.48	< 0.48	25	9.1	15	7.8	NA	NA	NA	NA	NA	NA	<0.15	<0.96	8.5	< 2.9	< 0.48	< 2.9	62	48
HA-24-031-2.5	2.5	7/9/2024	SCS Engineers	NA	4.7	NA	NA 10.10	NA 10.10	NA	NA	NA	7.5	NA	NA	NA	NA	NA	NA	NA	NA 10.07	NA To	NA	NA	NA	NA	NA 15
HA-24-032-0.5	0.5	7/9/2024	SCS Engineers	< 2.9	4.6	100	< 0.49	< 0.49	22	11	19	7.2	NA	NA	NA	NA	NA	NA	< 0.16	<0.97	7.9	< 2.9	< 0.49	< 2.9	57	45
HA-24-032-1.5 HA-24-033-0.5	1.5	7/9/2024	SCS Engineers	NA < 2.9	3.5 1.2	NA 98	NA < 0.48	NA < 0.48	NA 14	NA 33	NA 48	4.8 1.6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA < 0.17	NA <0.95	NA 6.8	NA < 2.9	NA < 0.48	NA < 2.9	NA 66	NA 28
HA-24-033-0.5 HA-24-033-2.5	0.5 2.5	7/9/2024 7/9/2024	SCS Engineers SCS Engineers	< 2.9 NA	2.9	NA	< 0.48 NA	V 0.48	NA	8.8	NA	2.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	VA NA	<0.95 NA	NA	< 2.9 NA	< 0.48 NA	< 2.9 NA	NA	NA
HA-24-034-0.5	0.5	7/9/2024	SCS Engineers	<3.0	6.8	87	<0.50	<0.50	13	81	47	10	NA NA	NA	NA	NA	NA	NA	<0.16	<0.99	7.2	<3.0	0.71	<3.0	32	58
HA-24-034-2.5	2.5	7/9/2024	SCS Engineers	<2.9	6.6	98	<0.49	<0.49	13	21	25	15	NA	NA	NA	NA	NA	NA	<0.17	<0.98	7.4	< 2.9	< 0.49	< 2.9	30	39
SG-SB-24-1-3.5	3.5	5/21/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	4.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SG-SB-24-1-5	5	5/21/2024	SCS Engineers	<2.9	4.8	54	< 0.49	< 0.49	14	5.3	9.6	6.8	NA	NA	NA	NA	NA	NA	<0.16	<0.98	6.6	< 2.9	< 0.49	< 2.9	38	36
SG-SB-24-1-6.5	6.5	5/21/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	6.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SG-SB-24-2-2.5	2.5	5/21/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	4.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SG-SB-24-2-4.5	4.5	5/21/2024	SCS Engineers	<2.9	2.2	120	< 0.49	< 0.49	22	7.1	12	1.8	NA	NA	NA	NA	NA	NA	<0.16	<0.98	6.7	< 2.9	< 0.49	< 2.9	56	31
SG-SB-24-2-5.5	5.5	5/21/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	2.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SG-SB-24-3-4 SG-SB-24-3-5	5	5/21/2024	SCS Engineers	NA <2.9	NA 5.9	NA 60	NA < 0.49	NA < 0.49	NA 13	NA 5.3	NA 8.6	6.6 7.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA <0.15	NA <0.97	6.8	NA < 2.9	NA < 0.49	NA < 2.9	NA 36	NA 32
SG-SB-24-3-5.5	5.5	5/21/2024 5/21/2024	SCS Engineers SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<0.99	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
T-1 ~2	2	6/23/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.2	NA	NA	NA	NA	NA	NA.	NA	NA.	NA	NA	NA.	NA	NA	NA
T-2~1	1	6/23/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	8.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-3 3'	3	6/26/2023	SCS Engineers	3.0	22	1,300	<0.48	2.6	34	5.9	260	4,200	NA	2.3	NA	26	6.9	0.41	0.79	1.6	29	<2.9	4.7	<2.9	32	1,900
T-3 6'	6	6/26/2023	SCS Engineers	<2.9	<0.97	65	<0.49	<0.49	14	3.8	5.8	5.8	NA	NA	NA	NA	NA	NA	<0.14	<0.97	3.5	<2.9	<0.49	<2.9	43	23
T-4 4'	4.0	6/26/2023	SCS Engineers	<2.9	3.6	570	<0.49	0.87	26	3.4	130	630	NA	NA	NA	NA	2	NA	0.26	<0.98	9.7	<2.9	6.1	<2.9	31	540
T-4 6.5'	6.5	6/26/2023	SCS Engineers	<3.0 NA	1.1	100 NA	<0.50 NA	<0.50 NA	23 NA	5.6 NA	7.5 NA	1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.16 NA	<0.99 NA	5.1 NA	<3.0 NA	<0.50 NA	<3.0 NA	64 NA	28 NA
T-5 2.5' T-5 4.5'	2.5 4.5	6/26/2023	SCS Engineers SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.1 1.8	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-6 4'	4.5	6/26/2023	SCS Engineers	16	5.0	310	<0.48	0.90	20	4.7	350	3,300	NA NA	NA	NA	5.8	16	1.6	1.1	<0.95	8.3	<2.9	0.72	<2.9	39	530
T-6 5.5'	5.5	6/26/2023	SCS Engineers	<2.9	<0.95	74	<0.48	<0.48	16	4.2	9.3	9.1	NA	NA	NA	NA	NA	NA	<0.16	<0.95	4.1	<2.9	<0.48	<2.9	47	28
T-7 3'	3	6/26/2023	SCS Engineers	<2.9	1.0	110	<0.48	<0.48	20	6.5	9.7	6.4	NA	NA	NA	NA	NA	NA	<0.15	<0.96	5.9	<2.9	<0.48	<2.9	52	35
T-7 5'	5	6/26/2023	SCS Engineers	<2.9	<0.98	78	<0.49	<0.49	16	4.4	6.2	1.1	NA	NA	NA	NA	NA	NA	<0.16	<0.98	4.3	<2.9	<0.49	<2.9	42	24
T-8 4'	4	6/26/2023	SCS Engineers	<2.9	6.7	700	0.53	1.7	37	4.9	1,100	2,600	NA	NA	NA	2.2	15	1.1	1.2	1.1	12	<2.9	4.3	<2.9	34	720
T-8 5.5'	5.5	6/26/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-9 4'	4	6/26/2023	_	71	14	1,300	0.52	2.4	41	4.7	630	6,300	NA	1.7	NA	2.0	7.1	0.84	0.80	1.5	17	<2.9	12	<2.9	31	1,500
T-9 5'	5	6/26/2023	SCS Engineers	15 NA	21	1,900	0.54	3.2	42 NA	6.5	420 NA	5,000	NA NA	1.7	NA NA	8.5 NA	7.0	0.68	0.67	2.3	20	<2.9	12 NA	<2.9	29	1,400
T-9 6' T-10 3.5'	6 3.5	6/26/2023	SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.7 3.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-10 3.5	3.5 6	6/26/2023 6/26/2023	-	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-11-1'	1	6/26/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	9.8	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
T-11-2'	2	6/26/2023	-	NA	NA	NA	NA	NA	NA	NA	NA	2.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-11-3'	3	6/26/2023	SCS Engineers	<2.9	1.6	57	<0.48	<0.48	13	4.0	5.7	1.8	NA	NA	NA	NA	NA	NA	<0.15	<0.95	4.5	<2.9	<0.48	<2.9	33	18
T-11-4'	4	6/26/2023	-	8.0	81	1,200	<0.48	2.9	130	23	290	5,000	<0.30	1.9	<0.30	1.6	8.6	0.98	0.43	6.8	53	5.2	<4.8	<2.9	25	850
T-11-5.5'	5.5	6/26/2023		<2.9	<0.97	29	<0.49	<0.49	9.4	1.9	2.0	2.3	NA	NA	NA	NA	NA	NA	<0.14	<0.97	1.6	<2.9	<0.49	<2.9	33	10
T-12-2	2	6/27/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	5.0	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA
T-12-5	5	6/27/2023	SCS Engineers	NA <2.0	NA 3.6	NA 72	NA <0.49	NA -0.49	NA 44	NA 4.6	NA 6.0	1.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA -0.16	NA <0.06	NA 5.7	NA c2.0	NA -0.49	NA <2.0	NA 36	NA 400
T-13-3-NE T-13-3-SW	3	6/27/2023	SCS Engineers	<2.9 <2.9	3.6 4.1	72 57	<0.48 <0.48	<0.48 <0.48	14 11	4.6 3.7	6.9 26	8.0 9.8	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.16 <0.16	<0.96 <0.95	5.7 4.8	<2.9 <2.9	<0.48 <0.48	<2.9 <2.9	36 29	190 290
T-13-3-5W	7	6/27/2023 6/27/2023	SCS Engineers SCS Engineers	<3.0	2.6	140	<0.46	<0.40	23	7.5	13	2.8	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.16	<1.0	7.3	<3.0	<0.46	<3.0	58	41
T-14-3.5	3.5	6/27/2023	SCS Engineers	NA	NA NA	NA	NA	NA	NA NA	NA	NA	1.2	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA
T-14-5	5	6/27/2023	-	NA	NA	NA	NA	NA	NA	NA	NA	<0.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-15-3.5	3.5	6/27/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<0.96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-15-5	5	6/27/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<0.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-16-3	3	6/27/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<0.95	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 2 Soil Sample Analytical Results for Title 22 Metals Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard

San Diego, California

Sample I	Identifier	Depth	Date	Sampled by	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Total Lead	WET/STLC Arsenic	WET/STLC Barium	WET/STLC Chro- mium	WET/STLC Copper	WET/STLC Lead	WET/TCLP Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
									mg/kg							mg							mg/	ka			
	Health F	Risk-Base	d Criteria ¹		31	12*	15,000	1,600	910	NE	23	3,200	80	NA	NA	NA	NA NA	NA	NA	1.0	390	15,000	390	390	12	1,200	350,000
	Hazard	ous Wast	e Criteria²		500	500	10,000	75	100	2,500	8,000	2,500	1,000	5	5	5	5	5	5	20	3,500	2,000	100	500	700	2,400	5,000
			ning Criteria	3	5.0	12**	509	4.0	4	122	20	60	23.9	NA	NA	NA	NA	NA	NA	0.26	2.0	57	0.21	2.0	0.78	112	149
T-16		5.5	6/27/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<0.95	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-17		4	6/27/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	2.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-17		5	6/27/2023	SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.99	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-18 T-18		1.5	6/27/2023	SCS Engineers SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T-19		2.5	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA NA	NA NA	NA	NA	5.0	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA
T-20		2	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	4.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-2		3	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	7.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-2	21-4	4	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<0.95	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-22	22-3	3	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-22	22-5	5	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<0.97	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-23		2.5	6/28/2023	SCS Engineers	<3.0	5.8	33	<0.50	<0.50	12	4.6	9.2	17	NA	NA	NA	NA	NA	NA	<0.15	<0.99	6.7	<3.0	<0.50	<3.0	33	52
T-20		4	6/28/2023	SCS Engineers	<2.8	14	350	<0.47	1.6	27	8.3	84	620	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.17	1.0	11	<2.8	<0.47	<2.8	47	640
T-23		5	6/28/2023	SCS Engineers	<2.9 <2.9	2.9 1.9	170 190	<0.49 <0.49	<0.49 <0.49	21 18	4.8 4.3	73 28	2,800 190	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.16 0.18	<0.97 <0.97	6.1 4.8	<2.9 <2.9	<0.49 <0.49	<2.9 <2.9	53 50	120 120
T-23		6.5 8.5	6/28/2023 6/28/2023	SCS Engineers SCS Engineers	NA	NA	NA	<0.49 NA	<0.49 NA	NA	NA	NA	1.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	<0.97 NA	NA	<2.9 NA	V0.49	<2.9 NA	NA	NA
T-23		1	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA NA	NA NA	NA	NA	8.1	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA
T-2-		2	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	4.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4-3.5	3.5	6/28/2023	SCS Engineers	6.0	12	2,500	<0.49	2.2	45	5.8	410	4,500	NA	NA	NA	NA	NA	NA	1.5	<0.98	15	<2.9	2.6	<2.9	35	1,000
T-24	4-4.5	4.5	6/28/2023	SCS Engineers	<3.0	2.7	220	<0.50	<0.50	24	5.4	57	270	NA	NA	NA	NA	NA	NA	0.67	<0.99	7.5	<3.0	<0.50	<3.0	51	330
T-24	24-6	6	6/28/2023	SCS Engineers	<2.9	<0.98	49	<0.49	<0.49	18	3.3	4.3	1.0	NA	NA	NA	NA	NA	NA	<0.15	<0.98	2.7	<2.9	<0.49	<2.9	68	19
T-24		7	6/28/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-24		9	6/28/2023	SCS Engineers	NA 10.0	NA 0.4	NA 40	NA 10.40	NA 10.40	NA	NA 5.0	NA 7.0	<0.95	NA	NA	NA	NA	NA	NA	NA 10.40	NA 10.00	NA 7.4	NA 10.0	NA 10.40	NA 10.00	NA	NA 40
T-25		2	6/29/2023	SCS Engineers	<2.9	6.1	42	<0.49	<0.49	17	5.2	7.3	13	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.16	<0.98	7.4	<2.9 <2.9	<0.49	<0.98	39	46
T-25 T-26		6.5 2	6/29/2023	SCS Engineers SCS Engineers	<2.9 <2.9	<0.95 5.9	41 36	<0.48 <0.48	<0.48 <0.48	10 15	2.9 5	3.9 7.3	1.0 8.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.16 <0.16	<0.95 <0.96	2.5 7.2	<2.9	<0.48 <0.48	<0.95 <0.96	31 36	13 41
T-27		1.5	6/29/2023	SCS Engineers	<2.9	6.7	110	0.49	<0.49	13	5.7	9.8	8.5	NA NA	NA	NA	NA	NA	NA NA	<0.15	<0.98	6.8	<2.9	<0.49	<0.98	34	38
T-27		3	6/29/2023	SCS Engineers	<2.9	1.9	120	<0.48	<0.48	24	7.9	12	2.3	NA	NA NA	NA	NA NA	NA	NA NA	<0.15	<0.96	7.1	<2.9	<0.48	<0.96	63	37
T-27		5.5	6/29/2023	SCS Engineers	<2.9	3.1	81	<0.48	<0.48	19	6.1	10	5.2	NA	NA	NA	NA	NA	NA	<0.16	<0.95	7.2	<2.9	<0.48	<0.95	49	37
T-28	28 0'	0	6/29/2023	SCS Engineers	<2.9	4.5	63	<0.48	<0.48	13	4.9	10	8.3	NA	NA	NA	NA	NA	NA	<0.16	<0.95	12	<2.9	<0.48	<0.95	35	52
T-28	3 2.5'	2.5	6/29/2023	SCS Engineers	<2.9	5.2	61	<0.49	<0.49	16	5.9	9.9	7.3	NA	NA	NA	NA	NA	NA	<0.15	<0.98	8.4	<2.9	<0.49	<0.98	40	43
T-28	28 3'	3	6/29/2023	SCS Engineers	<2.9	4.7	67	<0.49	<0.49	18	6.4	10	6.7	NA	NA	NA	NA	NA	NA	<0.16	<0.98	7.7	<2.9	<0.49	<0.98	43	44
T-28		4.5	6/29/2023	SCS Engineers	<2.9	2.0	150	<0.49	<0.49	30	9.3	14	2.7	NA	NA	NA	NA	NA	NA	<0.15	<0.97	8.3	<2.9	<0.49	<0.97	67	46
T-29		4	6/29/2023	SCS Engineers	<2.9 <2.9	1.8 5.6	130 41	<0.49 <0.48	<0.49 <0.48	25 17	7.8 5.8	13 8.5	2.3 7.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.15 <0.14	<0.97 <0.95	7.2 8.6	<2.9 <2.9	<0.49 <0.48	<0.97 <0.95	60 40	39 47
T-30 T-30		2.5 3.5	6/29/2023	SCS Engineers SCS Engineers	<2.9	<0.98	40	<0.49	<0.49	8	2.5	3.4	<0.98	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.14	<0.98	2.4	<2.9	<0.49	<0.98	22	11
T-31		2.5	6/29/2023	SCS Engineers	<2.9	2.4	150	<0.49	<0.49	29	9.1	16	3.6	NA NA	NA	NA	NA	NA	NA NA	<0.14	<0.98	8.8	<2.9	<0.49	<0.98	66	48
T-31		4	6/29/2023	SCS Engineers	<2.9	1.0	82	<0.49	<0.49	17	4.9	7.4	1.3	NA	NA	NA	NA	NA	NA	<0.15	<0.98	4.4	<2.9	<0.49	<0.98	46	24
	NW 1.5'	1.5	6/30/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-32 S	SE 1.5'	1.5	6/30/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	6.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-32 N	NW 3.5'	3.5	6/30/2023	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<0.99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T-32		5	6/30/2023		<0.96	<0.96	55	<0.48	<0.48	14	3.1	4.5	<0.96	NA	NA	NA	NA	NA	NA	<0.15	<0.96	3.5	<2.9	<0.48	<2.9	43	17
T-32		5	6/30/2023		NA	NA	NA	NA	NA	NA	NA	NA	<0.96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	3-2	2	5/7/2024	SCS Engineers	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	2.2	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA
T33	3-4	5	5/7/2024 5/7/2024	SCS Engineers SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.6 3.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	14-2	2	5/7/2024	SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	11	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	4-4	4	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4-5	5	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	9.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T34		6	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5-0.5	0.5	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	7.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5-2.5	2.5	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	8.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5-5	5	5/7/2024	SCS Engineers	<2.9	4.2	180	0.52	< 0.49	31	10	17	5.6	NA	NA	NA	NA	NA	NA	<0.16	< 0.97	10	<2.9	<0.49	<2.9	68	55
T36		2	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	23	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
T .		2.5	5/7/2024	SCS Engineers	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3.0 1.8	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
T36		ı 2.5	5/7/2024	SCS Engineers	NA	NA		NA 0.00	NA 0.03	NA 35	NA 8.7	NA 160	-		NA NA	NA NA	NA NA	NA NA	NA NA	NA 3.0	< 0.95	18	<2.9	NA 2.2	<2.9	50	650
T37-			5/7/2024	SCS Engineers	5.1	97	300	().90																			
T37- T37	7-4	4 5	5/7/2024 5/7/2024	SCS Engineers SCS Engineers	5.1 NA	9.7 NA	1,300 NA	0.90 NA	0.93 NA				1,600 3.1	NA NA			NA.						ł				
T37-	7-4 7-5		5/7/2024 5/7/2024 5/7/2024	SCS Engineers	5.1 NA NA	9.7 NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Table 2

Soil Sample Analytical Results for Title 22 Metals Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard

San Diego, California

Sample Identifier	Depth	Date	Sampled by	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Total Lead	WET/STLC Arsenic	WET/STLC Barium	WET/STLC Chro- mium	WET/STLC Copper	WET/STLC Lead	WET/TCLP Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
								mg/kg							mg	/L						mg/k	g			
Health	Risk-Base	d Criteria ¹		31	12*	15,000	1,600	910	NE	23	3,200	80	NA	NA	NA	NA	NA	NA	1.0	390	15,000	390	390	12	1,200	350,000
Hazar	dous Waste	e Criteria²		500	500	10,000	75	100	2,500	8,000	2,500	1,000	5	5	5	5	5	5	20	3,500	2,000	100	500	700	2,400	5,000
Waste-Ba	sed Scree	ning Criteria	1 ³	5.0	12**	509	4.0	4	122	20	60	23.9	NA	NA	NA	NA	NA	NA	0.26	2.0	57	0.21	2.0	0.78	112	149
T38-2	4	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T38-3.5	3.5	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	7.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T39-1	1	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	9.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T39-2	2	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	9.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T39-4	4	5/7/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	3.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T40-1	1	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T40-2.5	2.5	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T40-4	4	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	2.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T41-1	1	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	9.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T41-3	3	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T41-4.5	4.5	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T42-1	1	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	7.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T42-2	2	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
T42-4.5	4.5	5/8/2024	SCS Engineers	NA	NA	NA	NA	NA	NA	NA	NA	< 0.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

Soil samples collected by SCS Engineers on 2/6-7/2023, 3/23/2023, 6/23-30/2023, 3/4/2024, 5/7-5/8/2024 and 5/16-5/23/24, and 7/9/24.

Soil samples were analyzed for Title 22 metals by Environmental Protection Agency (EPA) Method 6010B, with select samples further analyzed for metals leachability using the Waste Extraction Test (WET) or Toxicity Characteristic Leaching Procedure (TCLP).

1) Health Risk-Based Criteria - For lead, the Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number: 3, June 2020, Revised May 2022, using the recommended Screening Levels (SL) for residential

soil and cancer endpoint, or, for other metals not listed in HHRA Note 3, the Regional Screening levels for residential soil, provided by the EPA and updated as of May 2024 were used. For other metals not listed in HHRA Note 3, the Regional Screening levels for residential soil, provided by the EPA and updated as of May 2024 were used.

*For arsenic, although the DTSC RSL is 0.36 mg/kg, naturally occurring arsenic typically exceeds human health risk screening criteria. Therefore, the DTSC upper-bound background concentration for arsenic of 12 mg/kg was used.

2) Hazardous Waste Criteria: Values shown from California code of regulations, Title 22 Article 3, July 20, 2005, regarding characteristics of hazardous waste.

3) Waste-Based Screening Criteria: Regional Water Quality Control Board (RWQCB) Soil Screening Levels (SSLs) for waste (i.e., soil export). Tier 1 SSLs are the criteria by which soil is judged to be "inert waste soils that can be reused without restriction" as developed by the RWQCB (Waiver).

**For arsenic, although theRWQCB Tier 1 SSL is 3.5 mg/kg, naturally occuring arsenic typically exceeds human health risk screening criteria. Therefore, the DTSC upper-bound background concentration for arsenic of 12 mg/kg was used.

mg/L : milligrams per liter.

mg/kg: milligrams per kilogram.

 $\mathrel{<:}$ indicates the specific analyte was reported below the laboratory reporting limit.

CR 6: Hexavalent chromium.

NA: sample not analyzed for specific analyte.

NE: Screening criteria not established. STLC: Soluble threshold limit concentration.

TCLP: Toxicity characteristic leaching procedure.

Bold font: Constituent result above the laboratory reporting limit.

Red font: Constituent result above the Health Risk-Based regulatory screening criteria.

Blue font: Constituent result above the Waste-Based regulatory screening criteria.

Yellow highlight: Constituent above the Hazardous Waste-Based regulatory screening criteria.

Table 3

Groundwater Sample Analytical Results for TPH and VOCs Midway Rising - Sports Arena 3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard

0, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Sample ID	Date	TPHg	TPHd	ТРНо	Bromodichloro- methane	Dibromochloro- methane	PCE	TCE	m,p- Xylenes	o-Xylene	1,2,4- Trimethyl- benzene	Naph- thalene	Other VOCs
			mg/L					μg/L					
DP-23-034-GW	2/6/2023	< 0.094	0.26	0.91	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND
DP-23-035-GW	2/6/2023	< 0.097	< 0.097	< 0.29	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND
DP-23-036-GW	2/6/2023	< 0.096	< 0.096	< 0.29	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND
DP-23-037-GW	2/6/2023	< 0.19	0.27	1.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND
A-23-13	2/6/2023	< 0.58	0.60	< 1.7	0.5	0.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND
SB-UST-24-2-W	5/23/2024	0.84	3.4	<2.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.9	5.4	ND
SB-UST-24-3-W	5/23/2024	< 0.20	1.2	<0.60	< 0.5	< 0.5	< 0.5	< 0.5	1.6	0.6	< 0.5	< 0.5	ND
Health Risk-Based C	Criteria ¹	100	100	NE	0.87	46	0.64	1.20	20	20	NE	0.17	NA

Notes:

TPH: Total Petroleum Hydrocarbons. Samples from SCS analyzed in general accordance with EPA Method 8015B.

VOCs: Volatile Organic Compounds. Samples from SCS analyzed in general accordance with EPA Method 8260B.

mg/L: milligrams per liter.

µg/L: micrograms per liter.

< : less than the laboratory reporting limit.

ND: Not detected above the laboratory reporting limit.

TPHo: TPH oil-range organics.

TPHd: TPH diesel-range organics.

TPHg: TPH gasoline-range organics.

PCE: Tetrachloroethene.

TCE: Trichloroethene.

--: not analyzed.

1) Health Risk-Based Criteria - For TPH and VOCs: The San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) Tier 1 Environmental Screening Levels (ESLs), dated 2019, Revision 2.

Red font: Constituent result above the Health Risk-Based Criteria.

Bold font indicates concentrations above the indicated laboratory reporting limits.

NA: Not applicable. NE: Not established.

Table 4

Soil Vapor Sample Analytical Results and Vapor Intrusion Risk Screening (VIRS) Midway Rising - Sports Arena

3220, 3240, 3250, 3350, and 3500 Sports Arena Boulevard San Diego, California

Sample Identifier	Depth (feet bgs)	Date Collected	1,1-Difluoro- ethane (LCC)	Dichloro- difluoro- methane	Chloro- methane	Carbon disulfide	2-Butanone (MEK)	Chloroform	Benzene	4-Methyl-2- pentanone (MIBK)	Toluene	2- Hexanone (MBK)	Chloro- benzene	Ethyl- benzene	m,p- Xylene	Styrene	o- Xylene	Tetrachloro- ethene (PCE)	4-Ethyl- toluene	1,3,5- Trimethyl- benzene	1,2,4- Trimethyl- benzene	Other VOCs
	())		(200)	(F12)						(,							<u> </u>					
DPV-23-053	5	2/7/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	μg/m³ NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-23-061-5	5	2/7/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	200	<100	<100	<20	NA	NA	<100	ND
SV-23-061-5 REP	5	2/7/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	210	<100	<100	<20	NA	NA	<100	ND
SV-23-062-5	5	3/23/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-23-063-5	5	3/23/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-23-063 Rep	5	3/23/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-23-064-5	5	3/23/2023	<100	<100	<100	NA	NA	<20	32	NA	<200	NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-23-065-5	5	2/7/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	370	1,600	<100	450	<20	NA	NA	<100	ND
SV-23-066-5	5	2/7/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-23-067-5	5	2/7/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-23-068-5	5	2/7/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	870	3,600	<100	990	22	NA	NA	<100	ND
SV-23-069-5	5	3/23/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-23-070-5 SV-23-071-5	5	3/23/2023 3/23/2023	<100 <100	<100 <100	<100 <100	NA NA	NA NA	<20 <20	<20 <20	NA NA	<200 <200	NA NA	<20 <20	<100 <100	<100 <100	<100 <100	<100 <100	<20 <20	NA NA	NA NA	<100 <100	ND ND
SV-23-071-5 SV-23-072-5	5	3/23/2023	<100	<100	<100	NA NA	NA NA	<20	<20	NA NA	<200	NA NA	<20	<100	<100	<100	<100	<20	NA NA	NA NA	<100	ND ND
SV-23-072-5	5	3/23/2023	<100	<100	<100	NA NA	NA NA	<20	<20	NA NA	<200	NA NA	<20	<100	<100	<100	<100	<20	NA	NA NA	<100	ND
SV-23-073-5	5	3/23/2023	<100	<100	<100	NA	NA NA	<20	<20	NA NA	<200	NA NA	<20	<100	<100	<100	<100	<20	NA.	NA NA	<100	ND
SV-23-074-5	5	3/23/2023	<100	<100	<100	NA	NA	<20	<20	NA	<200	NA	<20	<100	<100	<100	<100	41	NA	NA	<100	ND
SV-23-076-5	5	3/23/2023	<100	<100	<100	NA	NA.	<20	<20	NA	<200	NA	<20	<100	<100	<100	<100	<20	NA	NA	<100	ND
SV-24-001-5	5	5/21/2024	<5.5	5.3	<2.1	13	48	<4.9	19	43	33	<8.3	8.2	7.6	19	<4.3	11	79	<5.0	7.9	7.3	ND
SV-24-002-5	5	5/21/2024	<5.5	<5.0	<2.1	<6.3	<30	<4.9	4.4	17	13	<8.3	6.3	<4.4	13	<4.3	5.5	<6.9	<5.0	<5.0	<5.0	ND
SV-24-003-5	5	5/21/2024	<5.5	<5.0	<2.1	<6.3	30	<4.9	5.7	23	11	13	<4.7	<4.4	<8.8>	<4.3	<4.4	<6.9	<5.0	<5.0	<5.0	ND
SV-24-004-5	5	5/21/2024	6.6	5.2	<2.1	15	<30	<4.9	9.8	23	23	11	<4.7	4.5	14	<4.3	6.0	<6.9	<5.0	<5.0	<5.0	ND
SV-24-005-5	5	5/22/2024	<5.5	<5.0	<2.1	24	38	<4.9	88	34	130	<8.3	6.8	21	45	7.5	19	<6.9	5.0	<5.0	11	ND
SV-24-006-5	5	5/23/2024	<5.5	<5.0	<2.1	<6.3	45	<4.9	38	61	59	<8.3	<4.7	14	37	<4.3	17	7.3	12	15	44	ND
SV-24-007-5	5	5/22/2024	<5.5	<5.0	<2.1	6.6	<30	<4.9	11	18	17	12	<4.7	5.0	11	<4.3	5.6	<6.9	<5.0	<5.0	<5.0	ND
SV-24-008-5	5	5/22/2024	<5.5	<5.0	<2.1	7.3	<30	<4.9	9.9	21	16	<8.3	4.9	<4.4	10	<4.3	4.6	<6.9	<5.0	<5.0	<5.0	ND
SV-24-009-5	5	5/22/2024	<5.5	<5.0	<2.1	<6.3	<30	<4.9	6.9	22	11	<8.3	<4.7	<4.4	9.2	<4.3	<4.4	<6.9	<5.0	<5.0	<5.0	ND
SV-24-010-5	5	5/22/2024	<5.5	<5.0	<2.1	<6.3	<30	<4.9	4.3	12	9.8	<8.3	<4.7	<4.4	9.1	<4.3	<4.4	<6.9	<5.0	<5.0	<5.0	ND ND
SV-24-011-5 SV-24-012-5	5	5/22/2024 5/22/2024	<5.5 <5.5	<5.0 <5.0	<2.1 <2.1	<6.3 <6.3	48 <30	<4.9 <4.9	57 4.9	28 <8.3	88 9.6	<8.3 <8.3	<4.7 <4.7	14 <4.4	30 <8.8	<4.3 <4.3	14 <4.4	<6.9 <6.9	<5.0 <5.0	<5.0 <5.0	5.2 <5.0	ND ND
SV-24-012-5 SV-24-013-5	5	5/23/2024	<5.5	<5.0	<2.1	<6.3	<30	8.4	6.0	32	13	<8.3 <8.3	<4.7	4.7	15	<4.3	8.5	10	11	16	48	ND ND
SV-24-013-5	5	5/22/2024	<5.5	<5.0	<2.1	<6.3	<30	<4.9	4.5	10	7.6	<8.3	<4.7	<4.4	10	<4.3	5.3	45	<5.0	<5.0	<5.0	ND
SV-24-015-5	5	5/23/2024	<5.5	5.5	<2.1	<6.3	<30	<4.9	<3.2	34	5.3	<8.3	<4.7	<4.4	<8.8	<4.3	5.0	11	11	18	53	ND
SV-24-016-5	5	5/23/2024	<5.5	<5.0	<2.1	<6.3	<30	<4.9	6.1	20	9.2	<8.3	<4.7	<4.4	11	<4.3	6.6	7.4	6.0	8.1	23	ND
SV-24-017-5	5	5/21/2024	87	<5.0	<2.1	<6.3	<30	7.2	9.4	41	10	<8.3	<4.7	<4.4	13	<4.3	5.1	<6.9	<5.0	<5.0	<5.0	ND
SV-24-018-5	5	5/23/2024	<5.5	<5.0	<2.1	<6.3	<30	<4.9	280	<8.3	18	<8.3	<4.7	26	150	<4.3	74	20	8.3	17	33	ND
SV-24-019-5	5	5/23/2024	<5.5	<5.0	<2.1	<6.3	<30	<4.9	4.0	18	7.7	<8.3	<4.7	<4.4	12	<4.3	6.1	20	5.3	7.6	23	ND
SV-24-020-2.5	2.5	5/23/2024	<5.5	<5.0	<2.1	13	84	<4.9	56	57	100	<8.3	<4.7	36	74	17	39	21	26	31	82	ND
SV-24-021-5	5	5/21/2024	<5,000	<5,000	<5,000	<5,000	<25,000	<1,000	14,000	<25,000	<10,000	<25,000	<1,000	<5,000	<5,000	<5,000	<5,000	<1,000	NA	<5,000	<5,000	ND
SV-24-021-5 Dup	5	5/21/2024	<5,000	<5,000	<5,000	<5,000	<25,000	<1,000	14,000	<25,000	<10,000	<25,000	<1,000	<5,000	<5,000	<5,000	<5,000	<1,000	NA	<5,000	<5,000	ND
SV-24-022-5	5	5/22/2024	<1,000	<1,000	<1,000	<1,000	<5,000	<200	2,400	<5,000	<2,000	<5,000	<200	<1,000	<1,000	<1,000	<1,000	<200	NA	<1,000	<1,000	ND
SV-24-023-5	5	5/22/2024	<5,000	<5,000	<5,000	<5,000	<25,000	<1,000	38,000	<25,000	<10,000	<25,000	<1,000	<5,000	9,100	<5,000	<5,000	<1,000	NA N/A	<5,000	<5,000	ND
SV-24-023-5 Dup SV-24-024-5	5	5/22/2024 5/23/2024	<5.000 23	<5,000 <5.0	<5,000 <2.1	<5,000 <6.3	<25,000 <30	<1,000 <4.9	34,000 7.9	<25,000 41	<10,000 12	<25,000 <8.3	<1,000 <4.7	<5,000 <4.4	8,000 11	<5,000 <4.3	<5,000 5.8	<1,000 41	N/A 8.3	<5,000 12	<5,000 33	ND ND
SV-24-024-5 SV-24-024-5 Rep	5	5/23/2024	<5.5	<5.0	2.1	<6.3	41	<4.9	8.4	41	14	13	<4.7	<4.4	11	<4.3	6.3	39	9.9	13	38	ND ND
		., .,	87	5.5	2.1	24	84	8.4	38,000	61	130	13	8.2	870	9,100	17	990	79	26	31	82	NA NA
		ration (µg/m³) ntration for Existing	6/	5.5	2.1	24	04	0.4	30,000	81	130	13	0.2	6/0	7,100	- ''	770	//	20	31	92	IAW
Comr	mercial Use ¹	(µg/m³)	0.087	0.0055	0.0021	0.024	0.084	0.0084	38	0.061	0.13	0.013	0.0082	0.870	9.1	0.017	0.990	0.079	0.026	0.031	0.082	NA
Comr	mercial Use ²		0.0435	0.00275	0.00105	0.012	0.042	0.0042	19	0.0305	0.065	0.0065	0.0041	0.435	4.6	0.009	0.495	0.040	0.013	0.0155	0.041	NA
	or Air Concer Residential Us	ntration for Future se ¹	0.087	0.0055	0.0021	0.024	0.084	0.0084	38	0.061	0.13	0.013	0.0082	0.870	9.1	0.017	0.990	0.079	0.026	0.031	0.082	NA
Predicted Indoor	Air Concent 0.03 AF ³	ration using CalEPA	2.61	0.165	0.063	0.72	2.52	0.252	1,140	1.83	3.9	0.39	0.246	26.1	273	0.51	29.7	2.4	0.78	0.93	2.46	NA
Pasidontial DTCC/EI	PA Screening	Level ⁴ (µg/m ³)	42,000^	100^	94^	730^	5,200^	0.12^	0.097	3,100^	310	31^	52^	1.1^	100^	940	100^	0.46	NE	63^	63^	NA
Kesiderilidi Disc./Fr													220^				440^		NE		260^	NA

Soil vapor samples collected by SCS Engineers on February 7 and March 23, 2023, were analyzed for volatile organic compounds (VOCs) in general accordance with EPA Method 8260SV

Soil vapor samples collected by SCS Engineers on May 21, 22, and 23, 2024, were analyzed for VOCs in general accordance with EPA Method TO-15, with the exceptions noted below.

Due to elevated levels of non-target analytes, the following samples collected in May 2024 were analyzed by 8260SV rather than EPA Method TO-15:

 $$V-24-021-5, $V-24-021-5 \ Dup, $V-24-022-5, $V-24-023-5, and $V-24-023-5 \ Dup \ . Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260V. Additionally, analytes dichlorotetrafluoroethane and $4-ethyltoluene are not included in 8260 V. Additionally, analytes dichlorotetrafluoroethane and \$4-ethyltoluene are not included in \$8260V. Additionally, analytes dichlorotetrafluoroethane are not included in \$8260V. Additionally, and th bgs: below ground surface.

Results presented in micrograms per cubic meter ($\mu g/m^3$).

Bold values indicate a specific analyte was reported above its respective laboratory reporting limit.

<: a specific analyte was reported below its respective laboratory reporting limit.

 $\ensuremath{\mathsf{ND}}\xspace$ a group of analytes was reported below their respective laboratory reporting limits.

NA: Not applicable/not analyzed.

1: Maximum soil vapor concentration multiplied by the default Department of Substances Control (DTSC) attenuation factor of 0.001 for an existing commercial or future residental building, per Table 2 - Attenuation Factors for Preliminary Screening Evaluations of the Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), prepared by the DTSC and dated October 2011.

2: Maximum soil vapor concentration multiplied by the default DTSC attenuation factor of 0.0005 for a future commercial building, per Table 2 - Attenuation Factors for Preliminary Screening Evaluations of the Vapor Intrusion Guidance.

3: Maximum soil vapor concentration multiplied by the attenuation factor of 0.03 as recommended in the Supplemental Guidance: Screening and Evaluating Vapor Intrusion, Final Draft, California Environmental Protection Agency (CalEPA), February 2023.

4: Human Health Risk Assessment Note 3 - DTSC-Modified Screening Levels (DTSC-SLs), Table 3 - Screening Levels for Ambient Air, June 2020, revised May 2022.

^ A DTSC-Screening Level (\$L) has not been established for this constituent. The Environmental Protection Agency (EPA) Regional Screening Level (RSL), dated May 2024, was used for this constituent.

Red font indicates an exceedance of a commercial and residential screening levels for the constituent.

Blue font indicates an exceedance of the residential screening level only for the constituent.

APPENDIX A Geophysical Evaluation Report

GEOPHYSICAL EVALUATION SAN DIEGO SPORTS ARENA

San Diego, California

PREPARED FOR:

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego, CA 92123

PREPARED BY:

Atlas Technical Consultants LLC 9085 Aero Drive, Suite B San Diego, CA 92123

9085 Aero Drive, Suite B San Diego, CA 92123 877.215.4321 | oneatlas.com

June 11, 2024

Atlas No. 8823 (Rev)

MR. CHUCK HOUSER, C.H.G. SCS ENGINEERS 8799 BALBOA AVENUE, SUITE 290 SAN DIEGO, CA 92123

Subject: Geophysical Evaluation

San Diego Sports Arena San Diego, California

Dear Mr. Houser:

In accordance with your authorization, Atlas has performed a geophysical evaluation pertaining to the subject project located in San Diego, California. Specifically, our services included the performance of electromagnetic and magnetic evaluations at preselected portions of the San Diego Sports Arena. The purpose of this study was to assess the presence of underground storage tanks, burn pits, obstructions, structures, and/or backfilled excavations associated with underground storage tanks. In addition, the presence of detectable underground utilities was also evaluated in the study areas. Our services were conducted on February 6 through 10, 2023, June 5 through 10, 2023, June 13 and 19, 2023, April 25 and 26, 2024, and May 2, 2024. This report presents the methodology, equipment used, analysis, and findings for our recent study.

We appreciate the opportunity to be of service on this project. Should you have any questions, please contact the undersigned at your convenience.

Sincerely,

Atlas Technical Consultants LLC

Kyle J. Armendariz, G.I.T. Project Geophysicist

KJA:ERC:PFL:ds

Distribution: Chouser@scsengineers.com

Patrick F. Lehrmann, P.G., P.Gp. 1043 Principal Geologist/Geophysicist

CONTENTS

1.	INTRODU	JCTION1
2.	SCOPE (DF SERVICES1
3.	SITE AN	PROJECT DESCRIPTION1
4.	GEOPHY	SICAL INSTRUMENTATION AND APPLICATIONS1
	4.1 Utili	ty Evaluation2
	4.2 EM	61 Evaluation3
	4.3 MA	G Evaluation3
	4.4 EM	31 Evaluation2
5 .	RESULT	S, CONCLUSIONS, AND RECOMMENDATIONS4
	5.1 Spc	rts Arena2
	5.2 Dixi	eline Lumber6
6.	LIMITAT	ONS6
7.	SELECT	ED REFERENCES7
FIG	URES	
Figu	ure 1:	Site Location Map
Figu	ure 2a:	Site Map, Sports Arena
Figu	ure 2b:	Site Data Map, EM61 Data
Figu	ure 2c:	Site Data Map, MAG Data
Figu	ure 2d:	Site Data Map, EM31 Quadrature Phase Data
Figu	ure 2e:	Site Data Map, EM31 In-Phase Data
Figu	ure 3a:	Site Map, Dixieline Lumber
Figu	ure 3b:	Site Data Map, EM61 Data
Figu	ure 4a:	Site Photographs
Figu	ure 4b:	Site Photographs

1. INTRODUCTION

In accordance with your authorization, Atlas has performed a geophysical evaluation pertaining to the subject project located in San Diego, California (Figure 1). Specifically, our services included the performance of electromagnetic and magnetic evaluations at preselected portions of the San Diego Sports Arena. The purpose of this study was to assess the presence of underground storage tanks, burn pits, obstructions, structures, and/or backfilled excavations associated with underground storage tanks. In addition, the presence of detectable underground utilities was also evaluated in the study areas. Our services were conducted on February 6 through 10, 2023, June 5 through 10, 2023, June 13 and 19, 2023, April 25 and 26, 2024, and May 2, 2024. This report presents the methodology, equipment used, analysis, and findings for our recent study.

2. SCOPE OF SERVICES

Our scope of services included:

- Performance of EM, MAG, and utility evaluations within the study areas (EM61 and utility only at Dixieline Lumber)
- Compilation and analysis of the collected data.
- Preparation of this report presenting our findings, conclusions, and recommendations.

3. SITE AND PROJECT DESCRIPTION

The study area was located in preselected portions of the San Diego Sports Arena in San Diego, California (Figure 1). Specifically, the evaluation was conducted within the parking areas surrounding the arena, Chilli's, and Chick-Fil-A (Figures 2a-2e). Additionally, an approximately 40 foot by 40 foot area was evaluated in the stock yard of Dixieline Lumber (Figures 3a and 3b). The sites generally consisted of asphalt parking areas, reinforced concrete, k-rails, chain-link fences, vehicles, signposts, and parking stops. Figures 2a through 2e, Figures 3a and 3b, and Figures 4a and 4b depict the general site conditions.

Based on our discussions with you and review of historic aerials, it is our understanding that the project site was previously occupied by a frontier housing development. It is our understanding that USTs may have been used at the site; however, documentation on the location, size, and removal of the USTs does not exist.

4. GEOPHYSICAL INSTRUMENTATION AND APPLICATIONS

Our evaluation included the use of a Geonics model EM31-MK2 frequency-domain instrument, Geometrics G-858 cesium vapor magnetometer, Geonics model EM61-MK2 time-domain instrument, GSSI SIR 4000 Ground Penetrating Radar (GPR) unit using a 350 MHz transducer, Schonstedt GA-52 magnetic gradiometer, Fisher M-Scope TW-6 pipe and cable locator, Vivax

vLoc3-Pro line tracer, and a Stonex S5HA Global Positioning System (GPS) with a S700A antenna. These instruments provide real-time results and facilitate the delineation of subsurface features.

4.1 Utility Evaluation

The GPR instrument beams energy into the ground from its transducer/antenna, in the form of electromagnetic waves. A portion of this energy is reflected back to the antenna at boundaries in the subsurface across which there is an electrical contrast. The recorder continuously makes a record of the reflected energy as the antenna is moved across the ground surface. The greater the electrical contrast, the higher the amplitude of the returned energy. The EM wave travels at a velocity unique to the material properties of the ground being studied, and when these velocities are known, or closely estimated from ground conductivity values and other information, two-way travel times can be converted to depth. Penetration into the ground and resolution of the GPR images produced are a function of ground electrical conductivity and dielectric constant. Images tend to be graphic, even at considerable depth, in sandy soils, but penetration and resolution may be limited in more conductive clayey moist ground.

The magnetic gradiometer has two fluxgate magnetic fixed sensors that are passed close to and over the ground. When not in close proximity to a magnetic object, that is, only in the earth's field, the instrument emits an audible signal at a low frequency. When the instrument passes over buried iron or steel objects (so that the field is significantly different at the two sensors) the frequency of the emitted sound increases. Frequency is a function of the gradient between the two sensors.

The M-Scope TW-6 device energizes the ground by producing an alternating primary magnetic field with alternating current (AC) in the transmitting coil. If conducting materials (including soils) are within the area of influence of the primary field, AC eddy currents are induced to flow in the conductors. A receiving coil senses the secondary magnetic field produced by these eddy focused, that is, it is more sensitive to conductors below (and above) the instrument than to conductors off to the side.

Where risers are present, the Vivax vLoc3-Pro utility locator transmitter can be connected to the object, and a current is impressed on the conductor pipe or cable. The receiver unit is tuned to this same frequency, and it is used to trace the pipe's surface projection away from the riser. The transmitter and receiver can also be used in a non-connect (induction) mode, whereby the transmitter is positioned on the ground and an electromagnetic signal is emitted. In the presence of buried metal pipes and wires, a discrete signal will be induced on the conductor which can be sensed by the receiver. In addition, the instrument may be used in the passive mode, whereby radio and 60 Hz electromagnetic signals produced by communication and live electric lines are detected.

4.2 EM61 Evaluation

The EM61 instrument is a high resolution, electromagnetic (EM) time-domain device for detecting buried conductive objects. It consists of a powerful transmitter that generates a pulsed primary magnetic field when its coils are energized, which induces eddy currents in nearby conductive objects. The decay of the eddy currents, following the input pulse, is measured by the coils, which in turn serve as receiver coils. The decay rate is measured for two coils, mounted concentrically, one above the other. By making the measurements at a relatively long time interval (measured in milliseconds) after termination of the primary pulse, the response is nearly independent of the electrical conductivity of the ground. Thus, the instrument is a very sensitive metal detector. Due to its unique coil arrangement, the response curve is a single well-defined positive peak directly over a buried conductive object. This facilitates quick and accurate location of targets. Conductive objects to a depth of approximately 11 feet generally can be detected.

The EM61 data was collected in conjunction with a StoneX S700A GNSS receiver unit along profile lines that were spaced approximately 5 feet apart, access permitting. The data was later downloaded to a laptop computer and then processed and analyzed using TrackMaker61MK2 (Geomar, 2021) and Surfer (Golden Software, Inc., 2022).

4.3 MAG Evaluation

Magnetometer (MAG) data was collected within the study boundary limits in order to assess the presence of ferromagnetic metals. The MAG data was acquired using a Geometrics G-858 cesium vapor magnetometer, which measures the strength of the earth's magnetic field and the superposed magnetic field of ferromagnetic materials in its vicinity. The precision of the instrument is approximately 1/10th gamma. The earth's magnetic field strength at the project site's latitude was roughly 45,751 gammas February 6 through 10, 2023; 45,719 gammas June 5 through 10, 2023; 45,717 gammas on June 13, 2023; 45,716 gammas on June 19, 2023; 45,635.3 gammas on April 25 and 26, 2024; and 45,633.5 gammas on May 2, 2024 (https://www.ngdc.noaa.gov/ geomag-web/#igrfwmm). The earth's magnetic field is inclined in the direction of the north magnetic pole. Because of this inclination, a buried ferromagnetic object is typically expressed as a paired anomaly with a positive (above background) slightly to the south and a negative slightly in the direction of magnetic north. Solar geomagnetic activity for the magnetometer evaluation was predominantly quiet, according to the National Oceanic and Atmospheric Administration (NOAA) (https://www.swpc.noaa.gov). In addition, pre and post-evaluation measurements were collected at a test station to assess diurnal variations. Variations of less than 20 gammas were observed. Due to these relatively small magnetic field variances, no diurnal corrections were made to the recorded magnetometer data.

The MAG data was collected in conjunction with a StoneX S700A GNSS receiver unit along profile lines that were spaced approximately 10 feet apart, access permitting. The data was later downloaded to a laptop computer and then processed and analyzed using Magmap (Geometrics, 2017) and Surfer (Golden Software, Inc., 2022).

4.4 EM31 Evaluation

EM data was collected within the study boundary limits using a Geonics EM31-MK2 terrain conductivity meter in order to assess the presence of conductors and non-conductors in the subsurface. The EM31 is a frequency domain terrain conductivity meter that operates at a frequency of 9.8 kHz and has an effective exploration depth of approximately 20 feet. It is comprised of two coils: a transmitter coil and receiver coil. The transmitter coil induces circular eddy currents that generate a magnetic field in the subsurface, which is related to the terrain conductivity. There are two components of the magnetic field which are measured by the EM31: the quadrature phase (QP) and the in-phase (IP) components. The quadrature phase provides an electrical conductivity measurement, in Millimhos per meter (mMhos/m). The in-phase measurements represent the ratio of the induced secondary magnetic field to the primary magnetic field in parts per thousand. The in-phase measurement is significantly more sensitive to large metallic objects than the quadrature phase. Before the collection of EM31 datasets, calibration of the instrument was performed.

The EM data was collected in conjunction with a StoneX S700A GNSS receiver unit along profile lines that were spaced approximately 10 feet apart, access permitting. The data was downloaded to a laptop computer and then processed and analyzed using DAT31W (Geonics, Inc., 2019) and Surfer (Golden Software, Inc., 2022).

5. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

As previously discussed, the primary purpose of our study was to assess the presence of USTs, burn pits, obstructions, structures, and/or backfilled excavations associated with USTs at portions of the San Diego Sports Arena and Dixieline Lumber.

5.1 Sports Arena

Figure 2a displays the surficial and detected subsurface features (fences, underground utilities, etc.) within the Sports Arena areas evaluated as part of this study. The results of our EM61, MAG, and EM31 quadrature and in-phase evaluation are displayed in Figures 2b, 2c, 2d and 2e, respectively. Each dataset is illustrated using both contour lines and a color gradient image. The EM61, MAG, and EM31 in-phase color schemes have warm colors (red/pink) representing higher values and the cool (blue) colors representing lower values. Conversely, the EM31 quadrature phase color scheme has cool (blue) colors representing higher values (more conductive) and warm colors (red/pink) representing lower values (more resistive).

Several anomalies were found within the study limits and are labeled Anomaly A through I. Anomalies A through D have EM61, MAG, and EM31 quadrature phase responses. GPR traverses over the anomalies appeared to show characteristics of reinforced concrete; however, the exact cause and nature of these anomalies are not known. It should be noted that the presence of reinforced concrete can potentially mask features that may be beneath the concrete. Anomaly E has EM61, MAG, EM31 quadrature phase, and EM31 in-phase responses; however,

GPR traverses over the anomaly were inconclusive. It should be noted that exploratory trenching was conducted over this anomaly and revealed a UST. Anomalies F through I have heightened EM61 values; however, GPR traverses over these anomalies were inconclusive. The absence of a MAG response for Anomalies F through I appears to indicate that these features may be the effect of fine mesh reinforcing, small shallow metallic objects, or may be some other metal that is not ferromagnetic in nature. Also, heightened EM61, MAG, and EM31 In-Phase values are noted near the driveways of Summit Gasoline and between Chilli's and Chick-Fil-A. Due to the shape and location of these responses, it is likely that these responses are due to traffic signal EM coils. Several other anomalies are present throughout the site and may be associated with utilities, surface metallic features, and possible debris located throughout the site. Additionally, several possible excavation features were found throughout the site and may indicate past trenching operations or changes in fill material.

Heightened EM31 quadrature phase and in-phase (Figures 2d and 2e) values were observed in the southwestern portion of the study area. Exploratory borings and trenching revealed burned materials within this zone of heightened values. Figures 2d and 2e present the northern and western limits of this feature as "Potential Limits of Burned Materials." The southern and eastern limits were not defined in our evaluation. It should be noted that the EM31 quadrature and in-phase data correlates with the exploratory boring and trenching findings; however, the exact cause and nature of this feature is not known.

Additionally, elevated EM31 quadrature and in-phase values were observed in the northwestern portion of the study area (Figures 2d and 2e). Exploratory trenching revealed heightened levels of soil saturation in comparison to other areas explored by borings and trenching at the project site. It is possible that the heightened EM31 quadrature and in-phase values are due to changes in soil saturation; however, the exact cause and nature of this feature is not known. It should be noted that background values in this area were so amplified that a lower instrument sensitivity was required to collect this portion of the study area. The lower sensitivity setting only effects the quadrature phase data; thus, the in-phase values were at their upper limit during collection. It should be noted that there are other areas of heightened values in the western portion of the study area. These areas may be due to surficial features, utility lines, changes in soil saturation, burn material, or other various subsurface debris.

Several unidentified lines were also found in the EM61, MAG, and EM31 datasets. The origin of these lines is not known; however, after review of historic aerials, it appears that several of these lines correlate with past roadways, houses, and other historic facilities. Exploratory trenching was conducted over a number these features and revealed abandoned cast iron pipes.

Additionally, the presence of a storm drain line was evaluated in the northwest portion of the site and is labeled "Potential Storm Drain Line" in Figures 2a through 2e. Due to there being no manholes, grates, or drains in the vicinity of the site, the type of line could not be identified. Several other utilities were found at the project site including water, electric, communication, sewer, and

storm drain lines within the study areas. The findings of our evaluation were marked on the ground surface with paint, mapped, and reported to you at the completion of the survey.

It should be noted that limited instrumentation was utilized in the northwest corner of the study area. This was due to the focus being the delineation of a potential storm drain line. EM31 and line tracer in direct connect, passive, and induction modes were used in this area. Additionally, MAG data is not displayed northeast of the arena due to poor data quality. After discussion with you and your office, recollection of MAG data was decided to not be necessary; thus, was not recollected.

5.2 Dixieline Lumber

Figure 3a displays the surficial and detected subsurface features (fences, underground utilities, etc.) within the Dixieline Lumber area evaluated as part of this study. It should be noted that only EM61 data was collected in this portion of the study and is displayed in Figure 3b. The EM61 color schemes have warm colors (red/pink) representing higher values and the cool (blue) colors representing lower values.

No significant EM61 anomalies were found at the Dixieline Lumber site; however, two relatively large possible excavation features were delineated with GPR. The exact cause and nature of these features are not known; however, these features may be associated with the removal of USTs or other subsurface infrastructure at the site. Three electric lines were also delineated across the study area and a water riser was found in the northern extent. This feature is likely PVC or transite due to the lack of an EM response.

To further assess the features described above, we recommend that more direct methods be used. Such methods may include the excavation of exploratory trenches, test pits, and/or borings. Additionally, more geophysical data collection could help define the areal extent and vertical extent of these detected features. Our study utilized industry-standard equipment (i.e., GPR, electromagnetic, and magnetic instruments), and was conducted in general accordance with current practice. It should be noted that the presence of existing structures and surface objects (i.e., metal guard rails, K-rails, fences, etc.) may have potentially limited the study. Where obstructions were present, subsurface data could not be collected. Moreover, EM/magnetic responses produced by metal surface objects, reinforced concrete, and underground lines can potentially obscure subsurface features. Radar penetration at the site was approximately 1 feet to 2 feet below the ground surface; therefore, objects below this depth would not have been detected with GPR. Figure 3 presents the general site conditions and results of our evaluation.

6. LIMITATIONS

The field evaluation and geophysical analyses presented in this report have been conducted in general accordance with current practice and the standard of care exercised by consultants performing similar tasks in the project area. No warranty, express or implied, is made regarding the conclusions and opinions presented in this report. There is no evaluation detailed enough to

reveal every subsurface condition. Variations may exist, and conditions not observed or described in this report may be present. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration and evaluation. Additional subsurface evaluations can be performed upon request.

Please also note that our evaluation was limited to the detection of underground storage tanks, burn pits, obstructions, structures, and/or backfilled excavations associated with the removal or burial of these features, as well as the presence of detectable underground lines. "USA" or "Dig Alert" should also be contacted prior to conducting subsurface exploration activities. In addition, we recommend that available utility plans/drawings of the project site be reviewed as appropriate.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Atlas should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. This report is intended exclusively for use by the client. Any use or reuse of this report by parties other than the client is undertaken at said parties' sole risk.

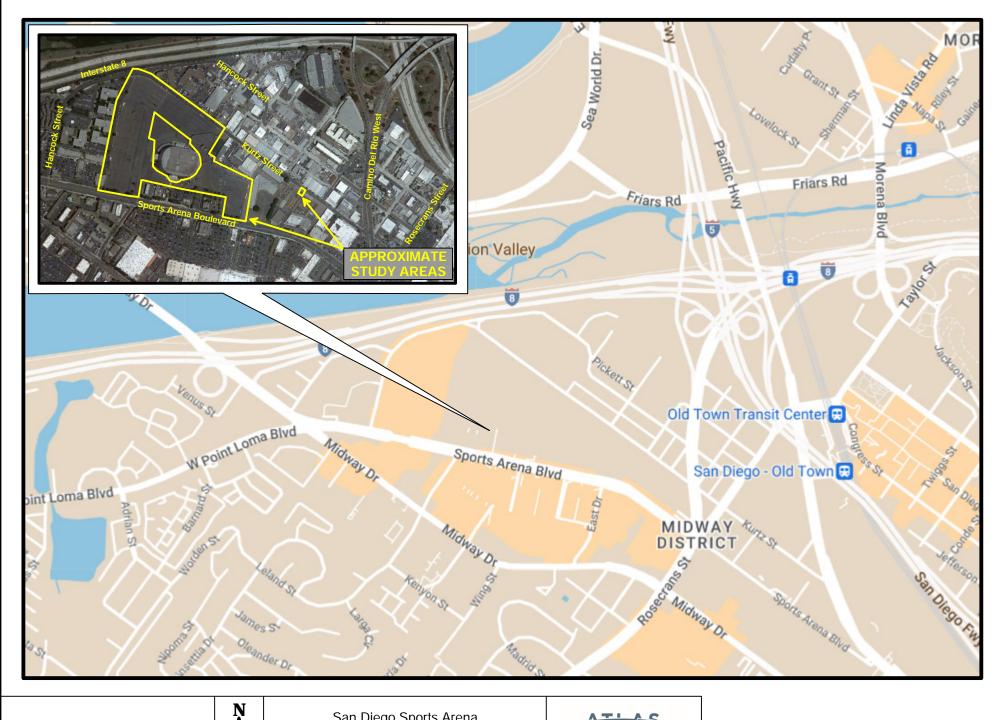
7. SELECTED REFERENCES

Breiner, S., 1999, Applications Manual for Portable Magnetometers: Geometrics, Inc.

Burger, H.R., Sheehan, A.F., and Jones, C.H., 2006, Introduction to Applied Geophysics; Exploring the Shallow Subsurface, W.W. Norton & Company, Inc.

Geometrics, Inc., 2017, Magmap 2017: Version 5.04.

Golden Software, Inc., 2022, Surfer, Surface Mapping System: Version 24.1.181.


Geonics, Inc., 2019, DAT31W: Version 2.12, 2001-2019.

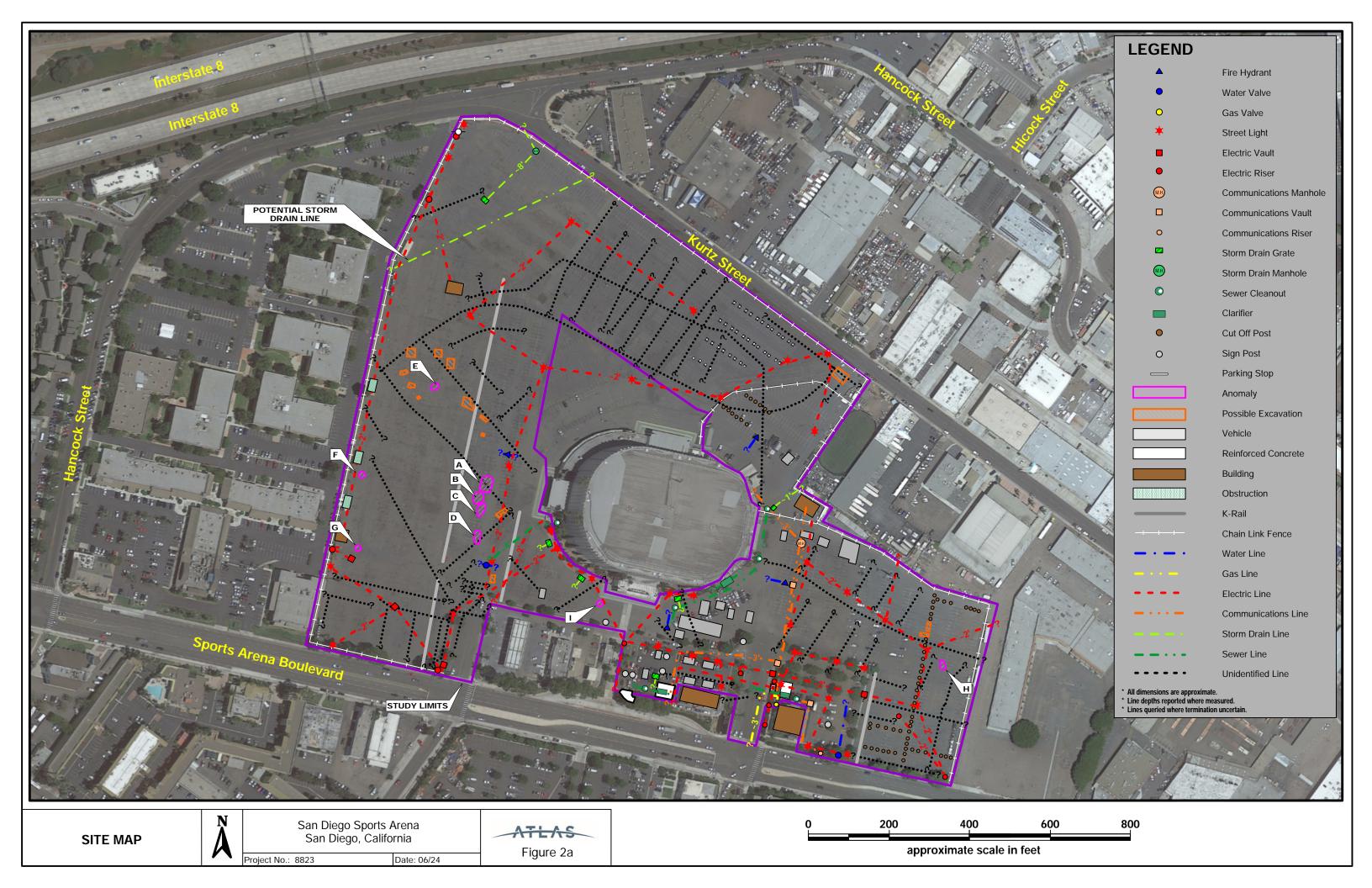
Geomar Software, Inc., 2021, TrackMaker61MK2: Version 2.09.

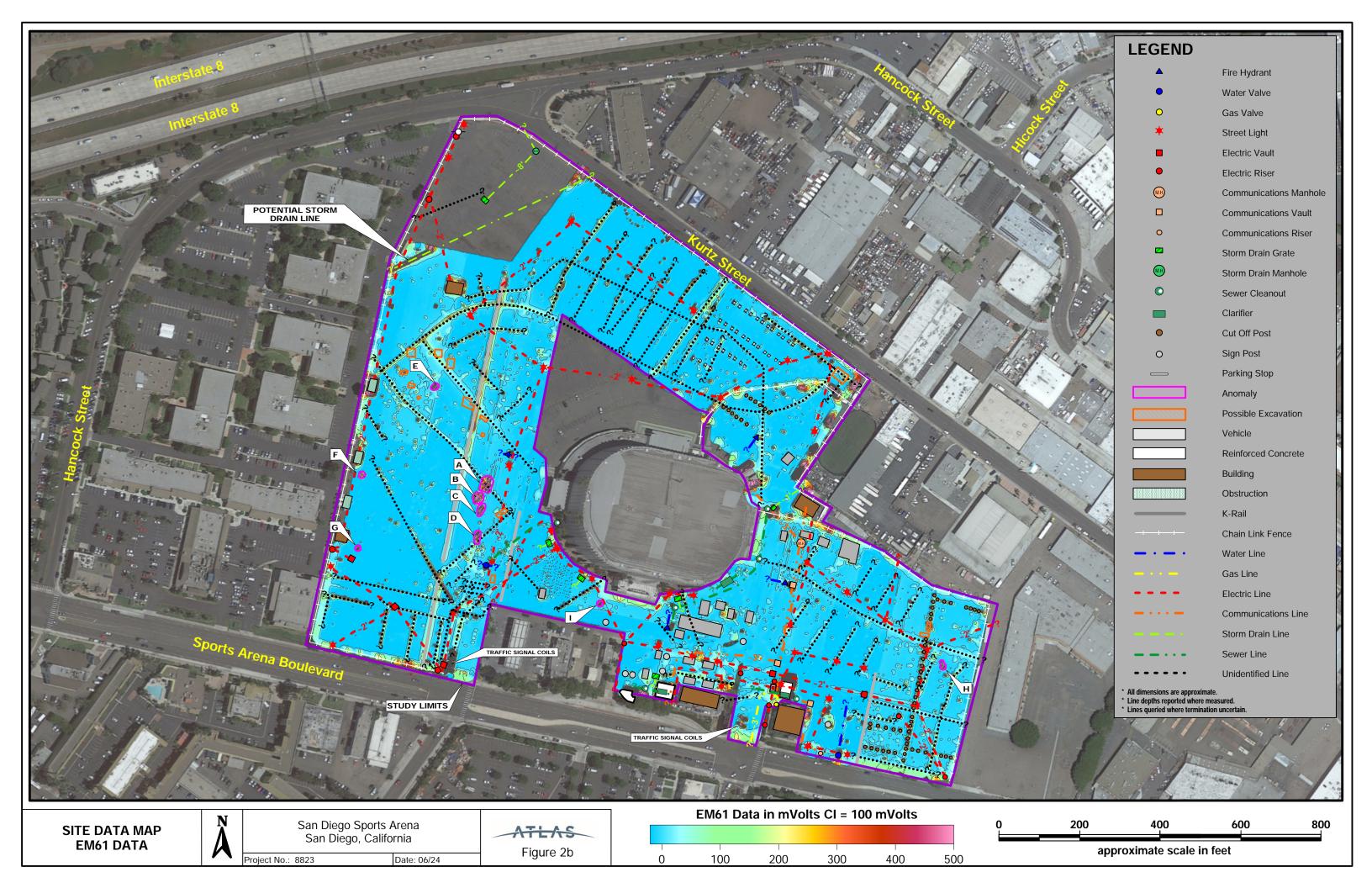
Jackson School of Geosciences, 2012, University of Texas at Austin, Some Useful Numbers on the Engineering Properties of Materials (Geologic and Otherwise).

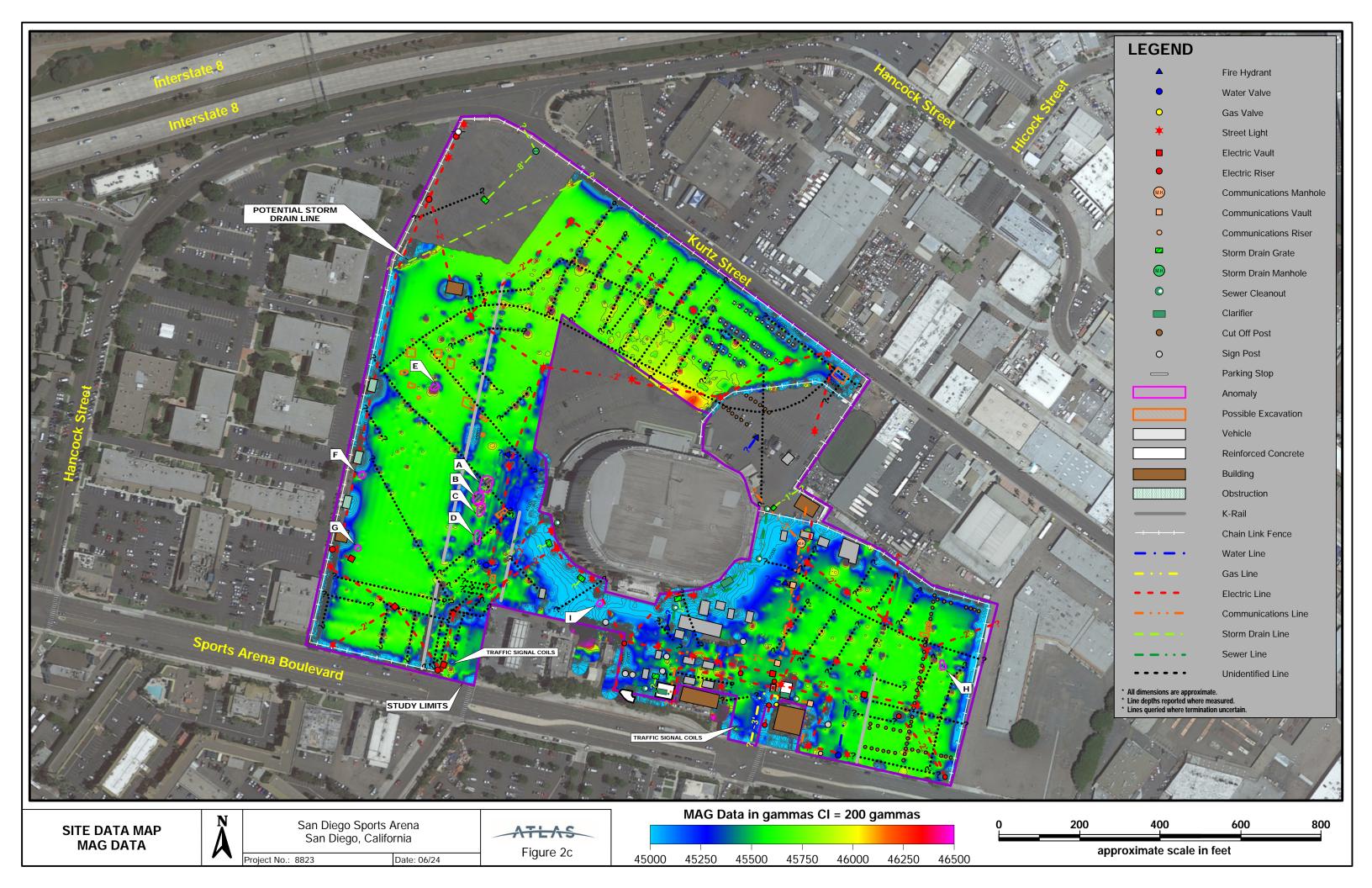
Mooney, H.M., 1976, Handbook of Engineering Geophysics, dated February.

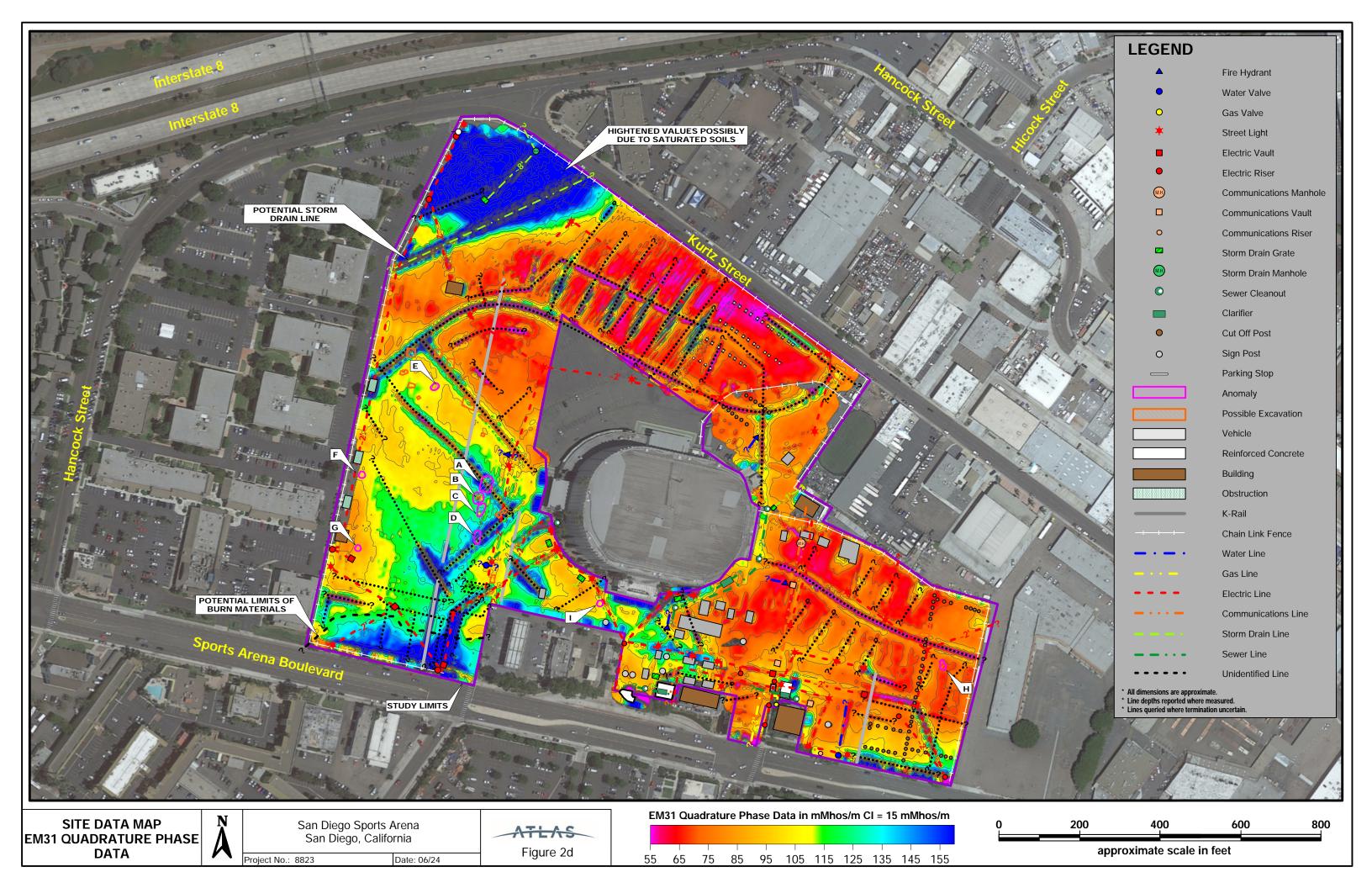
Telford, W.M., Geldart, L.P., Sheriff, R.E., and Keys, D.A., 1976, Applied Geophysics, Cambridge University Press.

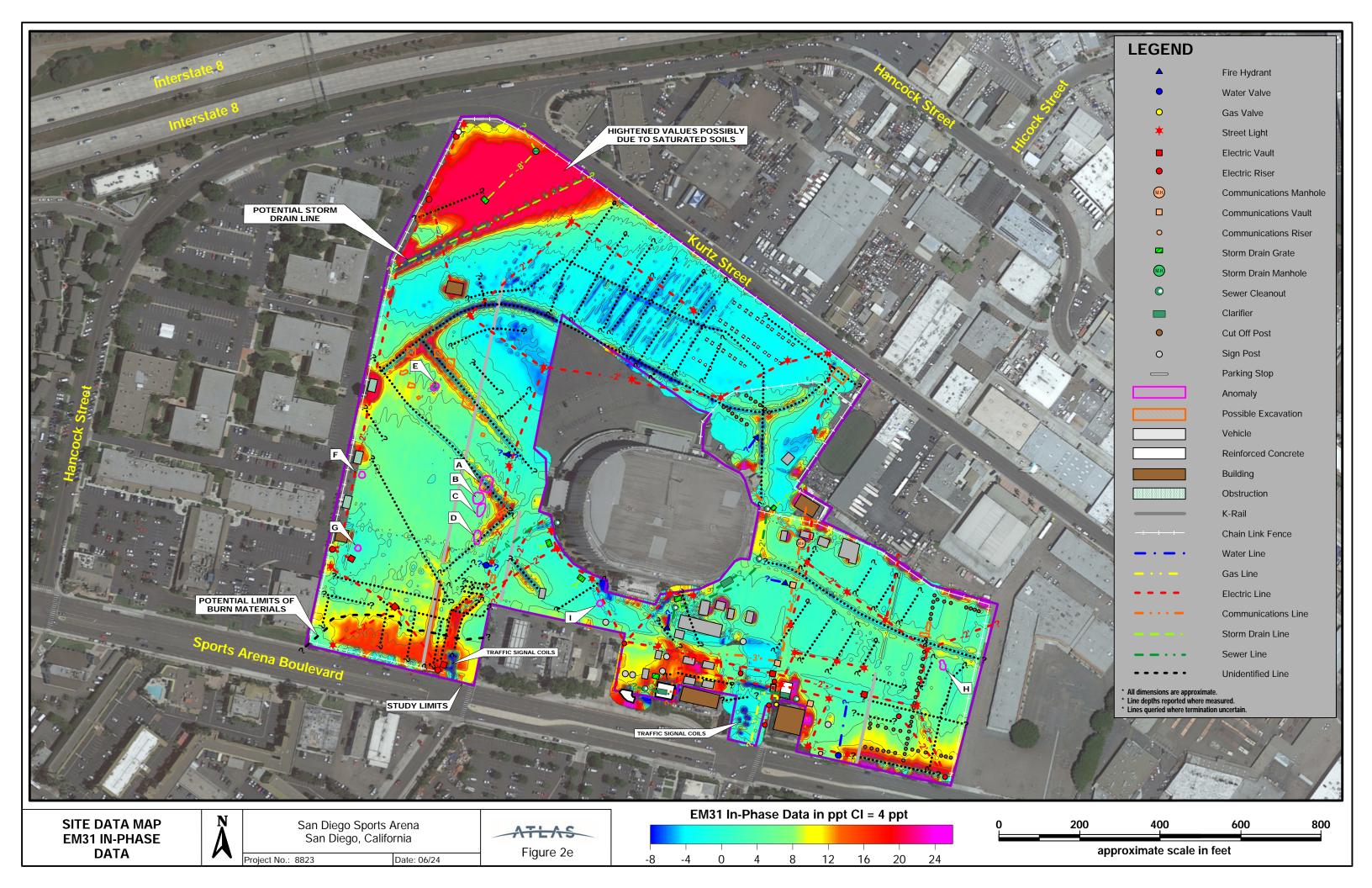
SITE LOCATION MAP

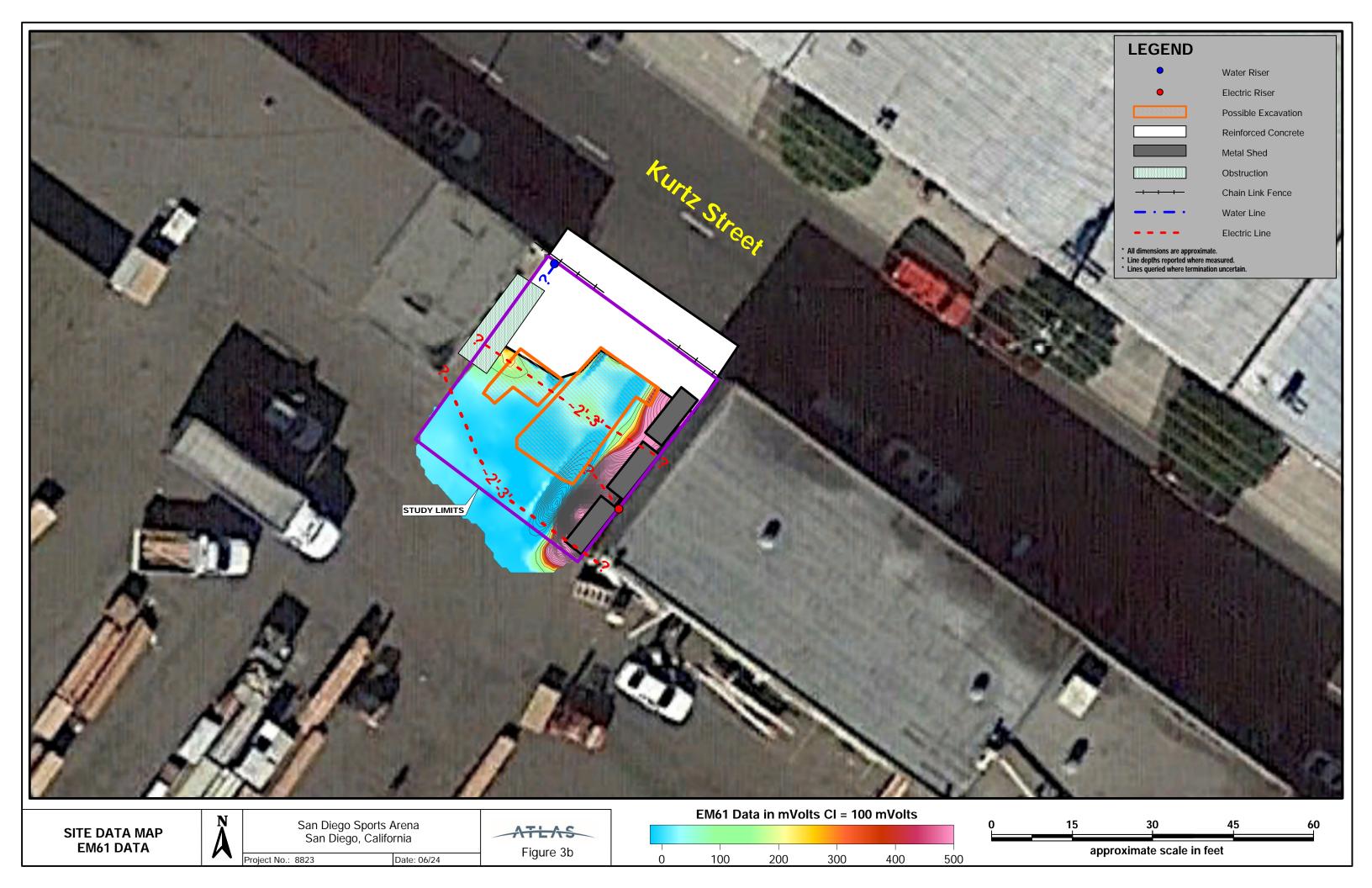

San Diego Sports Arena San Diego, California

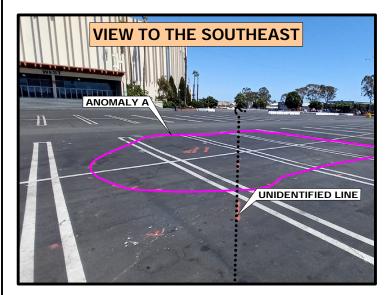

Project No.: 8823

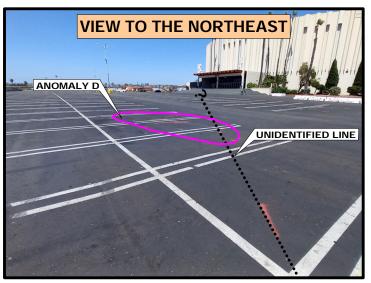

Date: 06/24

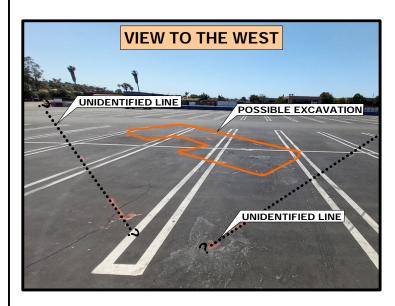


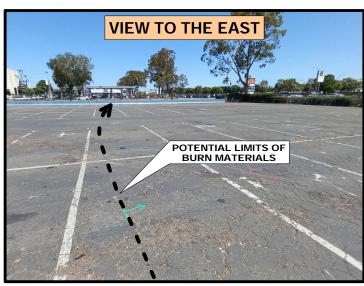

Figure 1





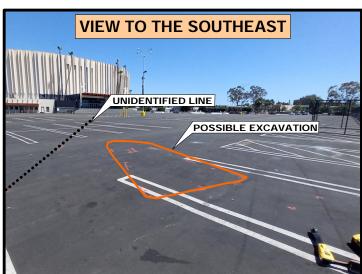


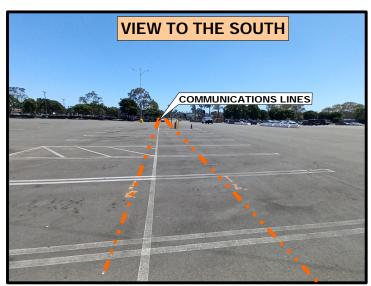


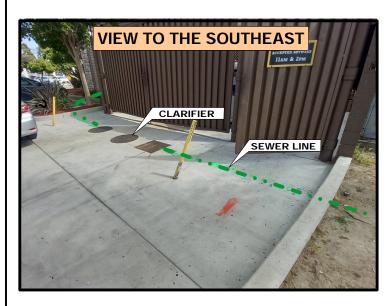


SITE PHOTOGRAPHS

San Diego Sports Arena San Diego, California


Project No.: 8823 Date: 06/24




Figure 4a

SITE PHOTOGRAPHS

San Diego Sports Arena San Diego, California

Project No.: 8823 Date: 06/24

ATLAS

Figure 4b

APPENDIX B Boring and Trench Logs

S	C S	EN	G	N	= =	R	S		BOREHOLE LOG			Number: SB-U	JST-24-1
879 Sal	99 Ba	alboa A ego, Ca	venue	e, Sui	te 29	90 568		Client: Vlidw	ay Rising	Job No: 213320.	07	Sheet:	of 1
Logge	d by:					300	—[<u>;</u>	ocation	on: s Arena Blvd	Drilling Compa	ny:		
Date D		ennifer	Baue Date Dra		ton	Deilli		San I	Diego, CA	Borehole Dia.:	Total	Depth:	Backfill Quantity:
	/21/2			8/24		/	ilg / 3	атріі	ig Metilod	2"	12		
Depth		Sa	mple lı	nform				бc			Co	ompletio	n Detail
6 feet	Sample Interval	Sample Number		PID (ppm)	Lab Results qas/diesel/oil	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil comp moisture, density, odor, etc.	ponent,	- Surri		Flush-mount, Traffic-rated Well Box
SD BORING TPH LOG 0121/3320.07 BORING LOGS, GPJ GINT STD US, GDT 88/24		SB-UST-2 SB-UST-2 SB-UST-2	:4-1-6' :4-1-7' :4-1-9'	d d	La La Caracteria de la	<u>μ</u>	SM ML	<u> </u>	Light olive brown (2.5Y 5/4), fine- to medium-grailty SAND, moist. Dark olive brown (2.5Y 3/3), sandy SILT, micad moist. Becomes olive brown (2.5Y 4/3). Faint hydrocarbon odor, wet, staining. Dark grayish-brown (2.5Y 4/2), fine-grained silt wet, hydrocarbon odor. Boring terminated at 13 feet below grade.	zeous,			Bentonite grout
이 HL 9										15-			
Logg	jed B		Jen	nifer					Title: Project Manager		Date		
ନ୍ତ Revi	ewed	I Ву <u>:</u>		Char	les H	ouse	r		License No: CHg 945		Date	: 8/28	/24

S	C S	E N G	ΙN	EE	R S	5		WELL LOG			Number: SB-U	JST-24-2	
87	99 Ba	alboa Aver go, Califor	ue, Su	ite 29	00 568	•	Client:	way Rising	Job No: 213320.07	,	Sheet:	of 1	
SCS F	Represe	entative:		120-1	500		ocatio		Drilling Com				
	nifer E Prilled:	Bauer Mor	on Orafted:		D.:	(2	San I	Diego, CA	Lat.:	Long		Elev:	
8/21/		8/28			<i> </i>	ig / S	ampiir	ng Method	Borehole Dia.	: Casin	g Dia:	Total Depth: 12.0	
Depth	1	Sampl	e Inforr	nation			D		•		omoletio	on Detail	
0 feet	Sample Interval	Sample Number	PID (ppm)	Lab Results gas/diesel/oil	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,		!	Flush-mount, Traffic-rated Well Box	
NG TPH LOG 01213320.07 BORING LOGS GPJ GINT STD US.GDT 8/28/24 1		SB-UST-24-2-4 SB-UST-24-2-7 SB-UST-24-2-1 SB-UST-24-2-1	0'			SM		Light olive brown (2.5Y 5/4), fine- to medium-gailty SAND, moist. Olive brown (2.5Y 4/4), fine-grained sandy SIL micaceous. Becomes very dark gray (2.5Y 3/1), clayey SILT, fine-grained, wet. Groundwater encountered at approximately 9 to below grade. Possible staining, hydrocarbon odor. Same as above. Boring terminated at 12 feet below grade.	T, moist, T. sandy feet 10-			— Bentonite grout	
Log	15 Indicate the second of the sec												
ਲ Rev	iewed	Ву:	Cha	rles Ho	ouser	r		License No: CHg 945		_ Date	: 8/28	3/24	

	S C	S	Εſ	N G I	IN	ΕE	R	S		WELL LOG			Number: SB-U	JST-24-3
				Avenue aliforni					Client:	way Rising	Job No: 213320.07		Sheet:	of 1
	SCS R	eprese	entative		a 32	120-1	300	—— L	ocati		Drilling Compa	ny:		
	Chuc Date Di		ouser	Data Dua	- 6 4 1.		.			Diego, CA	Lat.:	Long:		Elev:
	8/21/2			Date Dra 8/28/2			/	ing / S	ampılı	ng Method	Borehole Dia.:	Casin 2'	g Dia:	Total Depth: 13.0
	Depth		s	ample I	nform	nation	1					_		n Detail
	- o feet	Sample Interval	Sample Number		PID (ppm)	Lab Results gas/diesel/oil	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,		· !	Flush-mount, Traffic-rated Well Box
SD BORING TPH LOG 01213320.07 BORING LOGS,GPJ. GINT STD US.GDT, 8728/24	- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15		SB-UST	-24-3-5'		D		SM		Dark yellowish-brown (10R 4/4), silty, fine- to medium-grained SAND. Very dark gray (2.5Y 3/1), fine-grained sandy micaceious SILT, very moist. Very dark grayish-brown (2.5Y 3/2), micaceous trace fine-grained sand, wet. Groundwater encountered at approximately 10 below grade. Mottled dark grayish-brown (2.5Y 4/2) and very gray (2.5Y 3/1), micaceous silt, very moist. Boring terminated at 13 feet below grade.	-			— Bentonite grout
RING 1	Logg	ed R	v:		Chu	ck Ho	USer			Title: Project Manager		Date	: 8/21	/24
D BOF	Revi					les H				License No: CHg 945		Date Date		
(J)	1.001	- • • • • • • • • • • • • • • • • • • •			Criai	.55 11	3400			License No. Ong 940		- Date	. 5,20	, - 1

Social Content Soc		S	S	ΕN	1 G	IN	= =	R	S		BOREHOLE LOG			Number: SG-	SB-24-1
Continue		879 Sar	99 Ba	alboa <i>A</i>	Avenue	e, Sui	te 29	90 568				Job No: 213320.	07		of 1
Chuck Houser Date Drilled: 8/21/24 Depth Sample Information Depth Sample Information Description Formation, soil type, grain, minor soil component, moisture, density, odor, etc. Page 10	ŀ						20-1	300	<u> </u>	Location Sport	on: s Arena Blvd	Drilling Compa	ny:		
8/21/24 9/13/24 / 2" 9.0 Depth Sample Information	ŀ	Date D	rilled:				1	Drill	;	San [Diego, CA	Roroholo Dia :	Total	Donth:	Rackfill Quantity
Description Formation, soil type, grain, minor soil component, moisture, density, odor, etc. SG-SB-24-2' SG-SB-24-4' SG-SB-24-5' SG-SB-24-5' SG-SB-24-5' SG-SB-24-5' SG-SB-24-5' SG-SB-24-5' SG-SB-24-5' SG-SB-24-5' SM SM SM SCG-SB-24-6' SG-SB-24-6' SG	L							/	ilig / S	ampiii	ід меніоц			-	
FILL SG-SB-24-2 SG-SB-24-3 SG-SB-24-4 SG-SB-24-5 SG-SB-24-5 SG-SB-24-5 Yellowish-brown (10YR 5/4), silty, fine- to medium-grained Yellowish-brown (10YR 5/4), silty, fine- to medium-grained SG-SB-24-5 Yellowish-brown (10YR 5/4), silty, fine- to medium-grained SAND.		Depth		Sa	ample I	nform)g			С	ompletio	n Detail
FILL SG-SB-24-2' SG-SB-24-3' SG-SB-24-4' SG-SB-24-5' SG-SB-24-5' Yellowish-brown (10YR 5/4), silty, fine- to medium-grained SAND. **The state of the state		o feet	Sample Interval	Sample Number		PID (ppm)	Lab Results	(mg/kg)	USCS Soil Class.	Graphic Lo	Formation, soil type, grain, minor soil comp	ponent,	· · · · · · · · · · · · · · · · · · ·		
Logged By: Chuck Houser Title: Project Manager Date: 8/21/24 Reviewed By: Charles Houser License No: CHg 945 Date: 9/11/24	SD BORING TPH LOG 01213320.07 BORING LOGS,GPJ GINT STD US.GDT 9/13/24	1 2 3 4 5 6 7 8		SG-SB-2: SG-SB-2: SG-SB-2:	4-3' 4-4' 4-5'		1		SM		Brown (10YR 4/3), silty, fine- to medium-graine SAND, slightly moist. Yellowish-brown (10YR 5/4), silty, fine- to medium-grained SAND. BAY/TIDAL FLAT DEPOSITS Very dark grayish-brown (10YR 3/2), silty, fine-SAND/fine-grained sandy silt, micaceous.	5 -		*	—Bentonite grout
Reviewed By: Charles Houser License No: CHg 945 Date: 9/11/24	RING T	Loan	led R	v:		Chuc	ck Ho	user			Title: Proiect Manager		Date	: 8/21	/24
	SD BO												-	-	

SCS ENGINEERS							BOREHOLE LOG			No		lumber: SG-SB-24-2	
8799 Balboa Avenue, Suite 290 San Diego, California 92123-1568							Client: Midw	ay Rising	Job No: 213320.	07	Sheet: 1 of 1		
Logged by:								on: s Arena Blvd Diego, CA	Drilling Compa	ny:			
Chuck Houser Date Drilled: Date Drafted: Drilling / 3									Borehole Dia.:	Total	Depth:	Backfill Quantity:	
-	8/21/24 9/13/24 /				1			<u> </u>	2" 9.				
Dep	oth	s	Sample I			T:=	- go-			Co	ompletio	n Detail	
o feet	Sample	Sample		PID (ppm)	Lab Results gas/diesel/oil (mg/kg)	USCS Soil	Graphic Log	Description Formation, soil type, grain, minor soil comp moisture, density, odor, etc.	ponent,				
SD BORING TPH LOG 01213320.07 BORING LOGS, GINT STD US.GDT 9/13/24		SG-SB-3 SG-SB-3 SG-SB-3	24-2-2' 24-2-3' 24-2-6'			SM		FILL Yellowish-brown (10YR 5/4), silty, fine-grained BAY/TIDAL FLAT DEPOSITS Dark grayish-brown (10YR 4/2), silty, fine- to medium-grained SAND. Boring terminated at 9 feet below grade.				— Bentonite grout	
Logged By: Chuck Houser Title: Project Manager Date: 8/21/24									/24				
Reviewed By: Charles Houser License No: CHg 945 Date: 9/11/24													

E	6 C	: S	ΕN	1 G	IN	=	R	S		BOREHOLE LOG			Number:	-SB-24-3		
	8799 Balboa Avenue, Suite 290 San Diego, California 92123-1568								Client: Midw	ay Rising	Job No: 213320.07		Sheet: 1 of 1			
	Logged by:									on: s Arena Blvd	Drilling Compa	ıny:				
Dat	Chuck Houser Date Drilled: Date Drafted: Drilling / 3									Diego, CA	Borehole Dia.:	Total	Depth:	Backfill Quantity:		
	8/	21/24 9/13/24 /					/				2" 9.					
De	Depth Sample Information											Co	ompletic	n Detail		
- 0		Sample Interval Sample Number				Lab Results	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,					
LOG 01213320.07 BORING LOGS, GPJ GINT STD US.GDT 9/13/24	1 SG-SB-24-3-2' 2 SG-SB-24-3-3' 3 SG-SB-24-3-4' 4 SG-SB-24-6-6' 6 SG-SB-24-3-7' 7 8 SG-SB-24-3-7' 8 Logged By:		4-3-2' 4-3-3' 4-3-5'		PID (ppm) Lab Results gas/diesel/oil (mg/kg)				Light yellowish-brown (10YR 6/4) and grayish-(10YR 5/2), silty/clayey, fine- to medium-graine SAND. Yellowish-brown (10YR 5/4), silty, fine-grained SAND. Dark grayish-brown (10R 4/2), silty, fine- to medium-grained SAND. Dark gray (10YR 4/1), micaceous SILT, moist. Boring terminated at 8 feet below grade.	brown ed SAND.		■ Bentonite grout				
SORING	Logged By: Chuck Hous						usei	r	Title: Project Manager				Date: 8/21/24			
ਲ R	evie	ewed	Ву <u>:</u>	Charles Houser License No: CHg 945 Date: 9/11/24							/24					

	5 (S	Ξ	N G	ΙN	= :	R	S		BOREHOLE LOG			Number	T33
	879	9 Ba	alboa	Avenu	e, Su	ite 2	90		Client:	ay Rising	Job No: 213320.0)7	Sheet:	of 1
	Logge		go, C	aliforni	ia 92°	123-	1568	<u>_</u>	Locati	on:	Drilling Compar		•	01 1
			Ch	uck Ho						ts Arena Blvd Diego, CA				
	Date Di 5	rilled: 5/7/24	4	Date Dr	afted: 13/24		Drill /	ing / S	Sampli	ng Method	Borehole Dia.: 2"	Total 7.	Depth:	Backfill Quantity:
	Depth	_		Sample	Inform								nmoletic	n Detail
	o leet	Sample Interval	Sample		PID (ppm)	Lab Results	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,		anama -	n Betaii
	- 0 - 1 - 2 - 3		T33-1					SM		Yellowish-brown (10YR 5/4), silty, fine- to medium-grained SAND, damp. Dark grayish-brown (10YR 4/2), silty, fine- to medium-grained SAND, damp.			•	— Bentonite grout
SD BORING TPH LOG 01213320.07 BORING LOGS GPJ GINT STD US.GDT 9/13/24	- 6 - 7		T33-6.5							Black (2.5YR 5/1) finel-grained sandy silt, moi- Boring terminated at 7 feet below grade.	st-wet.			
3 TPH LOG 01213320.07 BORIN	- 9 - 10										10-			
ORING	Logg	ed B	y:		Chu	ck Ho	usei	r		Title: Project Manager		Date	: 5/7/2	24
SD E	Revi	ewed	Ву <u>:</u>		Char	les H	louse	er		License No: CHg 945		Date	9/11	/24

	5 (S	=	N G	ΙN	= :	R	S		BOREHOLE LOG			Number	T34
	879	9 Ba	alboa	Avenu	e, Su	ite 2	90	- 1	Client:		Job No: 213320.	<u></u> Ω7	Sheet:	of 1
ŀ	Sar ogge		go, C	aliforni	a 921	123-	1568		Locatio	ay Rising	Drilling Compa		1	OI I
	ogge	u by.	Ch	nuck Ho	user				Sport San I	s Arena Blvd Diego, CA				
D		rilled: 5/7/2	1	Date Dra	afted: 13/24	,	Drill /	ling / S	amplir	ng Method	Borehole Dia.: 2"	Total 6.	Depth:	Backfill Quantity:
D	epth	1		Sample I			 n							D (!)
	o feet	Sample Interval	Sample		PID (ppm)	Lab Results		USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,	C	ompletic	n Detail
BORING LOGS, GPJ GINT STD US.GDT 9/13/24	1 2 3		හි <u>z</u> T34-1		Id			SM SM	5	Yellowish-brown (10YR 5/4), silty, fine- to medium-grained SAND, damp. Dark brown (10YR 3/3), silty, fine-grained SANdamp. Dark grayish-brown (10YR 4/2), silty, fine- to medium-grained SAND, damp-moist. Boring terminated at 6 feet below grade.				— Bentonite grout
IG TPH	10										10-			
BORIN		jed B				ck Ho				Title: Project Manager		_ Date	-	
SD	Revi	ewed	Ву <u>:</u>		Char	les F	lous	er		License No: CHg 945		_ Date	9/11	/24

	S	S	==	N G	ΙN	= :	R	S		BOREHOLE LOG			Number	T35
	879	9 Ba	alboa	Avenu	e, Su	ite 2	90		Client:		Job No: 213320.	<u></u>	Sheet:	of 1
			go, C	Californi	ia 921	123-	1568		Locati	ray Rising	Drilling Compa		1	OI I
	Logge	а бу:	Ch	nuck Ho	ouser				Sport San I	s Arena Blvd Diego, CA				
	Date Di			Date Dr			Drill			ng Method	Borehole Dia.:		Depth:	Backfill Quantity:
		/7/2		Sample	13/24				1		2"	6.	0	
	Depth			bampie i				I 	6o-			Co	ompletio	on Detail
1	0 eet	Sample Interval	Sample		PID (ppm)	Lab Results	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,	Yanan Yanan		
	- 1	T35-1								Light yellowish-brown (10YR 6/4), silty, fine- to coarse-grained SAND, damp.				
	- 3							SM		Very dark grayish-brown (10YR 3/2), silty, fine SAND, damp.	-grained -			— Bentonite grout
3/24 ,	- 5		T35-6							Concrete slab encountered at 5.5 feet below g Same as above with cobbles. Boring terminated at 6 feet below grade.	5- rade.			
NT STD US.GDT 9/1	- 7													
NG LOGS,GPJ GII	- 8													
SD BORING TPH LOG 01213320.07 BORING LOGS GPJ GINT STD US.GDT 9/13/24	- 9													
PH LO	- 10										10-			
RING T	Logg	ed R	V.		Chu	ck Ho	NISE	<u> </u>	1	Title: Project Manager		Date	: 5/7/:	24
3D BOF	Revi				Char					License No: CHg 945		Date Date		
٠,			, <u>. </u>			-							-/	

	SC	=	N G	IN	= :	R	S		BOREHOLE LOG			Number:	T36	
	879	99 Ba	alboa	Avenu	e, Sui	te 29	90		Client:	ay Rising	Job No: 213320.	07	Sheet:	of 1
ŀ	Sar		go, C	aliforni	a 921	23-1	1568		Location	on:	Drilling Compa			01 1
			Ch	uck Ho						s Arena Blvd Diego, CA				
	Date Dr 5	rilled: 5/7/24	1	Date Dra 9/	afted: 13/24		Drilli /	ing / S	Samplii	ng Method	Borehole Dia.: 2"	Total 5.	Depth:	Backfill Quantity:
	Depth		5	Sample I	nform				g			C	ompletio	n Detail
	o leet	Sample Interval	Sample		PID (ppm)	Lab Results	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,			
	- 1	T36-1						SM		Yellowish-brown (10YR 5/4), silty, fine- to medium-grained SAND, dry-damp.			*	— Bentonite grout
	- 4		T36-4							Brown (10YR 4/3), silty, fine-grained SAND, background by deposits. Boring terminated at 5 feet below grade.	ay/beach 5-			
ОТ 9/13/24	- 6													
GINT STD US.GI	- 7													
NG LOGS,GPJ	- 8													
SD BORING TPH LOG 01213320.07 BORING LOGS GPJ GINT STD US.GDT 9/13/24	- 9 - 10										10-			
RING TI	Logg	ed R	v:		Chu	ck Ho	user		1	Title: Project Manager		Date	: 5/7/2	24
SD BO	Revie				Char					License No: CHg 945		_ Date		

	S C	S	Ε	N G	ΙN	= =	R	S		BOREHOLE LOG			Number	: T37
	879	9 Ba	alboa	Avenu	e, Su	ite 29	90	١.	Client:	ay Rising	Job No: 213320.	07	Sheet:	of 1
ŀ	Sar Logged		go, C	aliforni	a 92	123-1	568	ī	ocatio		Drilling Compa			<u> </u>
			Ch	uck Ho				;	San [Diego, CA				_
	Date Dr 5	111ea: 5/7/24	4	Date Dra	aπed: 13/24		Drilli /	ing / S	amplir	ng Method	Borehole Dia.: 2"	Total 6.	Depth:	Backfill Quantity:
	Depth		5	Sample I	Inform				bg			C	ompletic	on Detail
-	o feet	Sample Interval	Sample		PID (ppm)	Lab Results	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil compositure, density, odor, etc.	ponent,	***************************************		
	- 1		T37-1							Light yellowish-brown (2.5Y 6/3), silty, fine- to coarse-grained SAND, dry-damp.	-			
	- 3		T37-3					SM		Yellowish-brown (10YR 5/4), silty, fine- to coarse-grained SAND with trace gravel, damp. Burn ash.			*	— Bentonite grout
	- 5		T37-5							Brown (10YR 4/3), silty, fine-grained SAND, da	amp. 5 -			
	- 6		T37-6							Grayish-brown (10YR 5/2), silty, fine- to medium-grained SAND, damp. Boring terminated at 6 feet below grade.				
SINT STD US.GD	7													
NG LOGS,GPJ C	- 8													
SD BORING TPH LOG 01213320.07 BORING LOGS GPJ GINT STD US.GDT 9/13/24	- 9													
3 TPHL	- 10										10-			
BORING	Logg					ck Ho				Title: Project Manager		Date	: 5/7/2	24
SD	Revie	ewed	Ву <u>:</u>		Char	les H	ouse	er		License No: CHg 945		_ Date	: 9/11	/24

	SC	: S	=	N G	ΙN	= =	R	S		BOREHOLE LOG			Number:	T38
	879	9 Ba	alboa	Avenu	e, Su	ite 29	90	- 1	Client:	ay Rising	Job No: 213320.	07	Sheet: 1 of	 1
	Sar		go, C	aliforni	ia 92 <i>*</i>	123-1	568	ī	Locati	on:	Drilling Compa		1 01	
	Logge	a by.	Ch	uck Ho	ouser				Sport San I	s Arena Blvd Diego, CA				
	Date Dr	illed: /7/2	1	Date Dra	afted: 13/24		Drill	ing / S	Samplii	ng Method	Borehole Dia.: 2"	Total 6.	-	ackfill Quantity:
	Depth			Sample I			1							
	-				_			Soil	Graphic Log	Description		C	ompletion D	Detail
	Ħ	Sample Interval	Sample		PID (ppm)	Lab Results gas/diesel/oil	J/kg)	USCS S	aphie	Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,			
-	0 feet	Sal	Sa	2	₫	Lab	<u>,E</u>	S S	ڻ ا			7///		
SD BORING TPH LOG 01213320.07 BORING LOGS,GPJ GINT STD US.GDT 9/13/24	- 1 - 2 - 3 - 4 - 5 - 6 - 7		T36-1 T36-2 T36-3					SM		Yellowish-brown (10YR 5/4)), silty/clayey, fine-medium-grained SAND, damp. Gray (2.5Y 6/1), silty, fine-grained SAND/sand damp-moist. Yellowish-brown (10YR 5/4), silty, fine- to coarse-grained SAND with cobbles, damp-mo	y SILT,		→ Be	entonite grout
RING TF	Logg	ed D	V.		Chu	ck Ho	ueo'			Title: Project Manager		Date	: 5/7/24	
3D BOF	Revie					les H				License No: CHg 945		_ Date Date		

S	C S	=	N G	IN	= =	R	S		BOREHOLE LOG			Number	: T39
87	799 Ba	alboa	Avenu	e, Sui	ite 29	90		Client:	ay Rising	Job No: 213320.	07	Sheet:	of 1
	an Die jed by:	go, C	aliforni	a 921	123-1	568		ocatio	on:	Drilling Compa		<u> </u>	O()
	J	ennife	er Baue		rton				s Arena Blvd Diego, CA				
	Drilled: 5/8/2	4	Date Dra 9/	afted: 13/24		Drilli /	ng / S	amplir	ng Method	Borehole Dia.: 2"	Total 6.	Depth:	Backfill Quantity:
Dept	th	S	Sample I	nform				. D			C	ompletic	on Detail
o feet	Sample Interval	Sample		PID (ppm)	Lab Results gas/diesel/oil	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,	- vana	anama -	m Betaii
- 1 - 2	T39-1								Yellowish-brown, silty SAND, micaceous, mois gravel. Same as above but with cobbles and trace deb				
- 3		T39-4					SM		Becomes gray at 4 feet below grade with no co	obbles.		*	— Bentonite grout
3/24 + 6		T39-5 T39-6							Boring terminated at 6 feet below grade.	5-			
SD BORING TPH LOG 0121332007 BORING LOGS GRU GINT STD US, GDT 9/13/24													
SORING LOGS, GPJ													
LOG 01213320.07 B													
표 + 10										10-			
Fog Log	gged B		Jer	nnifer					Title: Project Manager		Date		
닝 Rev	viewed	I Ву <u>:</u>		Char	les H	ouse	r		License No: CHg 945		_ Date	: 9/11	/24

	SC	S	Ξ	N G	ΙN	===	R	S		BOREHOLE LOG			Number:	T40
	879	9 Ba	alboa	Avenu	e, Su	ite 29	90		Client:	ay Rising	Job No: 213320.	07	Sheet:	of 1
	Sar		go, C	aliforni	ia 92°	123-1	1568		Locati	on:	Drilling Compa		<u>'</u>	01 1
	_0990		ennife	er Baue	er Mo	rton			Sport San I	s Arena Blvd Diego, CA				
	Date Dr	rilled: 5/8/24	4	Date Dr	afted: 13/24		Drill /	ing / S	Samplii	ng Method	Borehole Dia.: 2"	Total 5.	Depth:	Backfill Quantity:
	Depth	_		Sample			<u>,</u> 1							- D-4-11
			a. L	_	(m	ults el/oil		Soil	Graphic Log	Description		C	ompietio	n Detail
	et	Sample Interval	Sample		PID (ppm)	Lab Results	g/kg)	USCS (Class.	raphi	Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,			
_	o feet	Sa	ŝz		₫	Lal	E E	55	Ō		0			
	- 1		T40-1					SM		Yellowish-brown, silty, fine-grained SAND, mo cobbles.	ist, trace			
	- 2									Becomes fine- to coarse-grained SAND, no co	obbles.			
	- 3		T40-2.5					SP		Becomes grayish-brown, fine-grained SAND, micaceous	-		→	— Bentonite grout
	- 4 - 5									Boring terminated at 5 feet below grade.	5-			
/13/24	- 6													
SINT STD US.GDT (- 7													
RING LOGS,GPJ (- 8													
SD BORING TPH LOG 01213320.07 BORING LOGS GPJ GINT STD US.GDT 9/13/24	- 9 - 10										10-			
RING T	Logg	ed R	v [.]	اما	nnifer	Baue	r Ma	orton	1	Title: Project Manager		Date	: 5/8/2	24
SD BO	Revie			06		les H				License No: CHg 945		_ Date Date		
-												_		

S	C S	Ξ	N G	IN		R	S			BOREHOLE LOG			Number:	T41
87	'99 B	alboa	Avenu	ue, Su	ite 2	90		Clie		ay Rising	Job No: 213320	0.07	Sheet:	of 1
	an Die	go, C	Califorr	nia 92 ⁻	123-	1568	3	Loca	atio	on:	Drilling Com		'	01 1
Logg		ennif	er Bau	er Mo	rton			Sai	ort n [s Arena Blvd Diego, CA				
	Drilled: 5/8/2		1	rafted: /13/24	ļ	Drill /	ling /	Sam	plir	g Method	Borehole Dia. 2"	: Total	Depth:	Backfill Quantity:
Dept	_		Sample	Inforn	-			Ι,					ompletio	n Detail
	Sample Interval	Sample		PID (ppm)	Lab Results	(mg/kg)	USCS Soil	Graphic Loc	Glapilic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,	V V V V V V V V V V V V V V V V V V V	ompiedo	II Detail
- 1 - 2		T41-1					SM			Yellowish-brown, fine-grained silty SAND, bou surface.	lder at	-		
- 3		T41-3								Post with concrete, Claystone at 2.5 feet below Gray, fine-grained SAND, micaceous, no grav		_	4	– Bentonite grout
- 4		T41-4.5	5				SP				5	-		
0T 9/13/24 9										Boring terminated at 6 feet below grade.				
GINT STD US.GE												-		
8 8												-		
SD BORING TPH LOG 01213320.07 BORING LOGS GPJ GINT STD US.GDT 9/13/24 B												-		
10											10-			
Log English	ged B	y <u>:</u>	Je	ennifer	Baue	er Mo	orton	_		Title: Project Manager		Date	: 5/8/2	24
Re√	/iewed	I Ву <u>:</u>		Cha	rles H	lous	er			License No: CHg 945		Date	: 9/11	/24

	SC	: S	=	N G	ΙN		R	S		BOREHOLE LOG			Number: T42
	879	9 Ba	alboa	Avenu	e, Su	ite 29	90	- 1	Client:	ay Rising	Job No: 213320.0)7	Sheet: 1 of 1
	Sar		go, C	aliforni	ia 92°	123-1	568	ī	Location	on:	Drilling Compar		1 01 1
	_0990		ennife	er Baue	er Mo	rton			Sport San I	s Arena Blvd Diego, CA			
	Date Dr	illed: /8/2	4	Date Dra	afted: 13/24		Drilli /	ing / S	amplii	ng Method	Borehole Dia.: 2"	Total 7.	Depth: Backfill Quantity:
	Depth	_		Sample I			<u>'</u>						
	o feet	Sample Interval	Sample		PID (ppm)	Lab Results gas/diesel/oil	(mg/kg)	USCS Soil Class.	Graphic Log	Description Formation, soil type, grain, minor soil com moisture, density, odor, etc.	ponent,	- VIIII	ompletion Detail
	- 1 - 2 - 3		T42-1					SM		Yellowish-brown, fine-grained silty SAND with gravel. Becomes orangeish-brown with fine- to coarse gravel. Gray, fine-grained SAND, micaceous.			⋖ —Bentonite grout
/24	- 4 - 5 - 6		T41-4.5					SP			5-		
GINT STD US.GDT 9/13	- 7									Boring terminated at 7 feet below grade.			
RING LOGS,GPJ	- 8												
SD BORING TPH LOG 01213320.07 BORING LOGS,GPJ GINT STD US.GDT 9/13/24	- 9 - 10										10-		
ING TP										T::: 5 :	"		5/0/04
D BOR	Logg Revie			Jei	nnifer Char	Baue les H				Title: Project Manager License No: CHg 945		Date Date	
S	LEVIE	-wea	ъ <u>у.</u>		Ullal	100 17	Just	-1		LICENSE NO. CHY 945		Date	. 3/11/24

APPENDIX C Laboratory Analytical Reports

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 508749

Report Level : II

Report Date : 09/12/2024

Analytical Report prepared for:

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Project: MIDWAY RISING - Sports Arena - REVISED REPORT

Authorized for release by:

David Tripp, Project Manager

657-581-4710

david.tripp@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chuck Houser Lab Job #: 508749

SCS Engineers Project No: MIDWAY RISING

8799 Balboa #290 Location: Sports Arena - REVISED REPORT San Diego, CA Date Received: 05/20/24

92123 Date Received: 05/20/24

Sample ID	Lab ID	Collected	Matrix
HA-24-030-0.5	508749-001	05/16/24 08:05	Soil
HA-24-030-1.5	508749-002	05/16/24 08:15	Soil
HA-24-028-0.5	508749-003	05/16/24 08:30	Soil
HA-24-028-1.5	508749-004	05/16/24 08:45	Soil
HA-24-028-2.5	508749-005	05/16/24 09:00	Soil
HA-24-028-4	508749-006	05/16/24 09:15	Soil
HA-24-029-0.5	508749-007	05/16/24 09:40	Soil
HA-24-029-1.5	508749-008	05/16/24 09:55	Soil
HA-24-029-2.5	508749-009	05/16/24 10:10	Soil
HA-24-029-4	508749-010	05/16/24 10:25	Soil
HA-24-014-0.5	508749-011	05/16/24 10:40	Soil
HA-24-014-1.5	508749-012	05/16/24 10:55	Soil
HA-24-014-2.5	508749-013	05/16/24 11:15	Soil
HA-24-014-4	508749-014	05/16/24 11:30	Soil
HA-24-015-0.5	508749-015	05/16/24 11:45	Soil
HA-24-015-1.5	508749-016	05/16/24 12:00	Soil
HA-24-023-0.5	508749-017	05/16/24 12:05	Soil
HA-24-023-1.5	508749-018	05/16/24 12:20	Soil
HA-24-023-2.5	508749-019	05/16/24 12:50	Soil
HA-24-024-0.5	508749-020	05/16/24 13:40	Soil
HA-24-024-1.5	508749-021	05/16/24 13:55	Soil
HA-24-025-0.5	508749-022	05/16/24 14:20	Soil
HA-24-025-1.5	508749-023	05/16/24 14:45	Soil
HA-24-025-2.5	508749-024	05/16/24 15:10	Soil
HA-24-025-4	508749-025	05/16/24 15:45	Soil
HA-24-013-0.5	508749-026	05/17/24 07:50	Soil

Sample Summary

Chuck Houser Lab Job #: 508749

SCS Engineers Project No: MIDWAY RISING

8799 Balboa #290 Location: Sports Arena - REVISED REPORT

San Diego, CA
92123

Date Received: 05/20/24

Sample ID	Lab ID	Collected	Matrix
HA-24-013-1.5	508749-027	05/17/24 08:20	Soil
HA-24-013-2.5	508749-028	05/17/24 08:50	Soil
HA-24-013-4	508749-029	05/17/24 09:20	Soil
HA-24-016-0.5	508749-030	05/17/24 09:45	Soil
HA-24-016-1.5	508749-031	05/17/24 10:05	Soil
HA-24-016-2.5	508749-032	05/17/24 10:30	Soil
HA-24-016-4	508749-033	05/17/24 11:00	Soil
HA-24-009-5	508749-034	05/17/24 11:30	Soil
HA-24-009-6	508749-035	05/17/24 12:00	Soil
HA-24-021-0.5	508749-036	05/17/24 13:00	Soil
HA-24-021-1.5	508749-037	05/17/24 13:25	Soil
HA-24-021-2.5	508749-038	05/17/24 13:50	Soil
HA-24-021-4	508749-039	05/17/24 14:20	Soil
HA-24-022-0.5	508749-040	05/17/24 14:40	Soil
HA-24-022-1.5	508749-041	05/17/24 15:10	Soil
HA-24-022-2.5	508749-042	05/17/24 15:30	Soil
HA-24-022-4	508749-043	05/17/24 15:50	Soil
HA-24-020-0.5	508749-044	05/20/24 07:20	Soil
HA-24-020-1.5	508749-045	05/20/24 07:45	Soil
HA-24-020-2.5	508749-046	05/20/24 08:05	Soil
HA-24-020-4	508749-047	05/20/24 08:30	Soil
HA-24-019-0.5	508749-048	05/20/24 08:50	Soil
HA-24-019-1.5	508749-049	05/20/24 09:30	Soil
HA-24-019-2.5	508749-050	05/20/24 09:55	Soil
HA-24-019-4	508749-051	05/20/24 10:20	Soil
HA-24-017-0.5	508749-052	05/20/24 10:45	Soil

Sample Summary

Chuck Houser Lab Job #: 508749

SCS Engineers Project No: MIDWAY RISING 8799 Balboa #290 Location: Sports Arena - REVISED REPORT

San Diego, CA 05/20/24

Date Received: 92123

Sample ID	Lab ID	Collected	Matrix
HA-24-017-1.5	508749-053	05/20/24 11:10	Soil
COMP HA-24-015-0.5, 1.5	508749-054	05/20/24 11:10	Soil

Case Narrative

SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Chuck Houser Lab Job 508749 Number:

Project No: MIDWAY RISING

Location: Sports Arena - REVISED

REPORT

Date Received: 05/20/24

This data package contains sample and QC results for thirty two soil samples and one two-point soil composite, requested for the above referenced project on 05/20/24. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015M):

- High recovery was observed for diesel C10-C28 in the MSD of HA-24-028-2.5 (lab # 508749-005); the LCS was within
 limits, the associated RPD was within limits, and the high recovery was not associated with any reported results.
- High surrogate recoveries were observed for n-triacontane in a number of samples.
- HA-24-028-0.5 (lab # 508749-003), HA-24-028-2.5 (lab # 508749-005), and the MSD of HA-24-028-2.5 (lab # 508749-005) were diluted due to the dark color of the sample extracts.
- No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

- Low recoveries were observed for many analytes in the MS/MSD for batch 341196; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPDs were within limits.
- No other analytical problems were encountered.

Pesticides (EPA 8081A):

- Low recoveries were observed for many analytes in the MSD of HA-24-030-0.5 (lab # 508749-001); the LCS was within limits. High recovery was observed for methoxychlor; the LCS was within limits, and this analyte was not detected at or above the RL in the associated samples. High RPD was observed for many analytes in the MS/MSD of HA-24-030-0.5 (lab # 508749-001).
- High surrogate recoveries were observed for decachlorobiphenyl in HA-24-021-2.5 (lab # 508749-038) and the method blank for batch 340897; the corresponding TCMX surrogate recoveries were within limits, and no target analytes were detected in these samples.
- HA-24-030-0.5 (lab # 508749-001) and HA-24-025-0.5 (lab # 508749-022) were diluted due to the color of the sample extracts.
- No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A) Soil:

- Low recoveries were observed for antimony in the MS/MSD of HA-24-021-0.5 (lab # 508749-036); the LCS was within limits, and the associated RPD was within limits.
- Low recoveries were observed for antimony in the MS/MSD for batch 342160; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits. High recovery was observed for barium in the MS for batch 342160; the LCS was within limits, and the associated RPD was within limits.
- Low recoveries were observed for antimony in the MS/MSD of HA-24-030-0.5 (lab # 508749-001); the LCS was within limits, and the associated RPD was within limits.
- REPORT REVISED to include Cobalt from the 6010 Metals analysis for (-005) HA-24-028-2.5.
- No other analytical problems were encountered.

Control Cont	A A L T T C A L Page: A A A Dough	<u>L</u>	1				ball.	Chain of Custody Record	ecord	Turn Ar	round Time	e (rush by advar	Turn Around Time (rush by advanced notice only)
Stocker Select a Laboratory C A L Page: Degree	A A L Y T C A Degree Of G Degree 10 pr			7				The soll		1	- -		
Standard	STOMER INFORMATION	Ŀ			(F	1 (, =	200	•	Standard:	2	Day:	3 Day:
STOWNER INFORMATION	STOWING Name					2) =	Page:	/ of	و	2 Day:	1-7	Day:	Custom TAT:
STOMER INFORMATION	STOMER INFORMATION	-		<<< Select a Labor	ratory >>>						Pres	ervatives:	Sample Receipt Ten
STOWNER INFORMERING STOWNER INFORMATION Annivals features Trest instructions / Common Trest inst	STONGEN INFORMATION			#N/A			*	: Water DW = Drinking PP = Pure Product	g Wate SD = Sed SEA = Sea Water		$1 = Na_2 S_2 O_3$ $1 = H_2 SO_4 $	3	
State Michael No. Michae	Str. Charlet Microstry			HIV/A			SW	= Tissue		Other			(lab use only)
\$4.5 \(\text{Coupled to \$1.5} \) \text{Minner: } \(\text{Old 23.2.0.c.7} \) \(\text	\$\frac{\text{CLL}}{\text{L}}\$\text{Holders} \text{Numbers} N		CUS	OMER INFORMATION		PR	OJECT INFO	RMATION	ط 	Analysis Reque	st	Test Instru	uctions / Comments
Church House & Winner Coll 3 3 2 0 c 7 Sun Disto, CA 9123 Sun Di	Charle (2) See See See See See See See See See Se	S	npany:	SCS Engineers		Name:	- Hidwa		K				
Sample 10	Sample 10	Rep	-	III . I		Number:	0121	4	11.	(9	+		
8799 Billion No. 28-210 3520 7244 50 50 50 50 50 50 50 50 50 50 50 50 50	8199 Balkow he #240 hatress: 3220-3500 must be been continued by the beautiful sampling sampl	Ema		houser @ scseve	inders-com	P.O.#:		320.07					
Sample 1D Sampling S	Sample 1D Sample 8 Sample 9 Sampl	Add		3799 Ralbox L	12 #2 #3	Address:	27000	2500 Spark	,				
Sample D. Sampling Sampling Matrix Container Pres. 24 - 026 - 0.5 5 5 1 4 02 4 10 2 4 - 028 - 0.5 5 5 1 4 02 4 10 2 4 - 028 - 0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample 10 Sample 87 Sample 10			` !- -{	92623		Arana Blud		7 x	78 08 7¥			
Sample 10 Sample 10 Sample 10 Sample 10 Sample 10 Date Time	Sampling Sampling Matrix Container Press. 23 = 2	Pho		17	,	Global ID:			2) /d:])			
Sample 1D 24 - 030 - 0.5 24 - 030 - 0.5 24 - 020 - 0.5 25 - 0.5 26 - 0.5 27 - 0.5 27 - 0.5 28 - 0.5 29 - 0.5 20 - 0.5	Sampling Sampling Matrix Container Press. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fax:				Sampled By:	Tylero	vertor		1		→ √112	
Sample 10 24-030-0.5 24-030-0.5 516/24 50.5 50.1 4024.03 124-020-0.5 516/24 50.5 50.1 4024.03 124-020-0.5 50.1 4025 124-020-0.5 50.1 60.0 124-020-0.5 124-0	Sample 10 24. 030 - 0.5 24. 030 - 0.5 24. 030 - 0.5 24. 030 - 0.5 24. 020 - 0.5 25. 020 - 0.5 26. 020 - 0.5 27. 020 - 0.5 27. 020 - 0.5 28. 020 - 0.5 29. 020 - 0.5 20. 020 -				Campling					84 H 0			11/
24.030.0.5 514/24 305 50.1 40224 5.6 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	24.030.1.5 24.030.1.5 24.030.1.5 24.028.0.5 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0.6 25.028.0		S	ample ID	Date		•		7 <u>Q</u>	ZWI LL	7_	5	5//6
24-020-1-5 945 -24-028-1.5 945 -24-028-2.5 945 -24-028-4. 24-028-1.5 24-028-4. 24-028-1.5 24-028	24-030-1-5 24-028-1-5 24-028-2-5 24-028	T.	HA-2	4-030-0.5	5/16/24	\vdash	1	十	X	X			
24-028-0.5 -24-028-1.5 -24-028-1.5 -24-028-2.5 -24-028-2.5 -24-028-2.5 -24-028-4: -	24-026-0.5 -24-028-1.5 -24-028-1.5 -24-028-2.5 -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-4. -24-028-1.5 -24-028	2	1- 4H	5-1-080-4	_	218		\top	7				
24-028-1.5 24-028-2.5 24-028	24-028-1.5 24-028-2.5 24-028-4.	3	HA - 2	20- 020 -M		930			X	X			
24-028-2.5 24-028-4. 24-028-4. 24-028-4. 24-028-4. 24-028-4. 24-028-6.5 24-028-6.5 24-028-6.5 24-028-6.5 24-028-6.5 24-028-6.5 24-028-6.5 24-028-6.5 24-028-6.5 24-028-6.5 24-028-6.5 24-028-7.	24 - 028 - 2.5 24 - 029 - 4: 24 - 029 - 4: 24 - 029 - 4: 24 - 029 - 4: 24 - 029 - 1.5 24 - 029 - 1.5 24 - 029 - 1.5 25 - 029 - 1.5 26 - 020 - 1.5 27 - 020 - 1.5 28 - 020 - 4 29 - 0.2 29 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.2 20 - 0.3	4	开	24-028-1.5		325					X		
24-028-4: 24-029-0-5 24-029-1-5 24-029-1-5 24-029-2-5 24-029-2-5 24-029-2-5 24-029-2-5 24-029-2-5 24-029-2-5 24-029-2-5 24-029-2-5 24-029-2-5 38pature By: Amy Signature By: Amy Milham tankmise	24-028-4: 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-2.5 24-029-2.5 24-029-4:	5		24-028-2.5		000			X	X			
24-029-0-5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.5 24-029-1.3 24-029-1.5 24-029-1.5 24-029-1.3	24-029-0-5 24-029-1-5 24-029-1-5 24-029-1-5 24-029-1-5 3ignature 1010	9	H.A	-023		915							
124-029-15 124-029-25	14-029-1.5 124-029-2-5 124-02	- 4-	H. 2.	18		0+b	-		X	XX		+	
124-029-25	14-029-25 1026 XX X X X X X X X X X X X X X X X X X	∞	ナインナ	620		955				*	X		
By: Signature Volume Company / Title Company /	By: Signature Print Name Company / Title wo Date / Time By: MICATARA TANIMANSED 578 Fugineers 5/20/24 14:35 By: And Michael Taniman Animan 19 10 5/20/24 14:35 By: And Michael Taniman 19 10 5/20/24 14:35 By: And Michael Taniman 19 10 5/20/24 10/4 Michael Michael Taniman 19 10 5/20/24 10/4 Michael Michael Manhad 19 10/4 10/4 Michael Michael Michael Manhad 19 10/4 10/4 Michael Michael Michael Manhad 19 10/4 10/4 Michael Mich	6	土土		/	0101			X	X			
By: My How Overton SCS Engineers ANN 5/20/24 14:35 By: ANN MUNICAL TRAINMANCE FA SO STOLY 14:35 By: ANN MAINMAN TRAINMANCE FA SO STOLY 14:35 By: ANN MAINMAN TRAINMANCE FA SO STOLY 16:35 By: ANN MAINMAN TRAINMANCE FA SO STOLY 16:45 By: ANN MAINMAN TRAINMANCE FA SO STOLY 16:45 By: ANN MAINMANCE FA SO S	By: My tyler Overton SCS Engineers of the Time SW. The Date/Time SW. The Date/Time SCS Engineers of the SW. SW. SW. SW. SW. SW. SW. W. W	10	44	029.	7	(025	0	>			X		
BY: And White Cherton SCS Engineers of 120/24 14:35 BY: And MINHAULTON MINHAULTON THE SCO CITIZE STORY 14:35 BY: And MINHAULTON MINHAULTON THE SCO CITIZE STORY 16:35 BY: CIVILS WANTER THE SCO CITIZE (1014)	BY: Color Mill than thrimmally SCS Engineers apply 5/20/24 14:35 BY: Amy Taniman's Printed The SCS Engineers apply 5/20/24 14:35 BY: Amy School Taniman's Markala Thrimman Taniman Thrimman Thri				Signature		Prin	ıt Name	သ	mpany / Tit	le e		te / Time
BY: CANONIMATE THRIWANDED 570/W 14:35 BY: CANONIMATE THE STORY 14:35 BY: CANONIMATE THE STORY 10:35 BY: CANONIMATE THE STORY	BY: STATE MICHAEN TANIMANDEN 578 5/20/24 14:35 BY: CAN THE MANAGE THE STATE S	¹ Re	linquished By	" / A Me	1	4		Overton	 	Engineer	7,		2012
BY: THE MINITERINATION FRATO STALIZY 1 BY: CHING MINITERIA FACTOR STALIZY 1 BY: CHING MINITERIA FACTOR STALIZY (1014)	BY: A THE WINGHON TANKANGON PH-SD - 4726-5721/74/108 BY: CALLY WAS MAKED FOR FACTOR OF 1014 WI CALL THE STATES STATES OF 1014 WI CALL THE STATES OF STATES OF 1014 WI CALL THE STATES OF STATES OF 1014	¹ Re	ceived By:	CAS	1	_2		thrimmen 2000	4	2,4			56.51
BY: CONTRACT THE STATE OF THE S	BY: CALL WINDS MANTON # FA-55 (571/74 1608) BY: CALL WINDS MANTON FA-55 (5721/74 (1014) M. CALL HAS STELLED FOR STELLING 1945	² Re	linquished By	Mark !!	02	2	WHOOM	MGLMMU	7	apt		134	1~
Received By:	and my survey (745 Amalou English FA 5/21/24 1	² Re	ceived By:	(60)		M	Mis DAD	intoria	#	2		27170	\$057 \$057
Received By:	W. CM6 49 5 WW (745 Amalow Engly FA 6/21/24)	Re	linquished By		$\left\langle \right $			mon	(4)	SD		15/2/1/20	1 (1014
	~ W and MA Show (745 / Amalow Engly FA 5/21/24 1	Re	ceived By:		\.		M	July 3	W. C.	7		12/12/2	17/7/13

CLISTOMER INTOMATION PROJECT INFORMATION	() L										
We water DW = Drinking Water States and Laboratory >>>					Lab No:	200	bht	Standard:	>	5 Day:	3 Day:
Number N		ANA				7	of (0	2 Day:		1 Day:	Custom TAT:
## WIN A PROJECT INFORMATION Analysis Request 1 = Teste instruction Sampling		<<< Select a Labor #N/A	atory >>>		Λ = W	Matrix: A=	Air S=Soil/Solia Aking Wate SD=	d Sediment	Pres $1 = Na_2 S_2 O_3$	is c	Sample Receipt Ten
Number N		#N/A			= WS	PP = Pure Produ Swab T = Tissu	ct SEA≃SeaWa e WP≃Wipe	ater 0 = Other	$4 = H_2 SO_4 5$		(lab use only)
Number: Numb	SNO	TOMER INFORMATION		PROJE	ECT INFORI	MATION		Analysis Requ	rest	Test Instru	actions / Comments
Number: Numb	Company:	1 100 to 1	Na	me:							
Pink	Report To:		Nu	mber:							
Sampling	Email:		P.0	#:							
Sample Date Sample Dy Dy Dy Dy Dy Dy Dy D	Address:		Ado	dress:			80	(E			
Sampling						- Aya-	ଟି	√d √d			
Sampling Sampling Matrix Container Pres. Container Container Pres. Container Pres. Container Pres. Container Conta	Phone:		99	bal-ID:			₩	31 06			
Sampling Sampling Matrix Container Pres. Container Pres. Container Conta	Fax:		San	npled By:			/ (平) 	ςγ ()		~\!\ \	
1-014-0.5 5116 ley 1040 501 Hooghwin i.e. X XX 1-014-1-5 1-014-1-5 1-014-4 1130 1-015-0.5 114-015-0.5	3,	Sample ID	Sampling Date	Sampling	Matrix		1.597(, V	1224	
1-014-1-5 4-014-1-5 11-05 4-014-4 11-05 11		24-014-0.5	5116124	1040		+-		XX			
4-014-25 11.15 11.		4-014-1-5		1055	1	\vdash				×	
1.015 -0.5 1.145 1.015 -0.5 1.145 1.015 -0.5 1.145 1.1		24-014-25		5111			X				
1-015-0-5 1-015-1-5 1-015-1-5 1-015-1-5 1-05-1-5 1-				1130						X	
24-015-15- 24-015-25- 24-015-25- 22-0.5	11.4	1		1145			X	X			
24-015-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	9			00 10 Ct			X				chis re ford cous
225-0.5 -023-1.5 12.05	7	24-012-72		1	+						2 (
023-0.5 1205 1220 122		24-015-4M									
Signature		1-023-0.5	,	1205	/		X	×			
Signature Print Name Company / Title Date / Mulder Crevitor Sts Engineers Starlan I Date / Strokm Est 80 Strokm Strokm Est 80 Strokm Strokm Est 80 Strokm Es	HA		7	1220	ア	7	A				
MULTINGENERAL SUS ENGINEERS STEATURE EST STORY S		S	ignature		Print	Name		Company / T	Title	De	te / Time
MUMANITATION EST-SO STOLING IN 14 MINISTRANCINANO EST-SO STOLING IN 1	Relinquished B	X	1			Ver-ton		Engrineers		_	14:28
Multan tanuanan tra (12) [2] [2] [2] [3] [4] [5] [5] [5] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6	Received By:		2	MAK	\ \ \ \ \	DANNANTE	•	ווח		128/	17
BY: (MY MINTALL THE STIPUL BY: (MY MINTALL THE STIPUL BY: () ST	Relinquished B	V. X		M	st met	ARING A POR) c	as the		2/12/5	202 7
The mistage that all the state of the state	Received By:		. (Mini	15 1110	11-77210C		A SO		17/1/2	1/408
Received By:	Relinquished B	V:		May)	K MA	italo	B	H-XX		C125	y hald
	Received By:	,	4		15/46	<i>(</i>)		AM		4211	01,91

		T T A	I TO THE	Cha	Chain of Custody Record	/ Record	Turn	Around,Ti	Turn Around, Time (rush by advanced notice only)	vanced not	ice only)
0				Lab No:	644806	624	Standard:		5 Day:	3 Day:	
	ANA I		CAL	Page:	EV.	of /	2 Day:		1 Day:	Custom TAT	AT:
	<<< Select a Laboratory >>>	atory >>>			Matrix: A = /	A = Air S = SolySolid	lid	Pr	ŝ	<u> </u>	Sample Receipt Temp:
	#N/A			W = Wa	W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water	ıking Wate SD = Sed ct SEA = Sea Water	= Sediment Vater	$1 = Na_2 S_2 O_3 2 = HCI$ $4 = H_2 SO_4 5 = NaOH$	= $Na_2S_2O_3$ 2 = HCl 3 = HNO ₃ = H_2SO_4 5 = NaOH 6 = Other	o ₃	
	#N/A			SW = Sv	SW = Swab T = Tissue	e WP = Wipe	0 = Other			(la	(lab use only)
CUS	CUSTOMER INFORMATION		PROJE	PROJECT INFORMATION	ATION		Analysis Request	uest	Test lr	Test Instructions / Comments	omments
Company:	<- 1 ng pas ->	Nau	Name:								
Report To:	5	N	Number:				,				
Email:	- A	P.C	P.O.#;			(¥′	8,				
Address:		Adı	Address:			180	(8 00)				
						<u>ි</u>	511				
Phone:		Glc	Global ID:			182	8		8		
Fax:		Sar	Sampled By:			!))) 9		·νįν		
	Sample ID	Sampling Date	Sampling Time	Matrix C	Container No. / Size	.s. (3)			nyp		
1 14.2	HA-24-023-2.5	116/24	1250	50,1 40	400 Less 1	Ĭ Ž	X				
- 	11x -24-023 4 600		0184	ų.	?	-					
3 44-5	HA-24-024-05		1340			X	XX				
4 HA-	-24-024-1.5		1355			X	X				
5 HA-	HA-24-025-05		1450			X	X X				
6 HA.	A-24-025-1-5		1445			X	G25		X	-	
机。12	A-24-025-25		1510			X	X				
8 HA -	025.	- >	1545						X		
9 HA-2	-24-013-0.5	15/172y	150			\times	X				
10 HA-	-24-013-1.5		820	7	>	_ _ >			X		
		Signature	,	Print Name	Name		Company /	′ Title		Date / Time	е
¹ Relinquished By:	37:		JM/	tuter Marker	Varyor	SIS	Engineers.	Ź	5/20/2	7	4:25
¹ Received By:	The S	4	Mill	MARI TO	Phryanlew		もなるの	:	100/5	il m	1:35
² Relinquished By:	3y: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- Mar	> M11/	Hall Tan	COUNTRYUD		EHAD		<1211"	51 bc	X)
² Received By:		/	Mary		FO IS	_	公志		STUTE	741 148) <u>(</u>
³ Relinquished By:	3y: (2		Char	S	Pride		# 100 A		\$211,1	[a] 52	5
³ Received By:) }			MICM	9		MA		5-61	1 hr-	6 (4
2	Mens and	ming the	5L) W	ر الح الح	S	- Amalie	Amalismi Suallum	12 ST21 RY	2 174S	د	

CONTRICTOR CONTRICTOR Contribute Con					5 	Chain of Custody Record	ly Record	Turn A	Around Tir	ne (rush by adva	Turn Around Time (rush by advanced notice only)	
A N A L V I C A L Pege:					Lab No:	た変化	40	Characterial				
Sample Date				1		3/	1	Standard:	>	5 Day:	3 Day:	
Sample D Sampling National Date		Colone a lateral	=		Page:	1	of (0	2 Day:		1 Day:	Custom TAT:	
Sample D Date D	·	Select a Laboratory **N/A	^		× = ×	Matrix: A=	Air S = Soil/Solid	1	V	ervative	┼—	emp:
Sample Date Date Sampling Sample Date		#N/A			= MS	PP = Pure Produ Swab T = Tissu	ct SEA = Sea Wate	er - Othor	1 = Nd ₂ S ₂ U ₃ 4 = H ₂ SO ₄ 5			
Sample 1D Sample 1D Sample 1D Date Time Sample 1D Sample 1D Date Time Sample 1D	CUSTOME	R INFORMATION	_	PROJE	CT INFORM	AATION		Analysis Bosson			(lab use only)	
Sample ID	7	500	Nia					Analysis kegu	est	Test Instr	uctions / Comments	
Sample 10 Sampling Matrix Sampling Mat			- Nathic:									
Sample Date Date Sampling Martix Container Date D	.01		Number				·			<u>-</u>		
Sampled By. Sampl	Email:		P.O. #:					<u>`(</u>				
Sample 10 Sample 10 Sample 10 Date Time Tim	Address:		Address				(0°)					
Sample By: Sampling Samplin							7 (
Sample 1D Sample 1D Sample 1D Date Time Tim	Phone:		Global II				18	<i>,</i>				
Sample 1D Sampling Sampling Matrix Container 24-013-4 -24-016-0.5 -24-016-0.5 -24-016-0.5 -24-016-2.5 1030 -24-006-6 -24-006-7 -24-006-6 -24-006-7 -24-006-7 -24-006-7 -24-006-7 -24-006-6 -24-006-7 -24-006-7 -24-006-7 -24-006-7 -24-006-7 -24-006-7 -24-006-8 -24-006-8 -24-006-8 -24-006-8 -24-006-8 -24-006-8 -24-006-8 -24-006-8 -24-006-8 -24-006-8 -24-006-7 -24-006-6 -24-006-7 -24-00	Fax:		Sampled	By:			2)	5]		miy		
24-013-2.5 5 1n 124 850 5011 4024 654 104 XX 24-016-0.5 4 920 24-016-0.5 1030 1-24-016-1.5 1030 1-24-016-2.5 1030 1-24-016-2.5 1030 1-24-009-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-6 12-5 1130 24-009-7 11	Sample			Sampling Time	Matrix	<u> </u>	(d)(41,5		Arc.		
24-013-4 -24-016-0.5 -24-016-0.5 -24-016-2.5 -24-006-		12.5	7,7		1	-						
24-016-0.5 1005 1-24-016-1.5 1005 1-24-016-2.5 1100 1-24-016-4 1100 1-24-009-6 1200 1200 1200 1200 1200 1200 1200 120		ŧ			.	┦—			1			
1-24-016-1-5 1005 1-24-016-4 1-100 1-24-016-4 1-100 1-24-016-4 1-100 1-24-009-6 1-20 1-200-6 1-20 1-200-6 1-20 1-200-6 1-20 1-200 1-200-6 1-200		. olla . 0.5	0	145			×	××		7		
1030 1-24-016-4 1100 1-24-009-5 1130 -24-009-6 1200 24-009-6 1200 1200 1200 1200 1200 1200 1200 120	7	016-1.5	J	200			,		<u> </u>			
24-016-4 -24-009-5 -24-009-6 -24-009		2-2		030			X					
24-009-5 -24-009-6 -			1	100								
24 009-6 24 019 0-5 24 019 0-5 24 019 0-5 24 019 0-5 24 019 0-5 24 019 24 019 24 019 25 019 24 019 25 019	¥¥.			130	-		X					$\dagger T$
By: Company Title Date/I By: Company Title Date/I By: Company Title Date/I Da	17 AT	-009-6		200			X					
By: Company Title Date/I By: Charles The Med The Man Scs Engineers 5/20/24 By: Show Mind Mind Act Company Title Date/I By: Charles The Month Act Company Title Date/I By: Charles The Month Act Company Title Date/I By: Charles The Month Act Company Title Date/I By: Charles The Month Act Company Title Date/I By: Charles The Month Act Company Title Date/I By: Charles The Company Title Date/I By: Charles The Company Title Date/I By: Company Title Date The Company Titl	W HA 21	 - 2	+									
By: Coth William Thriwthich East Engineers 5/20/24 By: System Milliam Thriwthich EASO 5/20/24 By: Coth Milliam Thriston EASO 5/20/24 By: Coth Milliam Thriston EASO 5/20/24			a)	 	Print N	Jame		ompany / Tit			_	T
By: San Muchan Anymone 55 may 5 5 may 18 mg 18 m	Relinquished By:	の権力		4	20) solon		All	ا پ	Da		\dagger
BY: SAME MINISTRANT OF STATE STATE OF S	Received By:	of the second		.	12	Sell Charles	3	2 2 2 2		A L-	(4:35	
By: Charles Margarda 572 52174 By: Charles Margarda 572 52174 2 N We note-11-17 17 96 622 52474	Relinquished By:	S. Will	1			10/12/10/20		となった		2000	14:35	T
BY: Chief Marked The Styley 2 1/24 1/24 1/24 1/24 1/24 1/24 1/24 1/	Received By:	18			MAN	2 2	1	7-17		ところ	0/1/1	
2-N/W 1945-11-14 17 96 00 12 12 12 16 16 16 16 16 16 16 16 16 16 16 16 16	Relinquished By:			July D	ALUVI S	100	T A			1000	900	T
2 N W BAG-U-M 17 OK ON KIND C. W.	Received By:				1125.1	9	10	1/2			13/3/	T
	7	N / CMU F	-2 Kg	17-17	47	2 7	1	Arre be.	11.0	2 2 2	7797	٦

H		M III		Chain of Custody Record	dy Record	Turn /	Around Tir	Turn Around, Time (rush by advanced notice only)	nced notice only	
				Lab No: 508749	49	Standard:	>	5 Day:	3 Day:	
				Page: 5	of	2 Day:		1 Day:	Custom TAT:	
<< Se	<<< Select a Laboratory >>>	,<< \		Matrix: A	A = Air S = Soil/Solid		Pr	1 %	Sample Receipt Temp:	emb:
	#N/A			W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water	inking Wate SD = Sed uct SEA = Sea Water	ediment	$1 = Na_2S_2O_3$ 2 = HCl $4 = H_2SO_4$ 5 = NaOH	$2 = HCI$ $3 = HNO_3$ 5 = NaOH $6 = Other$		
	#N/A			SW = Swab T = Tissue	WP = Wipe	0 = Other			(lab use only)	
CUSTOMER INFORMATION	VFORMATION		PROJE	OJECT INFORMATION		Analysis Request	iest	Test Instri	Test Instructions / Comments	
Company:	(m)	Name:	ne:							
Report To:		N	Number:		<u> </u>	(
Email:		P.0	P.O.#:		100 VI	9				
Address:		Adc	Address:		09 801	01 8				
	1111				\[\frac{\pi}{\beta} \frac{\pi}{\pi} \]	09				
Phone:		Glo	Global ID:		<u>せ)</u> 対ユ) :		2		
Fax:		San	Sampled By:) رول		γy		
Sample ID	S	Sampling Date	Sampling Time	Matrix Container No. / Size	.g. COC P.S. F	10M H,XL		24		 :
1 44-24-021	- 0.5	511124	(300	sail forglass	, 4 ×	X				
2 44-24-021-	1-15		1325		-			×		
3 44-24-021-2	27-72		0551		X X					
4 14-14-021-4	21-4	>	024)				,	X		
١.	022-0.5 4	2013	1440		×	X		3		
6 HA-24-0	022-1.5		(510				1			
7 FA-24-0.	-022-2.5		1530		X				;	
-H7-HH 8	-270-H-	>	1550					メ		
- Cl	<u>Iv</u>	20/24	720		X	X X				
10	5-1-020	>	745	7				X		
	Signature	ture		Print Name		Company / T	Title	De	Date / Time	
¹ Relinquished By:	るから		<u>₩</u>	ylev (Nevton	1 365	Prepioseus	ens	15/20/24	58:41	
¹ Received By:	when	(MK	44er TANWANGO	600 BA	PSD		2/2/2	74:41	
² Relinquished By:	what	9	M, W	HALITAN WARNED	β	as to		2217	UNIX U	
² Received By:	B	\	(Index	Monther	19 	1-2D	,	5/2/20	XX	
Relinquished By:			Opus	MANATANA	THE PARTY OF THE P	\bigcirc		72/745)	12/2	
Received By:	\ \ \			WI MAGO		1100		15-01-0	1614	
3	SNA THA	n	() MAZ-	745 JO	Anna Para S	Talles 1	政學	SK1124 1745		

Control Cont	1				Chain of	Chain of Custody Record		n Around Ti	Turn Around Time (rush by advanced notice only)	nced notice only)
Company The Care Press Care	0				Lab No:	bAttale	Standard:		5 Day:	3 Day:
Number N		ANAL	L			Jo of	(2 Day:	>	1 Day:	Custom TAT:
Wilder INFORMATION		<<< Select a Labora	atory >>>			A = Air	Soil/Solid		reservatives:	Sample Receipt Ter
#WAR INFORMATION Analysis Request Analysis Request		#N/A	•		W = Water D PP = Pur	W = Drinking Ware Product SEA	ate SD = Sediment = Sea Water	$\begin{vmatrix} 1 = Na2S2C \\ 4 = H2SO4 \end{vmatrix}$		
Mumber: Project INFORMATION Analysis Request Mumber: Project INFORMATION Mumber: Project INFORMATION Mumber: Project INFORMATION Print Name		#N/A		:	SW = Swab	= Tissue				(lab use only)
Number: Numb		STOMER INFORMATION		PROJE	CT INFORMATION	7	Analysis R	equest	Test Instr	uctions / Comments
Number: Numb	Company:			ame:						
Address:	Report To:	\hat{C}_{i}	Z	umber:			((· · · · · · · · · · · · · · · · · · ·		
Sampling	Email:		<u>d</u>	.0. #:						
Sampling	Address:		A	ddress:			210 (§	-		
Signature Sign							79. Vo B-			
Signature Sign	Phone:		5	lobal ID:) 9 }		32	
1- C22 - 2-5 & 5/22/14 & 0.5 see Pres. See Fl22 & See Fl22/14 & 0.5 see Pres. See Fl22/14 & 0.5 see Fl22 & See Fl22/14 & See	Fax:	į	Š	ampled By:))		1127	
1-020-7-5 & 5/26/14 & 605 & 50.1 4029/45/2 & 102 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Sample ID	Sampling Date	Sampling			HALL JSV		21/	
24 - 022 · 4 830	++	4	@5/20 (2		_		XXX		3	
24-019-0.5 24-019-1.5 34-019-1.5 4-019-2.5 4-019-2.5 1045 110 V V V V V V V V V V V V V V V V V V	土	. 070	<u></u>		\ \ \				X	į
24-019-1-5 42-019-2-5 44-019-2-5 44-019-2-5 10045 1100 V XX	#			\$2C			X X			
4-019-2-5 4-019-4 1020 1110 V V X X X X X X X X X X X X X X X X X		1-24-019-1.5		930					X	
24-019-4 1045 1110 y y x x x x x x x x x x x x x x x x x		019 -2		356			XX			
24-017-6.5 24-017-6.5 24-017-6.5 Signature Signature Print Name Company / Title Date / Tim Comp	开开	- 019 -		1020					X	
Signature Signature Signature Signature Signature Print Name Company / Title Date / Tim Company / Title Company / Title Date / Tim Company / Title Date / Tim Company / Title Company / Title Date / Tim Company / Title Date / Title	至	-24- OL1-0		1045		,	X			
Signature Signature Print Name Company / Title Date / Tim Company / Title Date / Tim Date / Tim		1-24-017-1	7	0111	↑ ↑	7	×			
Signature Print Name Company / Title Date / Time Signature Print Name Company / Title Date / Time Signature Parson Signature	6									
Signature Print Name Company / Title Date / Tim MILMEN PHYMMS SCS FILM, NORTH 14 14 MILMEN PHYMMS PASS FILM, NORTH 14 14 MILMEN PHYMS PASS FILM, NORTH 14 14 MILMEN PHYMMS PASS FILM, NORTH 14 14 MILMEN PHYMS PASS FILM, NORTH 14 14 MILMEN PHYMMS PASS FILM, NORTH 14 14 MILMEN PHYMMS PASS FILM, NORTH 14 14 MILMEN PHYMS PASS FILM, NORTH 14 14 MIL	10									
MICHAEL PRINCES SCS FLANDERS 5/20/24 14 MICHAEL THINMINGS EASO 5/20/24 14			gnature		Print Name		Company		Dž	
MINISTER THINMINGS FOR STANDS OF FOR STANDS	¹ Relinquished	By:		3	1510/()red	ν _έ		5-77	120	<i>h</i> /
MILLAND TUNNANDA EXESSES OF STATE OF ST	Received By:	1			WHEN THE	MANGES	4720		2/20/2	4 14:35
The state of the s	Relinquished Received By:	By:	4		AND THINK		12 PB 17 PB		12/12/2 27/12/2	
1 with and till like 1 the minimum of the	³ Relinquished I	By:			MANAMA		12 12 12 12 12 12 12 12 12 12 12 12 12 1		10 10 10 10 10 10 10 10 10 10 10 10 10 1	77.07
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	³ Received By:	7	$\left \right\rangle$		Wille U		ANG.		ない	11/1/2/2
	F	1110 1110	the state of	11 1111	711		And make			770

Section 1							
Client: SCS	Fus:		Project:/	Midwa	/ R:∙	Siny	/
Date Received:_	5/21/2	9	Sampler's Nar		Yes		
Section 2						1111	
	d in a cooler?	 es, How many	<i>i</i> ?	kip section 2)		e Temp (°C	
), One from each coo			#3:	#4:	(No Coole	r) ·
(Acceptance range is	6°C but not frozen (for Mici	obiology samples,	acceptance range is < 10°C	but not frozen). It	is acceptable	for sampl	— 'es collected
Shipping Informa	tion:	o nave a nigher te	mperature as long as there i	s evidende that cod	oling has beg	un.)	
Section 3							
Was the cooler p	acked with: Ice	lce Pacer	ks Bubble Wra	ap 🗍 Styro	oam		
Cooler Temp (°C)			#3:		#4:		
Section 4					YES	NO	NI/A
Was a COC receiv	ed?			+	1123	NO	N/A
Are sample IDs pr							
	s & times present?						17201.00
	ignature present?			1			
	ired clearly indicated	on the COC	·	1			1000
Are custody seals		on the coe.					
	als are present, wer	e they intact?		+			
			ed for Microbiology	some plant			
	rive intact? If no, ind			samples)	-4	<u></u>	
	s agree with COC? (I			·			
			s for the required te	sts?			
	ainers labeled with t						
	e in the VOA vials gre						
was a sumicient a	mount of sample sub	mitted for th	e requested tests?				
Section 5 Explar	ations/Comments				•		
	i			1			[
							- 1
			1				
Section 6			,				
For discrepancies,	how was the Project	Manager not	tified?Verbal_рм	Initials: I	Date/Time_		
			Email	(email sent to/or	n):/	/	
Project Manager's	response:		_				
							l
	!						ŀ
							
Camarala ta da D			EIS	1170			
Completed By:			Date: <u>5</u> 72	1124			
	Enthalpy Ar	alvtical. a subsidia	ry of Montrose Environmen	tal Grount Inc			
			2868 • T: (714) 771-6900 • F				
		www.e	inthalpy.com/socal	1			
		Sample Acceptan	ce Checklist – Rev 4, 8/8/203	17		,	

RE: [External] - FW: MIDWAY RISING - Enthalpy Data (509012) (Invoice CINV-284014)

Houser, Chuck < CHouser@scsengineers.com>

Tue 6/4/2024 6:09 PM

To:Taylor Nasu <taylor.nasu@enthalpy.com>;Overton, Tyler <TOverton@scsengineers.com>

1 attachments (1 MB)

508749_level2.pdf;

Taylor, For lab report 508749_level 2, please analyze samples HA-24-015-0.5 and HA-24-015-1.5 for Title 22 Metals, and for WET and TCLP for lead. Thanks.

Chuck Houser, CHg **Project Manager SCS Engineers**

Office 858-571-5500 Ext. 2908

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Lab Job #: 508749
Project No: MIDWAY RISING
Location: Sports Arena - REVISED REPORT
Date Received: 05/20/24

Sample ID: HA-24-030-0.5 Lab ID: 508749-001 Collected: 05/16/24 08:05

508749-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Arsenic	4.2		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Barium	98		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Beryllium	ND		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Cadmium	ND		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Chromium	21		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Cobalt	7.0		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Copper	13		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Lead	38		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Molybdenum	ND		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Nickel	9.4		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Selenium	ND		mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Silver	ND		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Thallium	ND		mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Vanadium	52		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Zinc	48		mg/Kg	5.0	0.99	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	ND		mg/Kg	0.15	1.1	341004	05/23/24	05/23/24	DXC
Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	9.9	0.99	341256	05/29/24	05/29/24	DIB
TPH (C13-C22)	ND		mg/Kg	9.9	0.99	341256	05/29/24	05/29/24	DIB
TPH (C23-C44)	130		mg/Kg	20	0.99	341256	05/29/24	05/29/24	DIB
Surrogates				Limits					
n-Triacontane	101%		%REC	70-130	0.99	341256	05/29/24	05/29/24	DIB
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
beta-BHC	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
gamma-BHC	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
delta-BHC	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Heptachlor	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Aldrin	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Endosulfan I	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Dieldrin	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Endrin	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES

508749-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Endosulfan sulfate	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Endrin ketone	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND		ug/Kg	10	2	340897	05/23/24	05/25/24	MES
Methoxychlor	ND		ug/Kg	20	2	340897	05/23/24	05/25/24	MES
Toxaphene	ND		ug/Kg	200	2	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND		ug/Kg	100	2	340897	05/23/24	05/25/24	MES
Surrogates				Limits					
TCMX	82%		%REC	23-120	2	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	79%		%REC	24-120	2	340897	05/23/24	05/25/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
3-Chloropropene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Freon 12	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Chloromethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Vinyl Chloride	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Bromomethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Chloroethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Trichlorofluoromethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Acetone	ND		ug/Kg	100	1	340854	05/22/24	05/22/24	LYZ
Freon 113	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,1-Dichloroethene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Methylene Chloride	ND		ug/Kg	5.0	<u>.</u>	340854	05/22/24	05/22/24	LYZ
MTBE	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
trans-1,2-Dichloroethene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,1-Dichloroethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
2-Butanone	ND		ug/Kg	100	1	340854	05/22/24	05/22/24	LYZ
cis-1,2-Dichloroethene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
2,2-Dichloropropane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Chloroform	ND		ug/Kg ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Bromochloromethane	ND		ug/Kg ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,1,1-Trichloroethane	ND		ug/Kg ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
	ND			5.0	1	340854	05/22/24	05/22/24	LYZ
1,1-Dichloropropene			ug/Kg						
Carbon Tetrachloride	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2-Dichloroethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Benzene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Trichloroethene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2-Dichloropropane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Bromodichloromethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Dibromomethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
4-Methyl-2-Pentanone	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
cis-1,3-Dichloropropene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Toluene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
trans-1,3-Dichloropropene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,1,2-Trichloroethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,3-Dichloropropane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Tetrachloroethene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Dibromochloromethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2-Dibromoethane	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Chlorobenzene	ND		ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ

	,	ary 313 riest						
508749-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Ethylbenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
m,p-Xylenes	ND	ug/Kg	10	1	340854	05/22/24	05/22/24	LYZ
o-Xylene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Styrene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Bromoform	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Isopropylbenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2,3-Trichloropropane	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Propylbenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Bromobenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
2-Chlorotoluene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
4-Chlorotoluene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
tert-Butylbenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
sec-Butylbenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
para-Isopropyl Toluene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,3-Dichlorobenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,4-Dichlorobenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
n-Butylbenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2-Dichlorobenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Hexachlorobutadiene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Naphthalene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	1	340854	05/22/24	05/22/24	LYZ
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Xylene (total)	ND	ug/Kg	5.0	1	340854	05/22/24	05/22/24	LYZ
Surrogates			Limits					
Dibromofluoromethane	108%	%REC	70-145	1	340854	05/22/24	05/22/24	LYZ
1,2-Dichloroethane-d4	109%	%REC	70-145	1	340854	05/22/24	05/22/24	LYZ
Toluene-d8	85%	%REC	70-145	1	340854	05/22/24	05/22/24	LYZ
i diuerie-uo								

Sample ID: HA-24-030-1.5 Lab ID: 508749-002 Collected: 05/16/24 08:15

508749-002 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	2.5	mg/Kg	0.98	0.98	340895	05/22/24	05/22/24	SBW
Lead	13	mg/Kg	0.98	0.98	340895	05/22/24	05/22/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	99	0.99	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	49	0.99	340897	05/23/24	05/25/24	MES
Surrogates			Limits					
TCMX	79%	%REC	23-120	0.99	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	67%	%REC	24-120	0.99	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-028-0.5 Lab ID: 508749-003 Collected: 05/16/24 08:30

508749-003 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B Antimony	ND	mg/Kg	2.9	0.97	340895	05/22/24	05/22/24	SBW
Arsenic	3.4	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Barium	76	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Beryllium	ND	mg/Kg	0.49	0.97	340895	05/22/24	05/22/24	SBW
Cadmium	ND	mg/Kg	0.49	0.97	340895	05/22/24	05/22/24	SBW
Chromium	18	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Cobalt	24	mg/Kg	0.49	0.97	340895	05/22/24	05/22/24	SBW
Copper	19	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Lead	63	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Molybdenum	ND	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Nickel	9.6	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Selenium	ND	mg/Kg	2.9	0.97	340895	05/22/24	05/22/24	SBW
Silver	ND	mg/Kg	0.49	0.97	340895	05/22/24	05/22/24	SBW
Thallium	ND	mg/Kg	2.9	0.97	340895	05/22/24	05/22/24	SBW
Vanadium	46	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Zinc	30	mg/Kg	4.9	0.97	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A		99						
Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.1	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M		99						
Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	20	2	341011	05/23/24	05/24/24	DIB
TPH (C13-C22)	20	mg/Kg	20	2	341011	05/23/24	05/24/24	DIB
TPH (C23-C44)	110	mg/Kg	40	2	341011	05/23/24	05/24/24	DIB
Surrogates		9. 3	Limits					
n-Triacontane	104%	%REC	70-130	2	341011	05/23/24	05/24/24	DIB
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
	110		0.1					
delta-BHC				1	340897	05/23/24	05/25/24	MES
delta-BHC Heptachlor	ND	ug/Kg	5.1	1	340897 340897	05/23/24 05/23/24	05/25/24 05/25/24	MES MES
Heptachlor	ND ND	ug/Kg ug/Kg	5.1 5.1	1	340897	05/23/24	05/25/24	MES
Heptachlor Aldrin	ND ND ND	ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1		340897 340897	05/23/24 05/23/24	05/25/24 05/25/24	MES MES
Heptachlor Aldrin Heptachlor epoxide	ND ND ND	ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1	1	340897 340897 340897	05/23/24 05/23/24 05/23/24	05/25/24 05/25/24 05/25/24	MES MES MES
Heptachlor Aldrin	ND ND ND	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1	1 1	340897 340897	05/23/24 05/23/24	05/25/24 05/25/24	MES MES MES
Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	ND ND ND ND ND	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1	1 1 1	340897 340897 340897 340897 340897	05/23/24 05/23/24 05/23/24 05/23/24 05/23/24	05/25/24 05/25/24 05/25/24 05/25/24 05/25/24	MES MES MES MES
Heptachlor Aldrin Heptachlor epoxide Endosulfan I	ND ND ND ND	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1	1 1 1 1	340897 340897 340897 340897	05/23/24 05/23/24 05/23/24 05/23/24	05/25/24 05/25/24 05/25/24 05/25/24	MES MES MES
Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	ND ND ND ND ND ND ND	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	1 1 1 1 1	340897 340897 340897 340897 340897 340897 340897	05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24	05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24	MES MES MES MES MES MES MES
Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II	ND N	ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	1 1 1 1 1 1 1	340897 340897 340897 340897 340897 340897 340897	05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24	05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24	MES MES MES MES MES MES MES MES
Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II Endosulfan sulfate	ND N	ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	1 1 1 1 1 1	340897 340897 340897 340897 340897 340897 340897 340897	05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24	05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24	MES
Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II Endosulfan sulfate 4,4'-DDD	ND N	ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	1 1 1 1 1 1 1	340897 340897 340897 340897 340897 340897 340897 340897 340897	05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24	05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24	MES
Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II Endosulfan sulfate	ND N	ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	1 1 1 1 1 1 1 1 1 1	340897 340897 340897 340897 340897 340897 340897 340897	05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24 05/23/24	05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24 05/25/24	MES

508749-003 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND	ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	51	1	340897	05/23/24	05/25/24	MES
Surrogates		-9.1.9	Limits					
TCMX	74%	%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	69%	%REC	24-120	1	340897	05/23/24	05/25/24	MES
Method: EPA 8260B								
Prep Method: EPA 5030B								
3-Chloropropene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Freon 12	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Chloromethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Vinyl Chloride	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Bromomethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Chloroethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Trichlorofluoromethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Acetone	ND	ug/Kg	100	1	341196	05/26/24	05/26/24	LYZ
Freon 113	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1-Dichloroethene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Methylene Chloride	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
MTBE	ND	ug/Kg ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
	ND		5.0		341196	05/26/24	05/26/24	LYZ
trans-1,2-Dichloroethene		ug/Kg		1				
1,1-Dichloroethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
2-Butanone	ND	ug/Kg	100	1	341196	05/26/24	05/26/24	LYZ
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
2,2-Dichloropropane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Chloroform	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Bromochloromethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1,1-Trichloroethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1-Dichloropropene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Carbon Tetrachloride	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dichloroethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Benzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Trichloroethene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dichloropropane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Bromodichloromethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Dibromomethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
4-Methyl-2-Pentanone	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
cis-1,3-Dichloropropene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Toluene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
trans-1,3-Dichloropropene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1,2-Trichloroethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,3-Dichloropropane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Tetrachloroethene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Dibromochloromethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dibromoethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Chlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Ethylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
m,p-Xylenes	ND	ug/Kg	10	1	341196	05/26/24	05/26/24	LYZ
o-Xylene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Styrene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Otyrene	ND	ug/Kg	5.0	ı	341196	05/26/24	05/26/24	LYZ

508749-003 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
•						<u> </u>		
Isopropylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2,3-Trichloropropane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Propylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Bromobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
2-Chlorotoluene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
4-Chlorotoluene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
tert-Butylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
sec-Butylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
para-Isopropyl Toluene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,3-Dichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,4-Dichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
n-Butylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Hexachlorobutadiene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Naphthalene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	1	341196	05/26/24	05/26/24	LYZ
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Xylene (total)	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Surrogates			Limits					
Dibromofluoromethane	93%	%REC	70-145	1	341196	05/26/24	05/26/24	LYZ
1,2-Dichloroethane-d4	94%	%REC	70-145	1	341196	05/26/24	05/26/24	LYZ
Toluene-d8	100%	%REC	70-145	1	341196	05/26/24	05/26/24	LYZ

Sample ID: HA-24-028-2.5 Lab ID: 508749-005 Collected: 05/16/24 09:00

508749-005 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	3.8	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Cobalt	5.9	mg/Kg	0.50	1	340895	05/22/24	05/22/24	SBW
Lead	7.7	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Method: EPA 8015M								
Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	20	2	341011	05/23/24	05/26/24	DIB
TPH (C13-C22)	ND	mg/Kg	20	2	341011	05/23/24	05/26/24	DIB
TPH (C23-C44)	190	mg/Kg	40	2	341011	05/23/24	05/26/24	DIB
Surrogates			Limits					
n-Triacontane	119%	%REC	70-130	2	341011	05/23/24	05/26/24	DIB
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	340897	05/23/24	05/25/24	MES
Surrogates			Limits					
TCMX	69%	%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	54%	%REC	24-120	1	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-029-0.5 Lab ID: 508749-007 Collected: 05/16/24 09:40

Matrix: Soil

508749-007 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B	ND		mg/Kg	2.0	0.99	340895	05/22/24	05/22/24	SBW
Antimony Arsenic	3.5		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Barium	100		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Beryllium	ND		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Cadmium	ND		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Cadmidin	22		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Cobalt	7.1		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Copper	12		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Lead	5.9		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Molybdenum	ND		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Nickel	7.7		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Selenium	ND		mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Silver	ND ND		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Thallium	ND ND		mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Vanadium	52		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Zinc	40		mg/Kg	5.0	0.99	340895	05/22/24	05/22/24	SBW
	40		mg/rxg	5.0	0.99	340033	03/22/24	03/22/24	3000
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND		mg/Kg	0.15	1.1	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	9.9	0.99	341011	05/23/24	05/24/24	DIB
TPH (C13-C22)	ND		mg/Kg	9.9	0.99	341011	05/23/24	05/24/24	DIB
TPH (C23-C44)	ND		mg/Kg	20	0.99	341011	05/23/24	05/24/24	DIB
Surrogates				Limits					
n-Triacontane	122%		%REC	70-130	0.99	341011	05/23/24	05/24/24	DIB
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
delta-BHC	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Heptachlor	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Aldrin	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endosulfan I	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Dieldrin	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
4,4'-DDE	5.2		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endrin	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endosulfan II	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endrin ketone	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES

508749-007 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Methoxychlor	ND		ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND		ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND		ug/Kg	51	1	340897	05/23/24	05/25/24	MES
Surrogates				Limits					
TCMX	71%		%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	78%		%REC	24-120	1	340897	05/23/24	05/25/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
3-Chloropropene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Freon 12	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Chloromethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Vinyl Chloride	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Bromomethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Chloroethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Trichlorofluoromethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Acetone	ND		ug/Kg	100	1	341196	05/26/24	05/26/24	LYZ
Freon 113	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1-Dichloroethene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Methylene Chloride	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
MTBE	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
trans-1,2-Dichloroethene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1-Dichloroethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
2-Butanone	ND		ug/Kg	100	1	341196	05/26/24	05/26/24	LYZ
cis-1,2-Dichloroethene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
2,2-Dichloropropane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Chloroform	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Bromochloromethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1,1-Trichloroethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1-Dichloropropene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Carbon Tetrachloride	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dichloroethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Benzene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Trichloroethene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dichloropropane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Bromodichloromethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Dibromomethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
4-Methyl-2-Pentanone	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
cis-1,3-Dichloropropene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Toluene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
trans-1,3-Dichloropropene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1,2-Trichloroethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,3-Dichloropropane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Tetrachloroethene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Dibromochloromethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dibromoethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Chlorobenzene	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Ethylbenzene	ND		ug/Kg	5.0	<u>.</u> 1	341196	05/26/24	05/26/24	LYZ
m,p-Xylenes	ND		ug/Kg	10	<u>.</u> 1	341196	05/26/24	05/26/24	LYZ
o-Xylene	ND		ug/Kg	5.0	<u>'</u> 1	341196	05/26/24	05/26/24	LYZ
Styrene	ND		ug/Kg ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
	שויו		ug/ING	5.0		0-1130	00/20/24	00/20/24	∟ı∠

508749-007 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
	ND		5.0	-	341196	05/26/24	05/00/04	LYZ
Isopropylbenzene		ug/Kg		1			05/26/24	
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2,3-Trichloropropane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Propylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Bromobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
2-Chlorotoluene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
4-Chlorotoluene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
tert-Butylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
sec-Butylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
para-Isopropyl Toluene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,3-Dichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,4-Dichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
n-Butylbenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Hexachlorobutadiene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Naphthalene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	1	341196	05/26/24	05/26/24	LYZ
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Xylene (total)	ND	ug/Kg	5.0	1	341196	05/26/24	05/26/24	LYZ
Surrogates		- 3. 9	Limits					
Dibromofluoromethane	92%	%REC	70-145	1	341196	05/26/24	05/26/24	LYZ
1,2-Dichloroethane-d4	92%	%REC	70-145	1	341196	05/26/24	05/26/24	LYZ
Toluene-d8	99%	%REC	70-145	1	341196	05/26/24	05/26/24	LYZ
Bromofluorobenzene	101%	%REC	70-145	1	341196	05/26/24	05/26/24	LYZ

Sample ID: HA-24-029-2.5 Lab ID: 508749-009 Collected: 05/16/24 10:10

Matrix: Soil

508749-009 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B	nesuit	Quai Units	nL	DF	Datch	Prepared	Analyzeu	Chemis
Prep Method: EPA 3050B								
Arsenic	4.3	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Lead	6.5	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Method: EPA 8015M Prep Method: EPA 3580M		<u> </u>						
TPH (C6-C12)	ND	mg/Kg	10	1	341011	05/23/24	05/24/24	DIB
TPH (C13-C22)	ND	mg/Kg	10	1	341011	05/23/24	05/24/24	DIB
TPH (C23-C44)	ND	mg/Kg	20	1	341011	05/23/24	05/24/24	DIB
Surrogates			Limits					
n-Triacontane	116%	%REC	70-130	1	341011	05/23/24	05/24/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDE	8.7	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	340897	05/23/24	05/25/24	MES
Surrogates			Limits					
TCMX	73%	%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	65%	%REC	24-120	1	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-014-0.5 Lab ID: 508749-011 Collected: 05/16/24 10:40

508749-011 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	3.0	1	340895	05/22/24	05/22/24	SBW
Arsenic	7.5	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Barium	93	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Beryllium	0.53	mg/Kg	0.50	1	340895	05/22/24	05/22/24	SBW
Cadmium	ND	mg/Kg	0.50	1	340895	05/22/24	05/22/24	SBW
Chromium	7.3	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Cobalt	4.8	mg/Kg	0.50	1	340895	05/22/24	05/22/24	SBW
Copper	8.7	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Lead	11	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Molybdenum	ND	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Nickel	5.0	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Selenium	ND	mg/Kg	3.0	1	340895	05/22/24	05/22/24	SBW
Silver	ND	mg/Kg	0.50	1	340895	05/22/24	05/22/24	SBW
Thallium	ND	mg/Kg	3.0	1	340895	05/22/24	05/22/24	SBW
Vanadium	18	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Zinc	31	mg/Kg	5.0	1	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.2	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	341011	05/23/24	05/24/24	DIB
TPH (C13-C22)	ND	mg/Kg	10	1	341011	05/23/24	05/24/24	DIB
TPH (C23-C44)	ND	mg/Kg	20	1	341011	05/23/24	05/24/24	DIB
Surrogates			Limits					
n-Triacontane	115%	%REC	70-130	1	341011	05/23/24	05/24/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES

508749-011 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND		ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	2,600		ug/Kg	250	5	340897	05/23/24	05/29/24	KLR
Surrogates				Limits					
TCMX	82%		%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	74%		%REC	24-120	1	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-014-2.5 Lab ID: 508749-013 Collected: 05/16/24 11:15

508749-013 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Arsenic	6.7	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Lead	7.6	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	9.8	0.98	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	98	0.98	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	49	0.98	340897	05/23/24	05/25/24	MES
Surrogates			Limits					
TCMX	82%	%REC	23-120	0.98	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	74%	%REC	24-120	0.98	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-015-0.5 Lab ID: 508749-015 Collected: 05/16/24 11:45

508749-015 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	3.0	1	340895	05/22/24	05/22/24	SBW
Arsenic	4.7	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Barium	74	mg/Kg	1.0	· 1	340895	05/22/24	05/22/24	SBW
Beryllium	ND	mg/Kg	0.50	· 1	340895	05/22/24	05/22/24	SBW
Cadmium	ND	mg/Kg	0.50	1	340895	05/22/24	05/22/24	SBW
Chromium	18	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Cobalt	9.4	mg/Kg	0.50	1	340895	05/22/24	05/22/24	SBW
Copper	46	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Lead	7.0	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Molybdenum	ND	mg/Kg	1.0	· 1	340895	05/22/24	05/22/24	SBW
Nickel	5.7	mg/Kg	1.0	· 1	340895	05/22/24	05/22/24	SBW
Selenium	ND	mg/Kg	3.0	· 1	340895	05/22/24	05/22/24	SBW
Silver	ND	mg/Kg	0.50	1	340895	05/22/24	05/22/24	SBW
Thallium	ND	mg/Kg	3.0	<u>·</u>	340895	05/22/24	05/22/24	SBW
Vanadium	34	mg/Kg	1.0	<u>·</u>	340895	05/22/24	05/22/24	SBW
Zinc	30	mg/Kg	5.0	1	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A Prep Method: METHOD			0.0		0.10000	00/22/21	00/22/21	0511
Mercury	ND	mg/Kg	0.15	1.1	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M	ND		10		044044	05/00/04	05/04/04	DID
TPH (C6-C12)	ND	mg/Kg	10	1	341011	05/23/24	05/24/24	DIB
TPH (C13-C22)	ND	mg/Kg	10	1	341011	05/23/24	05/24/24	DIB
TPH (C23-C44)	ND	mg/Kg	20	1	341011	05/23/24	05/24/24	DIB
Surrogates	1000/	*/PE0	Limits		0.11.0.1.1	05/00/04	05/04/04	- DID
n-Triacontane	122%	%REC	70-130	1	341011	05/23/24	05/24/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES

508749-015 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	9.8	0.98	340897	05/23/24	05/25/24	MES
Toxaphene	ND		ug/Kg	98	0.98	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	19,000		ug/Kg	980	20	340897	05/23/24	05/29/24	KLR
Surrogates				Limits					
TCMX	82%		%REC	23-120	0.98	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	79%		%REC	24-120	0.98	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-015-1.5 Lab ID: 508749-016 Collected: 05/16/24 12:00

508749-016 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	4.8	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Lead	8.0	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor	27	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	17,000	ug/Kg	2,500	50	340897	05/23/24	05/29/24	KLR
Surrogates	,	- 3 9	Limits					
TCMX	78%	%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	65%	%REC		1	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-023-0.5 Lab ID: 508749-017 Collected: 05/16/24 12:05

508749-017 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Arsenic	20		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Barium	120		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Beryllium	0.80		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Cadmium	ND		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Chromium	5.5		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Cobalt	5.6		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Copper	8.2		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Lead	9.6		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Molybdenum	2.0		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Nickel	4.3		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Selenium	ND		mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Silver	ND		mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Thallium	ND		mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Vanadium	19		mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Zinc	30		mg/Kg	5.0	0.99	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND		mg/Kg	0.16	1.1	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	9.9	0.99	341011	05/23/24	05/24/24	DIB
TPH (C13-C22)	ND		mg/Kg	9.9	0.99	341011	05/23/24	05/24/24	DIB
TPH (C23-C44)	ND		mg/Kg	20	0.99	341011	05/23/24	05/24/24	DIB
Surrogates				Limits					
n-Triacontane	145%	*	%REC	70-130	0.99	341011	05/23/24	05/24/24	DIB
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
delta-BHC	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Heptachlor	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Aldrin	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endosulfan I	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Dieldrin	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endrin	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endosulfan II	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
Endrin ketone	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND		ug/Kg	5.1	1	340897	05/23/24	05/25/24	MES

508749-017 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND		ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND		ug/Kg	51	1	340897	05/23/24	05/25/24	MES
Surrogates				Limits					
TCMX	77%		%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	64%		%REC	24-120	1	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-023-2.5 Lab ID: 508749-019 Collected: 05/16/24 12:50

508749-019 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B		<u> </u>					7,	
Prep Method: EPA 3050B								
Arsenic	9.5	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Lead	14	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	340897	05/23/24	05/25/24	MES
Surrogates		-	Limits					
TCMX	77%	%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	75%	%REC	24-120	1	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-024-0.5 Lab ID: 508749-020 Collected: 05/16/24 13:40

508749-020 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.95	340895	05/22/24	05/22/24	SBW
Arsenic	11	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Barium	73	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Beryllium	ND	mg/Kg	0.48	0.95	340895	05/22/24	05/22/24	SBW
Cadmium	ND	mg/Kg	0.48	0.95	340895	05/22/24	05/22/24	SBW
Chromium	14	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Cobalt	5.7	mg/Kg	0.48	0.95	340895	05/22/24	05/22/24	SBW
Copper	9.4	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Lead	11	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Molybdenum	ND	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Nickel	6.7	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Selenium	ND	mg/Kg	2.9	0.95	340895	05/22/24	05/22/24	SBW
Silver	ND	mg/Kg	0.48	0.95	340895	05/22/24	05/22/24	SBW
Thallium	ND	mg/Kg	2.9	0.95	340895	05/22/24	05/22/24	SBW
Vanadium	34	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Zinc	45	mg/Kg	4.8	0.95	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A								
Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.2	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M								
Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	341011	05/23/24	05/25/24	DIB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	341011	05/23/24	05/25/24	DIB
TPH (C23-C44)	ND	mg/Kg	20	0.99	341011	05/23/24	05/25/24	DIB
Surrogates			Limits					
n-Triacontane	114%	%REC	70-130	0.99	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	5.0	<u>.</u> 1	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	5.0	· 1	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	340897	05/23/24	05/25/24	MES
4,4-001	טוט	ug/r\g	3.0		U-10031	03/23/24	03/23/24	IVILO

508749-020 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	340897	05/23/24	05/25/24	MES
Toxaphene	ND		ug/Kg	100	1	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND		ug/Kg	50	1	340897	05/23/24	05/25/24	MES
Surrogates				Limits					
TCMX	80%		%REC	23-120	1	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	72%		%REC	24-120	1	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-024-1.5 Lab ID: 508749-021 Collected: 05/16/24 13:55

508749-021 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	8.6	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Lead	13	mg/Kg	1.0	1	340895	05/22/24	05/22/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDE	5.4	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	4.9	0.98	340897	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	9.8	0.98	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	98	0.98	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	49	0.98	340897	05/23/24	05/25/24	MES
Surrogates			Limits					
TCMX	80%	%REC	23-120	0.98	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	72%	%REC	24-120	0.98	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-025-0.5 Lab ID: 508749-022 Collected: 05/16/24 14:20

508749-022 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Arsenic	21	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Barium	500	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Beryllium	0.74	mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Cadmium	ND	mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Chromium	4.8	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Cobalt	62	mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Copper	34	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Lead	23	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Molybdenum	2.9	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Nickel	9.0	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Selenium	ND	mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Silver	0.50	mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Thallium	ND	mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Vanadium	20	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Zinc	37	mg/Kg	5.0	0.99	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A								
Prep Method: METHOD								
Mercury	ND	mg/Kg	0.17	1.2	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M								
Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	341011	05/23/24	05/25/24	DIB
TPH (C13-C22)	ND	mg/Kg	10	1	341011	05/23/24	05/25/24	DIB
TPH (C23-C44)	45	mg/Kg	20	1	341011	05/23/24	05/25/24	DIB
Surrogates			Limits					
n-Triacontane	110%	%REC	70-130	1	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
4,4-DDE Endrin	ND	ug/Kg ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
Endosulfan II	ND		9.8		340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
4,4'-DDD		ug/Kg		2				
	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	9.8	2	340897	05/23/24	05/25/24	MES

508749-022 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	20	2	340897	05/23/24	05/25/24	MES
Toxaphene	ND		ug/Kg	200	2	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND		ug/Kg	98	2	340897	05/23/24	05/25/24	MES
Surrogates				Limits					
TCMX	84%		%REC	23-120	2	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	78%		%REC	24-120	2	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-025-2.5 Lab ID: 508749-024 Collected: 05/16/24 15:10

508749-024 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B							7,200	
Prep Method: EPA 3050B								
Arsenic	5.6	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Lead	14	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	4.9	0.99	340897	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	340897	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	99	0.99	340897	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	49	0.99	340897	05/23/24	05/25/24	MES
Surrogates			Limits					
TCMX	80%	%REC	23-120	0.99	340897	05/23/24	05/25/24	MES
Decachlorobiphenyl	70%	%REC	24-120	0.99	340897	05/23/24	05/25/24	MES

Sample ID: HA-24-013-0.5 Lab ID: 508749-026 Collected: 05/17/24 07:50

508749-026 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.95	340895	05/22/24	05/22/24	SBW
Arsenic	4.8	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Barium	73	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Beryllium	ND	mg/Kg	0.48	0.95	340895	05/22/24	05/22/24	SBW
Cadmium	ND	mg/Kg	0.48	0.95	340895	05/22/24	05/22/24	SBW
Chromium	19	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Cobalt	9.1	mg/Kg	0.48	0.95	340895	05/22/24	05/22/24	SBW
Copper	14	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Lead	9.9	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Molybdenum	ND	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Nickel	8.0	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Selenium	ND	mg/Kg	2.9	0.95	340895	05/22/24	05/22/24	SBW
Silver	ND	mg/Kg	0.48	0.95	340895	05/22/24	05/22/24	SBW
Thallium	ND	mg/Kg	2.9	0.95	340895	05/22/24	05/22/24	SBW
Vanadium	45	mg/Kg	0.95	0.95	340895	05/22/24	05/22/24	SBW
Zinc	46	mg/Kg	4.8	0.95	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.15	1.1	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	341011	05/23/24	05/25/24	DIB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	341011	05/23/24	05/25/24	DIB
TPH (C23-C44)	56	mg/Kg	20	0.99	341011	05/23/24	05/25/24	DIB
Surrogates			Limits					
n-Triacontane	119%	%REC	70-130	0.99	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDE	5.7	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
,	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin aldehyde	שוו	uu/Itu	0.0					
Endrin aldehyde Endrin ketone	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR

508749-026 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	340925	05/22/24	05/23/24	KLR
Toxaphene	ND		ug/Kg	100	1	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	ND		ug/Kg	50	1	340925	05/22/24	05/23/24	KLR
Surrogates				Limits					
TCMX	94%		%REC	23-120	1	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	109%		%REC	24-120	1	340925	05/22/24	05/23/24	KLR

Sample ID: HA-24-013-2.5 Lab ID: 508749-028 Collected: 05/17/24 08:50

508749-028 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
<u> </u>	2.7	ma/Va	0.07	0.97	340895	05/22/24	05/22/24	SBW
Arsenic		mg/Kg	0.97					
Lead	1.9	mg/Kg	0.97	0.97	340895	05/22/24	05/22/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
4,4'-DDE	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endrin aldehyde	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endrin ketone	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Methoxychlor	ND	ug/Kg	10	1	340925	05/22/24	05/23/24	KLR
Toxaphene	ND	ug/Kg	100	1	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	51	1	340925	05/22/24	05/23/24	KLR
Surrogates			Limits					
TCMX	93%	%REC	23-120	1	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	115%	%REC	24-120	1	340925	05/22/24	05/23/24	KLR

Sample ID: HA-24-016-0.5 Lab ID: 508749-030 Collected: 05/17/24 09:45

508749-030 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B								
Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Arsenic	2.7	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Barium	92	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Beryllium	ND	mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Cadmium	ND	mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Chromium	15	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Cobalt	12	mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Copper	30	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Lead	2.8	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Molybdenum	ND	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Nickel	5.8	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Selenium	ND	mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Silver	ND	mg/Kg	0.50	0.99	340895	05/22/24	05/22/24	SBW
Thallium	ND	mg/Kg	3.0	0.99	340895	05/22/24	05/22/24	SBW
Vanadium	66	mg/Kg	0.99	0.99	340895	05/22/24	05/22/24	SBW
Zinc	33	mg/Kg	5.0	0.99	340895	05/22/24	05/22/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.17	1.2	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	341011	05/23/24	05/25/24	DIB
TPH (C13-C22)	ND	mg/Kg	10	1	341011	05/23/24	05/25/24	DIB
TPH (C23-C44)	ND	mg/Kg	20	1	341011	05/23/24	05/25/24	DIB
Surrogates			Limits					
n-Triacontane	133%	* %REC	70-130	1	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
4,4'-DDE	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
.,	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endrin aldehvde						· — - ·	, ·	
Endrin aldehyde Endrin ketone	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR

508749-030 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	340925	05/22/24	05/23/24	KLR
Toxaphene	ND		ug/Kg	100	1	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	ND		ug/Kg	51	1	340925	05/22/24	05/23/24	KLR
Surrogates				Limits					
TCMX	98%		%REC	23-120	1	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	116%		%REC	24-120	1	340925	05/22/24	05/23/24	KLR

Sample ID: HA-24-016-2.5 Lab ID: 508749-032 Collected: 05/17/24 10:30

508749-032 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B						-		
Prep Method: EPA 3050B								
Arsenic	5.5	mg/Kg	0.98	0.98	340895	05/22/24	05/22/24	SBW
Lead	9.2	mg/Kg	0.98	0.98	340895	05/22/24	05/22/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin ketone	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Methoxychlor	ND	ug/Kg	10	1	340925	05/22/24	05/23/24	KLR
Toxaphene	ND	ug/Kg	100	1	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	50	1	340925	05/22/24	05/23/24	KLR
Surrogates			Limits					
TCMX	96%	%REC	23-120	1	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	97%	%REC	24-120	1	340925	05/22/24	05/23/24	KLR

Sample ID: HA-24-009-5 Lab ID: 508749-034 Collected: 05/17/24 11:30

Matrix: Soil

508749-034 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
4,4'-DDE	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endrin aldehyde	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Endrin ketone	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.1	1	340925	05/22/24	05/23/24	KLR
Methoxychlor	ND	ug/Kg	10	1	340925	05/22/24	05/23/24	KLR
Toxaphene	ND	ug/Kg	100	1	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	180	ug/Kg	51	1	340925	05/22/24	05/23/24	KLR
Surrogates			Limits					
TCMX	97%	%REC	23-120	1	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	104%	%REC	24-120	1	340925	05/22/24	05/23/24	KLR

27 of 39

Sample ID: HA-24-009-6 Lab ID: 508749-035 Collected: 05/17/24 12:00

08749-035 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
lethod: EPA 8081A								
rep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin ketone	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Methoxychlor	ND	ug/Kg	10	1	340925	05/22/24	05/23/24	KLR
Toxaphene	ND	ug/Kg	100	1	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	50	1	340925	05/22/24	05/23/24	KLR
urrogates			Limits					
TCMX	91%	%REC	23-120	1	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	117%	%REC	24-120	1	340925	05/22/24	05/23/24	KLR

Sample ID: HA-24-021-0.5 Lab ID: 508749-036 Collected: 05/17/24 13:00

508749-036 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	3.0	0.99	340922	05/22/24	05/22/24	SBW
Arsenic	1.4	mg/Kg	0.99	0.99	340922	05/22/24	05/22/24	SBW
Barium	120	mg/Kg	0.99	0.99	340922	05/22/24	05/22/24	SBW
Beryllium	ND	mg/Kg	0.50	0.99	340922	05/22/24	05/22/24	SBW
Cadmium	ND	mg/Kg	0.50	0.99	340922	05/22/24	05/22/24	SBW
Chromium	6.9	mg/Kg	0.99	0.99	340922	05/22/24	05/22/24	SBW
Cobalt	11	mg/Kg	0.50	0.99	340922	05/22/24	05/22/24	SBW
Copper	30	mg/Kg	0.99	0.99	340922	05/22/24	05/22/24	SBW
Lead	1.2	mg/Kg	0.99	0.99	340922	05/22/24	05/22/24	SBW
Molybdenum	ND	mg/Kg	0.99	0.99	340922	05/22/24	05/22/24	SBW
Nickel	3.4	mg/Kg	0.99	0.99	340922	05/22/24	05/22/24	SBW
Selenium	ND	mg/Kg	3.0	0.99	340922	05/22/24	05/22/24	SBW
Silver	ND	mg/Kg	0.50	0.99	340922	05/22/24	05/22/24	SBW
Thallium	ND	mg/Kg	3.0	0.99	340922	05/22/24	05/22/24	SBW
Vanadium	69	mg/Kg	0.99	0.99	340922	05/22/24	05/22/24	SBW
Zinc	26	mg/Kg	5.0	0.99	340922	05/22/24	05/22/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.2	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	341011	05/23/24	05/25/24	DIB
TPH (C13-C22)	ND	mg/Kg	10	1	341011	05/23/24	05/25/24	DIB
TPH (C23-C44)	59	mg/Kg	20	1	341011	05/23/24	05/25/24	DIB
Surrogates			Limits					
n-Triacontane	118%	%REC	70-130	1	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin ketone	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR

508749-036 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	340925	05/22/24	05/23/24	KLR
Toxaphene	ND		ug/Kg	100	1	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	ND		ug/Kg	50	1	340925	05/22/24	05/23/24	KLR
Surrogates				Limits					
TCMX	96%		%REC	23-120	1	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	102%		%REC	24-120	1	340925	05/22/24	05/23/24	KLR

Sample ID: HA-24-021-2.5 Lab ID: 508749-038 Collected: 05/17/24 13:50

508749-038 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B						-	<u>-</u>	
Prep Method: EPA 3050B								
Arsenic	3.2	mg/Kg	0.97	0.97	340922	05/22/24	05/23/24	SBW
Lead	2.2	mg/Kg	0.97	0.97	340922	05/22/24	05/23/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Endrin ketone	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.0	1	340925	05/22/24	05/23/24	KLR
Methoxychlor	ND	ug/Kg	10	1	340925	05/22/24	05/23/24	KLR
Toxaphene	ND	ug/Kg	100	1	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	50	1	340925	05/22/24	05/23/24	KLR
Surrogates			Limits					
TCMX	91%	%REC	23-120	1	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	124%	* %REC	24-120	1	340925	05/22/24	05/23/24	KLR

Sample ID: HA-24-022-0.5 Lab ID: 508749-040 Collected: 05/17/24 14:40

508749-040 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.98	340922	05/22/24	05/23/24	SBW
Arsenic	1.2	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Barium	140	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Beryllium	ND	mg/Kg	0.49	0.98	340922	05/22/24	05/23/24	SBW
Cadmium	ND	mg/Kg	0.49	0.98	340922	05/22/24	05/23/24	SBW
Chromium	5.9	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Cobalt	9.1	mg/Kg	0.49	0.98	340922	05/22/24	05/23/24	SBW
Copper	34	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Lead	ND	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Molybdenum	ND	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Nickel	3.3	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Selenium	ND	mg/Kg	2.9	0.98	340922	05/22/24	05/23/24	SBW
Silver	ND	mg/Kg	0.49	0.98	340922	05/22/24	05/23/24	SBW
Thallium	ND	mg/Kg	2.9	0.98	340922	05/22/24	05/23/24	SBW
Vanadium	83	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Zinc	28	mg/Kg	4.9	0.98	340922	05/22/24	05/23/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.14	1	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	341011	05/23/24	05/25/24	DIB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	341011	05/23/24	05/25/24	DIB
TPH (C23-C44)	ND	mg/Kg	20	0.99	341011	05/23/24	05/25/24	DIB
Surrogates			Limits					
n-Triacontane	110%	%REC	70-130	0.99	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
beta-BHC	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
gamma-BHC	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
delta-BHC	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Heptachlor	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Aldrin	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Endosulfan I	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Dieldrin	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Endrin	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Endosulfan II	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
Endrin ketone	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR
	ND	ug/Kg	5.0	0.99	340925	05/22/24	05/23/24	KLR

508749-040 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	9.9	0.99	340925	05/22/24	05/23/24	KLR
Toxaphene	ND		ug/Kg	99	0.99	340925	05/22/24	05/23/24	KLR
Chlordane (Technical)	ND		ug/Kg	50	0.99	340925	05/22/24	05/23/24	KLR
Surrogates				Limits					
TCMX	98%		%REC	23-120	0.99	340925	05/22/24	05/23/24	KLR
Decachlorobiphenyl	106%		%REC	24-120	0.99	340925	05/22/24	05/23/24	KLR

Sample ID: HA-24-022-2.5 Lab ID: 508749-042 Collected: 05/17/24 15:30

508749-042 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B						•	•	
Prep Method: EPA 3050B								
Arsenic	2.6	mg/Kg	0.97	0.97	340922	05/22/24	05/23/24	SBW
Lead	2.0	mg/Kg	0.97	0.97	340922	05/22/24	05/23/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
beta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
gamma-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
delta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Heptachlor	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Aldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endosulfan I	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Dieldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endosulfan II	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endrin ketone	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
4,4'-DDT	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Methoxychlor	ND	ug/Kg	10	1	340925	05/22/24	05/24/24	KLR
Toxaphene	ND	ug/Kg	100	1	340925	05/22/24	05/24/24	KLR
Chlordane (Technical)	ND	ug/Kg	50	1	340925	05/22/24	05/24/24	KLR
Surrogates		· · · · · · · · · · · · · · · · · · ·	Limits					
TCMX	96%	%REC	23-120	1	340925	05/22/24	05/24/24	KLR
Decachlorobiphenyl	119%	%REC	24-120	1	340925	05/22/24	05/24/24	KLR

Sample ID: HA-24-020-0.5 Lab ID: 508749-044 Collected: 05/20/24 07:20

508749-044 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.95	340922	05/22/24	05/23/24	SBW
Arsenic	1.5	mg/Kg	0.95	0.95	340922	05/22/24	05/23/24	SBW
Barium	74	mg/Kg	0.95	0.95	340922	05/22/24	05/23/24	SBW
Beryllium	ND	mg/Kg	0.48	0.95	340922	05/22/24	05/23/24	SBW
Cadmium	ND	mg/Kg	0.48	0.95	340922	05/22/24	05/23/24	SBW
Chromium	10	mg/Kg	0.95	0.95	340922	05/22/24	05/23/24	SBW
Cobalt	16	mg/Kg	0.48	0.95	340922	05/22/24	05/23/24	SBW
Copper	42	mg/Kg	0.95	0.95	340922	05/22/24	05/23/24	SBW
Lead	1.6	mg/Kg	0.95	0.95	340922	05/22/24	05/23/24	SBW
Molybdenum	ND	mg/Kg	0.95	0.95	340922	05/22/24	05/23/24	SBW
Nickel	6.0	mg/Kg	0.95	0.95	340922	05/22/24	05/23/24	SBW
Selenium	ND	mg/Kg	2.9	0.95	340922	05/22/24	05/23/24	SBW
Silver	ND	mg/Kg	0.48	0.95	340922	05/22/24	05/23/24	SBW
Thallium	ND	mg/Kg	2.9	0.95	340922	05/22/24	05/23/24	SBW
Vanadium	49	mg/Kg	0.95	0.95	340922	05/22/24	05/23/24	SBW
Zinc	20	mg/Kg	4.8	0.95	340922	05/22/24	05/23/24	SBW
Method: EPA 7471A Prep Method: METHOD		<u> </u>						
Mercury	ND	mg/Kg	0.16	1.1	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M TPH (C6-C12)	10	ma/Ka	10		341011	05/23/24	05/25/24	DIB
TPH (C6-C12)	13	mg/Kg	10	1		05/23/24	05/25/24	
TPH (C13-C22)	ND 54	mg/Kg	10	1	341011 341011	05/23/24	05/25/24	DIB
Surrogates	34	mg/Kg	Limits	ı	341011	03/23/24	05/25/24	סוט
n-Triacontane	95%	%REC	70-130	1	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A Prep Method: EPA 3546	9376	/₀nLU	70-130		341011	03/23/24	03/23/24	טוט
alpha-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
beta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
gamma-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
delta-BHC	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Heptachlor	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Aldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endosulfan I	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Dieldrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endrin	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endosulfan II	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
Endrin ketone	ND	ug/Kg	5.0	1	340925	05/22/24	05/24/24	KLR
	ND	ug/Kg			340925	05/22/24	05/24/24	KLR

508749-044 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	340925	05/22/24	05/24/24	KLR
Toxaphene	ND		ug/Kg	100	1	340925	05/22/24	05/24/24	KLR
Chlordane (Technical)	ND		ug/Kg	50	1	340925	05/22/24	05/24/24	KLR
Surrogates				Limits					
TCMX	94%		%REC	23-120	1	340925	05/22/24	05/24/24	KLR
Decachlorobiphenyl	119%		%REC	24-120	1	340925	05/22/24	05/24/24	KLR

Sample ID: HA-24-020-2.5 Lab ID: 508749-046 Collected: 05/20/24 08:05

508749-046 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B						,		
Prep Method: EPA 3050B								
Arsenic	2.2	mg/Kg	1.0	1	340922	05/22/24	05/23/24	SBW
Lead	ND	mg/Kg	1.0	1	340922	05/22/24	05/23/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Endrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
4,4'-DDT	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/25/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	340976	05/23/24	05/25/24	MES
Toxaphene	ND	ug/Kg	99	0.99	340976	05/23/24	05/25/24	MES
Chlordane (Technical)	ND	ug/Kg	50	0.99	340976	05/23/24	05/25/24	MES
Surrogates		-	Limits					
TCMX	49%	%REC	23-120	0.99	340976	05/23/24	05/25/24	MES
Decachlorobiphenyl	31%	%REC	24-120	0.99	340976	05/23/24	05/25/24	MES

Sample ID: HA-24-019-0.5 Lab ID: 508749-048 Collected: 05/20/24 08:50

08749-048 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	3.0	1	340922	05/22/24	05/23/24	SBW
Antimony	1.3	mg/Kg	1.0	1	340922	05/22/24	05/23/24	SBW
Barium	110	mg/Kg	1.0	1	340922	05/22/24	05/23/24	SBW
Beryllium	ND	mg/Kg	0.50	1	340922	05/22/24	05/23/24	SBW
Cadmium	ND	mg/Kg	0.50	1	340922	05/22/24	05/23/24	SBW
Chromium	6.0	mg/Kg	1.0	1	340922	05/22/24	05/23/24	SBW
Cobalt	7.3	mg/Kg	0.50	1	340922	05/22/24	05/23/24	SBW
	30		1.0	1	340922	05/22/24	05/23/24	SBW
Copper Lead	1.2	mg/Kg	1.0	1	340922	05/22/24	05/23/24	SBW
	ND	mg/Kg			340922	05/22/24	05/23/24	SBW
Molybdenum Nickel	3.1	mg/Kg	1.0	1		05/22/24	05/23/24	
		mg/Kg	1.0	1	340922	05/22/24		SBW
Selenium	ND ND	mg/Kg	3.0	1	340922	05/22/24	05/23/24 05/23/24	SBW
Silver		mg/Kg	0.50	1	340922			SBW
Thallium	ND	mg/Kg	3.0	1	340922	05/22/24	05/23/24	SBW
Vanadium	65	mg/Kg	1.0	1	340922	05/22/24	05/23/24	SBW
Zinc	24	mg/Kg	5.0	1	340922	05/22/24	05/23/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.2	341004	05/23/24	05/23/24	DXC
lethod: EPA 8015M rep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	341011	05/23/24	05/25/24	DIB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	341011	05/23/24	05/25/24	DIB
TPH (C23-C44)	35	mg/Kg	20	0.99	341011	05/23/24	05/25/24	DIB
urrogates			Limits					
n-Triacontane	127%	%REC	70-130	0.99	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endrin aldehyde	ND	ug/Kg ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endrin ketone	ND ND	ug/Kg ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES

508749-048 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	9.9	0.99	340976	05/23/24	05/26/24	MES
Toxaphene	ND		ug/Kg	99	0.99	340976	05/23/24	05/26/24	MES
Chlordane (Technical)	ND		ug/Kg	50	0.99	340976	05/23/24	05/26/24	MES
Surrogates				Limits					
TCMX	54%		%REC	23-120	0.99	340976	05/23/24	05/26/24	MES
Decachlorobiphenyl	48%		%REC	24-120	0.99	340976	05/23/24	05/26/24	MES

Sample ID: HA-24-019-2.5 Lab ID: 508749-050 Collected: 05/20/24 09:55

508749-050 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Arsenic	2.1	mg/Kg	0.99	0.99	340922	05/22/24	05/23/24	SBW
Lead	ND	mg/Kg	0.99	0.99	340922	05/22/24	05/23/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
beta-BHC	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
delta-BHC	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Heptachlor	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Aldrin	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Dieldrin	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endrin	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Methoxychlor	ND	ug/Kg	10	1	340976	05/23/24	05/26/24	MES
Toxaphene	ND	ug/Kg	100	1	340976	05/23/24	05/26/24	MES
Chlordane (Technical)	ND	ug/Kg	51	1	340976	05/23/24	05/26/24	MES
Surrogates			Limits					
TCMX	55%	%REC	23-120	1	340976	05/23/24	05/26/24	MES
Decachlorobiphenyl	46%	%REC	24-120	1	340976	05/23/24	05/26/24	MES

Sample ID: HA-24-017-0.5 Lab ID: 508749-052 Collected: 05/20/24 10:45

508749-052 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.98	340922	05/22/24	05/23/24	SBW
Arsenic	2.1	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Barium	98	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Beryllium	ND	mg/Kg	0.49	0.98	340922	05/22/24	05/23/24	SBW
Cadmium	ND	mg/Kg	0.49	0.98	340922	05/22/24	05/23/24	SBW
Chromium	13	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Cobalt	6.7	mg/Kg	0.49	0.98	340922	05/22/24	05/23/24	SBW
Copper	15	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Lead	2.8	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Molybdenum	ND	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Nickel	4.6	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Selenium	ND	mg/Kg	2.9	0.98	340922	05/22/24	05/23/24	SBW
Silver	ND	mg/Kg	0.49	0.98	340922	05/22/24	05/23/24	SBW
Thallium	ND	mg/Kg	2.9	0.98	340922	05/22/24	05/23/24	SBW
Vanadium	56	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Zinc	19	mg/Kg	4.9	0.98	340922	05/22/24	05/23/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.2	341004	05/23/24	05/23/24	DXC
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	341011	05/23/24	05/25/24	DIB
TPH (C13-C22)	ND	mg/Kg	10	1	341011	05/23/24	05/25/24	DIB
TPH (C23-C44)	ND	mg/Kg	20	1	341011	05/23/24	05/25/24	DIB
Surrogates			Limits					
n-Triacontane	120%	%REC	70-130	1	341011	05/23/24	05/25/24	DIB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endrin	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	340976	05/23/24	05/26/24	MES

508749-052 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	9.9	0.99	340976	05/23/24	05/26/24	MES
Toxaphene	ND		ug/Kg	99	0.99	340976	05/23/24	05/26/24	MES
Chlordane (Technical)	ND		ug/Kg	50	0.99	340976	05/23/24	05/26/24	MES
Surrogates				Limits					
TCMX	59%		%REC	23-120	0.99	340976	05/23/24	05/26/24	MES
Decachlorobiphenyl	57%		%REC	24-120	0.99	340976	05/23/24	05/26/24	MES

Sample ID: HA-24-017-1.5 Lab ID: 508749-053 Collected: 05/20/24 11:10

508749-053 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Arsenic	5.1	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Lead	14	mg/Kg	0.98	0.98	340922	05/22/24	05/23/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
beta-BHC	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
delta-BHC	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Heptachlor	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Aldrin	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Dieldrin	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endrin	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	340976	05/23/24	05/26/24	MES
Methoxychlor	ND	ug/Kg	10	1	340976	05/23/24	05/26/24	MES
Toxaphene	ND	ug/Kg	100	1	340976	05/23/24	05/26/24	MES
Chlordane (Technical)	ND	ug/Kg	51	1	340976	05/23/24	05/26/24	MES
Surrogates			Limits					
TCMX	32%	%REC	23-120	1	340976	05/23/24	05/26/24	MES
Decachlorobiphenyl	28%	%REC	24-120	1	340976	05/23/24	05/26/24	MES

Sample ID: Lab ID: 508749-054 Collected: 05/20/24 11:10

COMP HA-24-015-0.5, 1.5

508749-054 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B							-	-	
Prep Method: EPA 3010A									
Lead	ND	mg/L	0.015	TCLP Leachate	1	342379	06/10/24	06/10/24	SBW
Method: EPA 6010B Prep Method: EPA 3050B	3								
Antimony	ND	mg/Kg	2.9	Soil	0.97	342160	06/07/24	06/07/24	SBW
Arsenic	5.2	mg/Kg	0.97	Soil	0.97	342160	06/07/24	06/07/24	SBW
Barium	77	mg/Kg	0.97	Soil	0.97	342160	06/07/24	06/07/24	SBW
Beryllium	ND	mg/Kg	0.49	Soil	0.97	342160	06/07/24	06/07/24	SBW
Cadmium	ND	mg/Kg	0.49	Soil	0.97	342160	06/07/24	06/07/24	SBW
Chromium	16	mg/Kg	0.97	Soil	0.97	342160	06/07/24	06/07/24	SBW
Cobalt	17	mg/Kg	0.49	Soil	0.97	342160	06/07/24	06/07/24	SBW
Copper	49	mg/Kg	0.97	Soil	0.97	342160	06/07/24	06/07/24	SBW
Lead	8.5	mg/Kg	0.97	Soil	0.97	342160	06/07/24	06/07/24	SBW
Molybdenum	ND	mg/Kg	0.97	Soil	0.97	342160	06/07/24	06/07/24	SBW
Nickel	8.0	mg/Kg	0.97	Soil	0.97	342160	06/07/24	06/07/24	SBW
Selenium	ND	mg/Kg	2.9	Soil	0.97	342160	06/07/24	06/07/24	SBW
Silver	ND	mg/Kg	0.49	Soil	0.97	342160	06/07/24	06/07/24	SBW
Thallium	ND	mg/Kg	2.9	Soil	0.97	342160	06/07/24	06/07/24	SBW
Vanadium	35	mg/Kg	0.97	Soil	0.97	342160	06/07/24	06/07/24	SBW
Zinc	39	mg/Kg	4.9	Soil	0.97	342160	06/07/24	06/07/24	SBW
Method: EPA 6010B Prep Method: METHOD									
Lead	ND	mg/L	0.15	WET Leachate	10	342372	06/10/24	06/10/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND	mg/Kg	0.14	Soil	1	342210	06/07/24	06/07/24	MLL

^{*} Value is outside QC limits

ND Not Detected

Type: Blank Lab ID: QC1160131 Batch: 342379

Matrix: TCLP Leachate Method: EPA 6010B Prep Method: EPA 3010A

 QC1160131 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Lead
 ND
 mg/L
 0.015
 06/10/24
 06/10/24

Type: Lab Control Sample Lab ID: QC1160132 Batch: 342379

Matrix: TCLP Leachate Method: EPA 6010B Prep Method: EPA 3010A

 QC1160132 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Lead
 1.815
 2.000
 mg/L
 91%
 80-120

Type: Matrix Spike Lab ID: QC1160133 Batch: 342379

Matrix (Source ID): TCLP Leachate (509647-004) Method: EPA 6010B Prep Method: EPA 3010A

Source Sample

QC1160133 Analyte Result Result Spiked **Units** Recovery Qual Limits DF 1.840 0.07805 2.000 88% 75-125 Lead mg/L 1

Type: Matrix Spike Duplicate Lab ID: QC1160134 Batch: 342379

Matrix (Source ID): TCLP Leachate (509647-004) Method: EPA 6010B Prep Method: EPA 3010A

Source Sample **RPD** QC1160134 Analyte Result Result Spiked Units Recovery Qual Limits **RPD** Lim DF 1.811 75-125 Lead 0.07805 2.000 mg/L 87% 2 20

Type: Blank Lab ID: QC1160138 Batch: 342379

Matrix: TCLP Leachate Method: EPA 6010B Prep Method: EPA 3010A

 QC1160138 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Lead
 ND
 mg/L
 0.015
 06/10/24
 06/10/24

Type: Blank Lab ID: QC1160106 Batch: 342372

Matrix: WET Leachate Method: EPA 6010B Prep Method: METHOD

 QC1160106 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Lead
 ND
 mg/L
 0.15
 06/10/24
 06/10/24

Type: Lab Control Sample Lab ID: QC1160107 Batch: 342372

Matrix: WET Leachate Method: EPA 6010B Prep Method: METHOD

 QC1160107 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Lead
 4.256
 4.000
 mg/L
 106%
 80-120

Type: Lab Control Sample Duplicate Lab ID: QC1160108 Batch: 342372

Matrix: WET Leachate Method: EPA 6010B Prep Method: METHOD

RPD QC1160108 Analyte Result Spiked Units Recovery Qual Limits **RPD** Lim 106% 80-120 Lead 4.240 4.000 mg/L 20

Type: Blank Lab ID: QC1155129 Batch: 340895

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1155129 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	05/22/24	05/22/24
Arsenic	ND		mg/Kg	1.0	05/22/24	05/22/24
Barium	ND		mg/Kg	1.0	05/22/24	05/22/24
Beryllium	ND		mg/Kg	0.50	05/22/24	05/22/24
Cadmium	ND		mg/Kg	0.50	05/22/24	05/22/24
Chromium	ND		mg/Kg	1.0	05/22/24	05/22/24
Cobalt	ND		mg/Kg	0.50	05/22/24	05/22/24
Copper	ND		mg/Kg	1.0	05/22/24	05/22/24
Lead	ND		mg/Kg	1.0	05/22/24	05/22/24
Molybdenum	ND		mg/Kg	1.0	05/22/24	05/22/24
Nickel	ND		mg/Kg	1.0	05/22/24	05/22/24
Selenium	ND		mg/Kg	3.0	05/22/24	05/22/24
Silver	ND		mg/Kg	0.50	05/22/24	05/22/24
Thallium	ND		mg/Kg	3.0	05/22/24	05/22/24
Vanadium	ND		mg/Kg	1.0	05/22/24	05/22/24
Zinc	ND		mg/Kg	5.0	05/22/24	05/22/24

Type: Lab Control Sample Lab ID: QC1155130 Batch: 340895

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1155130 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	98.42	100.0	mg/Kg	98%	80-120
Arsenic	94.16	100.0	mg/Kg	94%	80-120
Barium	100.6 100		mg/Kg	101%	80-120
Beryllium	98.36	100.0	mg/Kg	98%	80-120
Cadmium	97.08	100.0	mg/Kg	97%	80-120
Chromium	97.17	100.0	mg/Kg	97%	80-120
Cobalt	104.0	100.0	mg/Kg 104%		80-120
Copper	94.78	100.0	mg/Kg	95%	80-120
Lead	102.3	100.0	mg/Kg	102%	80-120
Molybdenum	96.41	100.0	mg/Kg	96%	80-120
Nickel	102.5	100.0	mg/Kg	103%	80-120
Selenium	89.74	100.0	mg/Kg	90%	80-120
Silver	47.52	50.00	mg/Kg	95%	80-120
Thallium	99.21	99.21 100.0 mg/Kg 99%		80-120	
Vanadium	97.57 100.0 mg/Kg 98%		80-120		
Zinc	97.90	100.0	mg/Kg	98%	80-120

Type: Matrix Spike Lab ID: QC1155131 Batch: 340895

Matrix (Source ID): Soil (508749-001) Method: EPA 6010B Prep Method: EPA 3050B

OC1155121 Analysis	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	DF
QC1155131 Analyte			•			- v uai		
Antimony	28.22	ND	95.24	mg/Kg	30%	^	75-125	0.95
Arsenic	92.20	4.227	95.24	mg/Kg	92%		75-125	0.95
Barium	184.7	98.24	95.24	mg/Kg	91%		75-125	0.95
Beryllium	92.97	0.2708	95.24	mg/Kg	97%		75-125	0.95
Cadmium	89.13	0.2573	95.24	mg/Kg	93%		75-125	0.95
Chromium	110.0	20.76	95.24	mg/Kg	94%		75-125	0.95
Cobalt	101.4	7.046	95.24	mg/Kg	99%		75-125	0.95
Copper	105.3	13.38	95.24	mg/Kg	97%		75-125	0.95
Lead	125.3	37.66	95.24	mg/Kg	92%		75-125	0.95
Molybdenum	85.75	0.5652	95.24	mg/Kg	89%		75-125	0.95
Nickel	100.2	9.430	95.24	mg/Kg	95%		75-125	0.95
Selenium	84.15	ND	95.24	mg/Kg	88%		75-125	0.95
Silver	44.62	ND	47.62	mg/Kg	94%		75-125	0.95
Thallium	87.85	ND	95.24	mg/Kg	92%		75-125	0.95
Vanadium	141.9	51.82	95.24	mg/Kg	95%		75-125	0.95
Zinc	134.1	47.73	95.24	mg/Kg	91%		75-125	0.95

Type: Matrix Spike Duplicate Lab ID: QC1155132 Batch: 340895

Matrix (Source ID): Soil (508749-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1155132 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	29.29	ND	96.15	mg/Kg	30%	*	75-125	3	41	0.96
Arsenic	98.60	4.227	96.15	mg/Kg	98%		75-125	6	35	0.96
Barium	201.6	98.24	96.15	mg/Kg	107%		75-125	8	20	0.96
Beryllium	98.98	0.2708	96.15	mg/Kg	103%		75-125	5	20	0.96
Cadmium	94.71	0.2573	96.15	mg/Kg	98%		75-125	5	20	0.96
Chromium	117.0	20.76	96.15	mg/Kg	100%		75-125	5	20	0.96
Cobalt	108.0	7.046	96.15	mg/Kg	105%		75-125	5	20	0.96
Copper	113.2	13.38	96.15	mg/Kg	104%		75-125	6	20	0.96
Lead	134.8	37.66	96.15	mg/Kg	101%		75-125	7	20	0.96
Molybdenum	91.53	0.5652	96.15	mg/Kg	95%		75-125	6	20	0.96
Nickel	106.7	9.430	96.15	mg/Kg	101%		75-125	5	20	0.96
Selenium	89.91	ND	96.15	mg/Kg	94%		75-125	6	20	0.96
Silver	47.60	ND	48.08	mg/Kg	99%		75-125	6	20	0.96
Thallium	93.56	ND	96.15	mg/Kg	97%		75-125	5	20	0.96
Vanadium	151.1	51.82	96.15	mg/Kg	103%		75-125	6	20	0.96
Zinc	143.8	47.73	96.15	mg/Kg	100%		75-125	6	20	0.96

Type: Post Digest Spike Lab ID: QC1155133 Batch: 340895

Matrix (Source ID): Soil (508749-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample			_			
QC1155133 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	96.63	ND	99.01	mg/Kg	98%		75-125	0.99
Arsenic	98.67	4.227	99.01	mg/Kg	95%		75-125	0.99
Barium	192.5	98.24	99.01	mg/Kg	95%		75-125	0.99
Beryllium	97.19	0.2708	99.01	mg/Kg	98%		75-125	0.99
Cadmium	93.55	0.2573	99.01	mg/Kg	94%		75-125	0.99
Chromium	114.0	20.76	99.01	mg/Kg	94%		75-125	0.99
Cobalt	106.0	7.046	99.01	mg/Kg	100%		75-125	0.99
Copper	109.5	13.38	99.01	mg/Kg	97%		75-125	0.99
Lead	133.9	37.66	99.01	mg/Kg	97%		75-125	0.99
Molybdenum	97.14	0.5652	99.01	mg/Kg	98%		75-125	0.99
Nickel	106.0	9.430	99.01	mg/Kg	97%		75-125	0.99
Selenium	90.93	ND	99.01	mg/Kg	92%		75-125	0.99
Silver	47.61	ND	49.50	mg/Kg	96%		75-125	0.99
Thallium	93.34	ND	99.01	mg/Kg	94%		75-125	0.99
Vanadium	146.1	51.82	99.01	mg/Kg	95%		75-125	0.99
Zinc	139.6	47.73	99.01	mg/Kg	93%		75-125	0.99

Type: Blank Lab ID: QC1155202 Batch: 340922
Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1155202 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	05/22/24	05/22/24
Arsenic	ND		mg/Kg	1.0	05/22/24	05/22/24
Barium	ND		mg/Kg	1.0	05/22/24	05/22/24
Beryllium	ND		mg/Kg	0.50	05/22/24	05/22/24
Cadmium	ND		mg/Kg	0.50	05/22/24	05/22/24
Chromium	ND		mg/Kg	1.0	05/22/24	05/22/24
Cobalt	ND		mg/Kg	0.50	05/22/24	05/22/24
Copper	ND		mg/Kg	1.0	05/22/24	05/22/24
Lead	ND		mg/Kg	1.0	05/22/24	05/22/24
Molybdenum	ND		mg/Kg	1.0	05/22/24	05/22/24
Nickel	ND		mg/Kg	1.0	05/22/24	05/22/24
Selenium	ND		mg/Kg	3.0	05/22/24	05/22/24
Silver	ND		mg/Kg	0.50	05/22/24	05/22/24
Thallium	ND		mg/Kg	3.0	05/22/24	05/22/24
Vanadium	ND		mg/Kg	1.0	05/22/24	05/22/24
Zinc	ND		mg/Kg	5.0	05/22/24	05/22/24

Type: Lab Control Sample Lab ID: QC1155203 Batch: 340922

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1155203 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	107.8	100.0	mg/Kg	108%	80-120
Arsenic	102.9	100.0	mg/Kg	103%	80-120
Barium	109.8	100.0	mg/Kg	110%	80-120
Beryllium	106.8	100.0	mg/Kg	107%	80-120
Cadmium	105.3	100.0	mg/Kg	105%	80-120
Chromium	105.7	100.0	mg/Kg	106%	80-120
Cobalt	113.4	100.0	mg/Kg	113%	80-120
Copper	103.6	100.0	mg/Kg	104%	80-120
Lead	110.9	100.0	mg/Kg	111%	80-120
Molybdenum	105.4	100.0	mg/Kg	105%	80-120
Nickel	111.0	100.0	mg/Kg	111%	80-120
Selenium	97.07	100.0	mg/Kg	97%	80-120
Silver	51.26	50.00	mg/Kg	103%	80-120
Thallium	107.6	100.0	mg/Kg	108%	80-120
Vanadium	105.9	100.0	mg/Kg	106%	80-120
Zinc	108.8	100.0	mg/Kg	109%	80-120

Type: Matrix Spike Lab ID: QC1155204 Batch: 340922
Matrix (Source ID): Soil (508749-036) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1155204 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	45.67	ND	100.0	mg/Kg	46%	*	75-125	1
Arsenic	101.2	1.446	100.0	mg/Kg	100%		75-125	1
Barium	229.1	117.8	100.0	mg/Kg	111%		75-125	1
Beryllium	103.7	0.05170	100.0	mg/Kg	104%		75-125	1
Cadmium	99.00	0.1758	100.0	mg/Kg	99%		75-125	1
Chromium	107.9	6.907	100.0	mg/Kg	101%		75-125	1
Cobalt	126.9	11.10	100.0	mg/Kg	116%		75-125	1
Copper	143.3	30.26	100.0	mg/Kg	113%		75-125	1
Lead	104.2	1.163	100.0	mg/Kg	103%		75-125	1
Molybdenum	99.21	0.2489	100.0	mg/Kg	99%		75-125	1
Nickel	106.9	3.446	100.0	mg/Kg	104%		75-125	1
Selenium	94.10	ND	100.0	mg/Kg	94%		75-125	1
Silver	50.85	ND	50.00	mg/Kg	102%		75-125	1
Thallium	98.56	ND	100.0	mg/Kg	99%		75-125	1
Vanadium	181.9	68.96	100.0	mg/Kg	113%		75-125	1
Zinc	126.4	26.33	100.0	mg/Kg	100%		75-125	1

Type: Matrix Spike Duplicate Lab ID: QC1155205 Batch: 340922

Matrix (Source ID): Soil (508749-036) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1155205 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	41.53	ND	98.04	mg/Kg	42%	*	75-125	8	41	0.98
Arsenic	95.19	1.446	98.04	mg/Kg	96%		75-125	4	35	0.98
Barium	220.3	117.8	98.04	mg/Kg	105%		75-125	3	20	0.98
Beryllium	97.34	0.05170	98.04	mg/Kg	99%		75-125	4	20	0.98
Cadmium	92.91	0.1758	98.04	mg/Kg	95%		75-125	4	20	0.98
Chromium	101.8	6.907	98.04	mg/Kg	97%		75-125	4	20	0.98
Cobalt	111.3	11.10	98.04	mg/Kg	102%		75-125	11	20	0.98
Copper	130.5	30.26	98.04	mg/Kg	102%		75-125	8	20	0.98
Lead	98.19	1.163	98.04	mg/Kg	99%		75-125	4	20	0.98
Molybdenum	92.90	0.2489	98.04	mg/Kg	95%		75-125	5	20	0.98
Nickel	100.1	3.446	98.04	mg/Kg	99%		75-125	5	20	0.98
Selenium	88.59	ND	98.04	mg/Kg	90%		75-125	4	20	0.98
Silver	47.78	ND	49.02	mg/Kg	97%		75-125	4	20	0.98
Thallium	92.06	ND	98.04	mg/Kg	94%		75-125	5	20	0.98
Vanadium	171.8	68.96	98.04	mg/Kg	105%		75-125	5	20	0.98
Zinc	120.8	26.33	98.04	mg/Kg	96%		75-125	3	20	0.98

Type: Post Digest Spike Lab ID: QC1155206 Batch: 340922
Matrix (Source ID): Soil (508749-036) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1155206 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	94.62	ND	99.01	mg/Kg	96%		75-125	0.99
Arsenic	94.84	1.446	99.01	mg/Kg	94%		75-125	0.99
Barium	216.0	117.8	99.01	mg/Kg	99%		75-125	0.99
Beryllium	96.32	0.05170	99.01	mg/Kg	97%		75-125	0.99
Cadmium	92.46	0.1758	99.01	mg/Kg	93%		75-125	0.99
Chromium	100.3	6.907	99.01	mg/Kg	94%		75-125	0.99
Cobalt	109.7	11.10	99.01	mg/Kg	100%		75-125	0.99
Copper	127.1	30.26	99.01	mg/Kg	98%		75-125	0.99
Lead	97.91	1.163	99.01	mg/Kg	98%		75-125	0.99
Molybdenum	96.79	0.2489	99.01	mg/Kg	98%		75-125	0.99
Nickel	99.52	3.446	99.01	mg/Kg	97%		75-125	0.99
Selenium	88.94	ND	99.01	mg/Kg	90%		75-125	0.99
Silver	47.62	ND	49.50	mg/Kg	96%		75-125	0.99
Thallium	92.75	ND	99.01	mg/Kg	94%		75-125	0.99
Vanadium	164.2	68.96	99.01	mg/Kg	96%		75-125	0.99
Zinc	117.6	26.33	99.01	mg/Kg	92%		75-125	0.99

Type: Blank Lab ID: QC1159327 Batch: 342160

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1159327 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	06/07/24	06/07/24
Arsenic	ND		mg/Kg	1.0	06/07/24	06/07/24
Barium	ND		mg/Kg	1.0	06/07/24	06/07/24
Beryllium	ND		mg/Kg	0.50	06/07/24	06/07/24
Cadmium	ND		mg/Kg	0.50	06/07/24	06/07/24
Chromium	ND		mg/Kg	1.0	06/07/24	06/07/24
Cobalt	ND		mg/Kg	0.50	06/07/24	06/07/24
Copper	ND		mg/Kg	1.0	06/07/24	06/07/24
Lead	ND		mg/Kg	1.0	06/07/24	06/07/24
Molybdenum	ND		mg/Kg	1.0	06/07/24	06/07/24
Nickel	ND		mg/Kg	1.0	06/07/24	06/07/24
Selenium	ND		mg/Kg	3.0	06/07/24	06/07/24
Silver	ND		mg/Kg	0.50	06/07/24	06/07/24
Thallium	ND		mg/Kg	3.0	06/07/24	06/07/24
Vanadium	ND		mg/Kg	1.0	06/07/24	06/07/24
Zinc	ND		mg/Kg	5.0	06/07/24	06/07/24

Type: Lab Control Sample Lab ID: QC1159328 Batch: 342160
Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1159328 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	96.59	100.0	mg/Kg	97%	80-120
Arsenic	96.82	100.0	mg/Kg	97%	80-120
Barium	105.6	100.0	mg/Kg	106%	80-120
Beryllium	100.3	100.0	mg/Kg	100%	80-120
Cadmium	102.0	100.0	mg/Kg	102%	80-120
Chromium	100.9	100.0	mg/Kg	101%	80-120
Cobalt	108.0	100.0	mg/Kg	108%	80-120
Copper	99.80	100.0	mg/Kg	100%	80-120
Lead	105.8	100.0	mg/Kg	106%	80-120
Molybdenum	98.72	100.0	mg/Kg	99%	80-120
Nickel	106.3	100.0	mg/Kg	106%	80-120
Selenium	90.81	100.0	mg/Kg	91%	80-120
Silver	48.94	50.00	mg/Kg	98%	80-120
Thallium	103.5	100.0	mg/Kg	104%	80-120
Vanadium	102.3	100.0	mg/Kg	102%	80-120
Zinc	103.8	100.0	mg/Kg	104%	80-120

Type: Matrix Spike Lab ID: QC1159329 Batch: 342160
Matrix (Source ID): Soil (509669-001) Method: EPA 6010B Prep Method: EPA 3050B

001150200 Analysis	Pagult	Source Sample	Cuilead	l lastes	Dagassams	0	Limita	DE
QC1159329 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	48.87	ND	95.24	mg/Kg	51%	*	75-125	0.95
Arsenic	92.88	1.357	95.24	mg/Kg	96%		75-125	0.95
Barium	196.9	71.18	95.24	mg/Kg	132%	*	75-125	0.95
Beryllium	94.45	0.1732	95.24	mg/Kg	99%		75-125	0.95
Cadmium	93.32	0.2314	95.24	mg/Kg	98%		75-125	0.95
Chromium	105.1	10.98	95.24	mg/Kg	99%		75-125	0.95
Cobalt	102.5	5.616	95.24	mg/Kg	102%		75-125	0.95
Copper	106.7	9.577	95.24	mg/Kg	102%		75-125	0.95
Lead	105.0	7.706	95.24	mg/Kg	102%		75-125	0.95
Molybdenum	91.11	0.4039	95.24	mg/Kg	95%		75-125	0.95
Nickel	102.7	7.323	95.24	mg/Kg	100%		75-125	0.95
Selenium	85.89	ND	95.24	mg/Kg	90%		75-125	0.95
Silver	46.29	ND	47.62	mg/Kg	97%		75-125	0.95
Thallium	93.67	ND	95.24	mg/Kg	98%		75-125	0.95
Vanadium	125.3	27.94	95.24	mg/Kg	102%		75-125	0.95
Zinc	146.0	49.81	95.24	mg/Kg	101%		75-125	0.95

Type: Matrix Spike Duplicate Lab ID: QC1159330 Batch: 342160

Matrix (Source ID): Soil (509669-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1159330 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	51.57	ND	100.0	mg/Kg	52%	*	75-125	1	41	
Arsenic	100.1	1.357	100.0	mg/Kg	99%		75-125	3	35	1
Barium	181.4	71.18	100.0	mg/Kg	110%		75-125	11	20	
Beryllium	102.3	0.1732	100.0	mg/Kg	102%		75-125	3	20	1
Cadmium	101.2	0.2314	100.0	mg/Kg	101%		75-125	3	20	1
Chromium	112.0	10.98	100.0	mg/Kg	101%		75-125	2	20	1
Cobalt	110.7	5.616	100.0	mg/Kg	105%		75-125	3	20	1
Copper	115.0	9.577	100.0	mg/Kg	105%		75-125	3	20	1
Lead	111.6	7.706	100.0	mg/Kg	104%		75-125	2	20	1
Molybdenum	98.33	0.4039	100.0	mg/Kg	98%		75-125	3	20	1
Nickel	109.8	7.323	100.0	mg/Kg	103%		75-125	2	20	1
Selenium	93.05	ND	100.0	mg/Kg	93%		75-125	3	20	1
Silver	49.45	ND	50.00	mg/Kg	99%		75-125	2	20	1
Thallium	100.9	ND	100.0	mg/Kg	101%		75-125	3	20	1
Vanadium	133.1	27.94	100.0	mg/Kg	105%		75-125	2	20	1
Zinc	152.3	49.81	100.0	mg/Kg	102%		75-125	1	20	1

Type:	Post Digest Spike	Lab ID:	QC1159331	Batch:	342160
Matrix (Source ID):	Soil (509669-001)	Method:	EPA 6010B	Prep Method:	EPA 3050B

		Source Sample						
QC1159331 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	99.00	ND	98.04	mg/Kg	101%		75-125	0.98
Arsenic	99.78	1.357	98.04	mg/Kg	100%		75-125	0.98
Barium	175.7	71.18	98.04	mg/Kg	107%		75-125	0.98
Beryllium	101.5	0.1732	98.04	mg/Kg	103%		75-125	0.98
Cadmium	100.8	0.2314	98.04	mg/Kg	103%		75-125	0.98
Chromium	111.2	10.98	98.04	mg/Kg	102%		75-125	0.98
Cobalt	110.1	5.616	98.04	mg/Kg	107%		75-125	0.98
Copper	113.7	9.577	98.04	mg/Kg	106%		75-125	0.98
Lead	111.2	7.706	98.04	mg/Kg	106%		75-125	0.98
Molybdenum	102.4	0.4039	98.04	mg/Kg	104%		75-125	0.98
Nickel	109.8	7.323	98.04	mg/Kg	104%		75-125	0.98
Selenium	93.14	ND	98.04	mg/Kg	95%		75-125	0.98
Silver	50.45	ND	49.02	mg/Kg	103%		75-125	0.98
Thallium	101.1	ND	98.04	mg/Kg	103%		75-125	0.98
Vanadium	131.7	27.94	98.04	mg/Kg	106%		75-125	0.98
Zinc	149.7	49.81	98.04	mg/Kg	102%		75-125	0.98

Type: Blank	Lab ID: QC1155471	Batch: 341004
Matrix: Soil	Method: EPA 7471A	Prep Method: METHOD

QC1155471 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	05/23/24	05/23/24

Type: Lab Control Sample	Lab ID: QC1155472	Batch: 341004
Matrix: Soil	Method: EPA 7471A	Prep Method: METHOD

QC1155472 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Mercury	0.8317	0.8333	mg/Kg	100%		80-120

Type:	Matrix Spike	Lab ID:	QC1155473	Batch:	341004
Matrix (Source ID):	Soil (508749-001)	Method:	EPA 7471A	Prep Method:	METHOD

		Source Sample						
QC1155473 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Mercury	0.8421	ND	0.8475	mg/Kg	99%		75-125	1

Туре:	Matrix Spike Duplicate	Lab ID:	QC1155474	Batch: 341004
Matrix (Source ID):	Soil (508749-001)	Method:	EPA 7471A	Prep Method: METHOD

		Source Sample							RPD	
QC1155474 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Mercury	0.9542	ND	0.9804	mg/Kg	97%		75-125	2	20	1.2

Type: Blank	Lab ID: QC1159498	Batch: 342210
Matrix: Soil	Method: EPA 7471A	Prep Method: METHOD

QC1159498 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	06/07/24	06/07/24

Type: Lab Control Sample Lab ID: QC1159499 Batch: 342210
Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1159499 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Mercury	0.8222	0.8333	mg/Kg	99%		80-120

Type: Matrix Spike Lab ID: QC1159500 Batch: 342210

Matrix (Source ID): Soil (509583-005) Method: EPA 7471A Prep Method: METHOD

Source Sample QC1159500 Analyte **Spiked** Recovery Result Result Units Qual Limits DF 0.05707 0.9102 0.8475 101% 75-125 Mercury mg/Kg

Type: Matrix Spike Duplicate Lab ID: QC1159501 Batch: 342210 Matrix (Source ID): Soil (509583-005) Method: EPA 7471A Prep Method: METHOD

Source Sample **RPD** QC1159501 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** Lim DF Mercury 1.093 0.05707 1.000 104% 75-125 3 mg/Kg 20 1.2

Type: Blank Lab ID: QC1155497 Batch: 341011
Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1155497 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
TPH (C6-C12)	ND		mg/Kg	10	05/23/24	05/24/24
TPH (C13-C22)	ND		mg/Kg	10	05/23/24	05/24/24
TPH (C23-C44)	ND		mg/Kg	20	05/23/24	05/24/24
Surrogates				Limits		
n-Triacontane	136%	*	%REC	70-130	05/23/24	05/24/24

Type: Lab Control Sample Lab ID: QC1155498 Batch: 341011

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1155498 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Diesel C10-C28	290.2	248.8	mg/Kg	117%		76-122
Surrogates						
n-Triacontane	11.69	9.950	mg/Kg	118%		70-130

Type: Matrix Spike Lab ID: QC1155499 Batch: 341011

Matrix (Source ID): Soil (508749-005) Method: EPA 8015M Prep Method: EPA 3580M

		Source Sample						
QC1155499 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	308.8	24.06	249.1	mg/Kg	114%		62-126	2
Surrogates								
n-Triacontane	12.55		9.965	mg/Kg	126%		70-130	2

Type: Matrix Spike Duplicate Lab ID: QC1155500 Batch: 341011

Matrix (Source ID): Soil (508749-005) Method: EPA 8015M Prep Method: EPA 3580M

		Source Sample							RPD	
QC1155500 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Diesel C10-C28	342.8	24.06	248.8	mg/Kg	128%	*	62-126	11	35	2
Surrogates										
n-Triacontane	13.03		9.950	mg/Kg	131%	*	70-130			2

Type:	Blank	Lab ID:	QC1156370	Batch:	341256
Matrix:	Soil	Method:	EPA 8015M	Prep Method:	EPA 3580M

QC1156370 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
TPH (C6-C12)	ND		mg/Kg	10	05/28/24	05/28/24
TPH (C13-C22)	ND		mg/Kg	10	05/28/24	05/28/24
TPH (C23-C44)	ND		mg/Kg	20	05/28/24	05/28/24
Surrogates				Limits		
n-Triacontane	98%		%REC	70-130	05/28/24	05/28/24

Type: Lab Control Sample Lab ID: QC1156371 Batch: 341256
Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1156371 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	245.3	249.6	mg/Kg	98%	76-122
Surrogates					
n-Triacontane	9.592	9.985	mg/Kg	96%	70-130

Type: Matrix Spike Lab ID: QC1156372 Batch: 341256
Matrix (Source ID): Soil (509012-006) Method: EPA 8015M Prep Method: EPA 3580M

		Source Sample						
QC1156372 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	206.1	ND	247.8	mg/Kg	83%		62-126	0.99
Surrogates								-
n-Triacontane	8.243		9.911	mg/Kg	83%		70-130	0.99

Type: Matrix Spike Duplicate Lab ID: QC1156373 Batch: 341256

Matrix (Source ID): Soil (509012-006) Method: EPA 8015M Prep Method: EPA 3580M

Source Sample RPD QC1156373 Analyte Result Result Spiked **Units** Recovery Qual Limits **RPD** Lim DF Diesel C10-C28 254.6 62-126 ND 249.1 mg/Kg 102% 21 35 1 Surrogates 9.965 n-Triacontane 9.977 mg/Kg 100% 70-130 1

Type: Blank Lab ID: QC1155138 Batch: 340897

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1155138 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.1	05/22/24	05/23/24
beta-BHC	ND	ug/Kg	5.1	05/22/24	05/23/24
gamma-BHC	ND	ug/Kg	5.1	05/22/24	05/23/24
delta-BHC	ND	ug/Kg	5.1	05/22/24	05/23/24
Heptachlor	ND	ug/Kg	5.1	05/22/24	05/23/24
Aldrin	ND	ug/Kg	5.1	05/22/24	05/23/24
Heptachlor epoxide	ND	ug/Kg	5.1	05/22/24	05/23/24
Endosulfan I	ND	ug/Kg	5.1	05/22/24	05/23/24
Dieldrin	ND	ug/Kg	5.1	05/22/24	05/23/24
4,4'-DDE	ND	ug/Kg	5.1	05/22/24	05/23/24
Endrin	ND	ug/Kg	5.1	05/22/24	05/23/24
Endosulfan II	ND	ug/Kg	5.1	05/22/24	05/23/24
Endosulfan sulfate	ND	ug/Kg	5.1	05/22/24	05/23/24
4,4'-DDD	ND	ug/Kg	5.1	05/22/24	05/23/24
Endrin aldehyde	ND	ug/Kg	5.1	05/22/24	05/23/24
Endrin ketone	ND	ug/Kg	5.1	05/22/24	05/23/24
4,4'-DDT	ND	ug/Kg	5.1	05/22/24	05/23/24
Methoxychlor	ND	ug/Kg	10	05/22/24	05/23/24
Toxaphene	ND	ug/Kg	100	05/22/24	05/23/24
Chlordane (Technical)	ND	ug/Kg	51	05/22/24	05/23/24
Surrogates			Limits		
TCMX	105%	%REC	23-120	05/22/24	05/23/24
Decachlorobiphenyl	124%	* %REC	24-120	05/22/24	05/23/24

Type: Lab Control Sample Lab ID: QC1155139 Batch: 340897

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1155139 Analyte	Result	Spiked	Units	Recovery Qua	al Limits
alpha-BHC	50.26	50.51	ug/Kg	100%	22-129
beta-BHC	48.51	50.51	ug/Kg	96%	28-125
gamma-BHC	52.48	50.51	ug/Kg	104%	22-128
delta-BHC	49.61	50.51	ug/Kg	98%	24-131
Heptachlor	43.57	50.51	ug/Kg	86%	18-124
Aldrin	44.99	50.51	ug/Kg	89%	23-120
Heptachlor epoxide	46.29	50.51	ug/Kg	92%	26-120
Endosulfan I	43.28	50.51	ug/Kg	86%	25-126
Dieldrin	46.19	50.51	ug/Kg	91%	23-124
4,4'-DDE	49.19	50.51	ug/Kg	97%	28-121
Endrin	47.97	50.51	ug/Kg	95%	25-127
Endosulfan II	50.67	50.51	ug/Kg	100%	29-121
Endosulfan sulfate	30.46	50.51	ug/Kg	60%	30-121
4,4'-DDD	46.43	50.51	ug/Kg	92%	26-120
Endrin aldehyde	18.27	50.51	ug/Kg	36%	10-120
Endrin ketone	48.95	50.51	ug/Kg	97%	28-125
4,4'-DDT	48.07	50.51	ug/Kg	95%	22-125
Methoxychlor	52.81	50.51	ug/Kg	105%	28-130
Surrogates					
TCMX	46.02	50.51	ug/Kg	91%	23-120
Decachlorobiphenyl	41.86	50.51	ug/Kg	83%	24-120

Type: Matrix Spike Lab ID: QC1155618 Batch: 340897

Matrix (Source ID): Soil (508749-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1155618 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	43.95	ND	51.02	ug/Kg	86%		46-120	2
beta-BHC	46.24	ND	51.02	ug/Kg	91%		41-120	2
gamma-BHC	45.39	ND	51.02	ug/Kg	89%		41-120	2
delta-BHC	42.52	ND	51.02	ug/Kg	83%		38-123	2
Heptachlor	44.85	ND	51.02	ug/Kg	88%		39-120	2
Aldrin	46.11	ND	51.02	ug/Kg	90%		34-120	2
Heptachlor epoxide	46.19	ND	51.02	ug/Kg	91%		43-120	2
Endosulfan I	50.83	ND	51.02	ug/Kg	100%		45-120	2
Dieldrin	44.69	ND	51.02	ug/Kg	88%		45-120	2
4,4'-DDE	52.31	ND	51.02	ug/Kg	103%		34-120	2
Endrin	45.21	ND	51.02	ug/Kg	89%	#	40-120	2
Endosulfan II	45.88	ND	51.02	ug/Kg	90%		41-120	2
Endosulfan sulfate	45.97	ND	51.02	ug/Kg	90%		42-120	2
4,4'-DDD	38.52	ND	51.02	ug/Kg	76%	#	41-120	2
Endrin aldehyde	41.35	ND	51.02	ug/Kg	81%		30-120	2
Endrin ketone	48.11	ND	51.02	ug/Kg	94%		45-120	2
4,4'-DDT	50.10	5.562	51.02	ug/Kg	87%	#	35-127	2
Methoxychlor	37.99	ND	51.02	ug/Kg	74%		42-136	2
Surrogates								
TCMX	45.24		51.02	ug/Kg	89%		23-120	2
Decachlorobiphenyl	50.41		51.02	ug/Kg	99%		24-120	2

Type: Matrix Spike Duplicate Lab ID: QC1155619 Batch: 340897

Matrix (Source ID): Soil (508749-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1155619 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	0.07476	ND	50.00	ug/Kg		DO	46-120		30	2
beta-BHC	4.714	ND	50.00	ug/Kg		DO	41-120		30	2
gamma-BHC	1.301	ND	50.00	ug/Kg		DO	41-120		30	2
delta-BHC	20.03	ND	50.00	ug/Kg	40%		38-123	70*	30	2
Heptachlor	16.27	ND	50.00	ug/Kg	33%	*	39-120	92*	30	2
Aldrin	6.150	ND	50.00	ug/Kg	12%	*	34-120	152*	30	2
Heptachlor epoxide	10.91	ND	50.00	ug/Kg	22%	*	43-120	122*	30	2
Endosulfan I	0.1304	ND	50.00	ug/Kg		DO	45-120		30	2
Dieldrin	6.422	ND	50.00	ug/Kg	13%	*	45-120	149*	30	2
4,4'-DDE	1.227	ND	50.00	ug/Kg		DO	34-120		30	2
Endrin	4.883	ND	50.00	ug/Kg	10%	#,*	40-120	160*	30	2
Endosulfan II	28.80	ND	50.00	ug/Kg	58%		41-120	44*	30	2
Endosulfan sulfate	35.77	ND	50.00	ug/Kg	72%		42-120	23	30	2
4,4'-DDD	32.32	ND	50.00	ug/Kg	65%	#	41-120	15	30	2
Endrin aldehyde	10.85	ND	50.00	ug/Kg	22%	*	30-120	116*	30	2
Endrin ketone	25.17	ND	50.00	ug/Kg	50%		45-120	61*	30	2
4,4'-DDT	55.41	5.562	50.00	ug/Kg	100%	#	35-127	12	30	2
Methoxychlor	125.1	ND	50.00	ug/Kg	250%	*	42-136	108*	30	2
Surrogates										
TCMX	46.67		50.00	ug/Kg	93%		23-120			2
Decachlorobiphenyl	53.70		50.00	ug/Kg	107%		24-120			2

Type: Blank Lab ID: QC1155219 Batch: 340925
Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1155219 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	05/22/24	05/23/24
beta-BHC	ND	ug/Kg	5.0	05/22/24	05/23/24
gamma-BHC	ND	ug/Kg	5.0	05/22/24	05/23/24
delta-BHC	ND	ug/Kg	5.0	05/22/24	05/23/24
Heptachlor	ND	ug/Kg	5.0	05/22/24	05/23/24
Aldrin	ND	ug/Kg	5.0	05/22/24	05/23/24
Heptachlor epoxide	ND	ug/Kg	5.0	05/22/24	05/23/24
Endosulfan I	ND	ug/Kg	5.0	05/22/24	05/23/24
Dieldrin	ND	ug/Kg	5.0	05/22/24	05/23/24
4,4'-DDE	ND	ug/Kg	5.0	05/22/24	05/23/24
Endrin	ND	ug/Kg	5.0	05/22/24	05/23/24
Endosulfan II	ND	ug/Kg	5.0	05/22/24	05/23/24
Endosulfan sulfate	ND	ug/Kg	5.0	05/22/24	05/23/24
4,4'-DDD	ND	ug/Kg	5.0	05/22/24	05/23/24
Endrin aldehyde	ND	ug/Kg	5.0	05/22/24	05/23/24
Endrin ketone	ND	ug/Kg	5.0	05/22/24	05/23/24
4,4'-DDT	ND	ug/Kg	5.0	05/22/24	05/23/24
Methoxychlor	ND	ug/Kg	10	05/22/24	05/23/24
Toxaphene	ND	ug/Kg	100	05/22/24	05/23/24
Chlordane (Technical)	ND	ug/Kg	50	05/22/24	05/23/24
Surrogates			Limits		
TCMX	92%	%REC	23-120	05/22/24	05/23/24
Decachlorobiphenyl	110%	%REC	24-120	05/22/24	05/23/24

Type: Lab Control Sample Lab ID: QC1155220 Batch: 340925

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1155220 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	32.92	50.51	ug/Kg	65%		22-129
beta-BHC	35.09	50.51	ug/Kg	69%		28-125
gamma-BHC	34.91	50.51	ug/Kg	69%		22-128
delta-BHC	33.93	50.51	ug/Kg	67%		24-131
Heptachlor	34.44	50.51	ug/Kg	68%		18-124
Aldrin	32.74	50.51	ug/Kg	65%		23-120
Heptachlor epoxide	33.71	50.51	ug/Kg	67%		26-120
Endosulfan I	33.88	50.51	ug/Kg	67%	#	25-126
Dieldrin	35.33	50.51	ug/Kg	70%		23-124
4,4'-DDE	37.07	50.51	ug/Kg	73%		28-121
Endrin	37.14	50.51	ug/Kg	74%		25-127
Endosulfan II	35.10	50.51	ug/Kg	70%		29-121
Endosulfan sulfate	37.28	50.51	ug/Kg	74%		30-121
4,4'-DDD	33.08	50.51	ug/Kg	65%		26-120
Endrin aldehyde	20.28	50.51	ug/Kg	40%		10-120
Endrin ketone	37.35	50.51	ug/Kg	74%		28-125
4,4'-DDT	36.63	50.51	ug/Kg	73%		22-125
Methoxychlor	39.21	50.51	ug/Kg	78%		28-130
Surrogates						
TCMX	30.84	50.51	ug/Kg	61%		23-120
Decachlorobiphenyl	35.79	50.51	ug/Kg	71%		24-120

Type: Matrix Spike Lab ID: QC1155221 Batch: 340925
Matrix (Source ID): Soil (508850-007) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1155221 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	32.13	ND	50.51	ug/Kg	64%		46-120	1
beta-BHC	36.46	ND	50.51	ug/Kg	72%		41-120	1
gamma-BHC	33.77	ND	50.51	ug/Kg	67%		41-120	1
delta-BHC	25.81	ND	50.51	ug/Kg	51%		38-123	1
Heptachlor	36.02	ND	50.51	ug/Kg	71%		39-120	1
Aldrin	32.15	ND	50.51	ug/Kg	64%		34-120	1
Heptachlor epoxide	34.35	ND	50.51	ug/Kg	68%		43-120	1
Endosulfan I	36.18	ND	50.51	ug/Kg	72%	#	45-120	1
Dieldrin	36.41	ND	50.51	ug/Kg	72%		45-120	1
4,4'-DDE	38.65	ND	50.51	ug/Kg	77%		34-120	1
Endrin	39.00	ND	50.51	ug/Kg	77%		40-120	1
Endosulfan II	36.46	ND	50.51	ug/Kg	72%		41-120	1
Endosulfan sulfate	32.95	ND	50.51	ug/Kg	65%		42-120	1
4,4'-DDD	36.69	ND	50.51	ug/Kg	73%		41-120	1
Endrin aldehyde	32.99	ND	50.51	ug/Kg	65%		30-120	1
Endrin ketone	39.61	ND	50.51	ug/Kg	78%		45-120	1
4,4'-DDT	35.29	ND	50.51	ug/Kg	70%		35-127	1
Methoxychlor	40.48	ND	50.51	ug/Kg	80%		42-136	1
Surrogates								
TCMX	30.03		50.51	ug/Kg	59%		23-120	1
Decachlorobiphenyl	41.94		50.51	ug/Kg	83%		24-120	1

Type: Matrix Spike Duplicate Lab ID: QC1155222 Batch: 340925

Matrix (Source ID): Soil (508850-007) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1155222 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	34.01	ND	50.00	ug/Kg	68%		46-120	7	30	1
beta-BHC	38.37	ND	50.00	ug/Kg	77%		41-120	6	30	1
gamma-BHC	35.49	ND	50.00	ug/Kg	71%		41-120	6	30	1
delta-BHC	24.44	ND	50.00	ug/Kg	49%		38-123	4	30	1
Heptachlor	37.50	ND	50.00	ug/Kg	75%		39-120	5	30	1
Aldrin	35.12	ND	50.00	ug/Kg	70%		34-120	10	30	1
Heptachlor epoxide	35.77	ND	50.00	ug/Kg	72%		43-120	5	30	1
Endosulfan I	38.03	ND	50.00	ug/Kg	76%	#	45-120	6	30	1
Dieldrin	38.46	ND	50.00	ug/Kg	77%		45-120	6	30	1
4,4'-DDE	40.46	ND	50.00	ug/Kg	81%		34-120	6	30	1
Endrin	39.83	ND	50.00	ug/Kg	80%		40-120	3	30	1
Endosulfan II	37.09	ND	50.00	ug/Kg	74%		41-120	3	30	1
Endosulfan sulfate	31.52	ND	50.00	ug/Kg	63%		42-120	3	30	1
4,4'-DDD	38.39	ND	50.00	ug/Kg	77%		41-120	6	30	1
Endrin aldehyde	29.64	ND	50.00	ug/Kg	59%		30-120	10	30	1
Endrin ketone	39.65	ND	50.00	ug/Kg	79%		45-120	1	30	1
4,4'-DDT	32.08	ND	50.00	ug/Kg	64%		35-127	9	30	1
Methoxychlor	38.08	ND	50.00	ug/Kg	76%		42-136	5	30	1
Surrogates										
TCMX	31.70		50.00	ug/Kg	63%		23-120			1
Decachlorobiphenyl	39.86		50.00	ug/Kg	80%		24-120			1

Type: Blank Lab ID: QC1155418 Batch: 340976

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1155418 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	05/23/24	05/24/24
beta-BHC	ND	ug/Kg	5.0	05/23/24	05/24/24
gamma-BHC	ND	ug/Kg	5.0	05/23/24	05/24/24
delta-BHC	ND	ug/Kg	5.0	05/23/24	05/24/24
Heptachlor	ND	ug/Kg	5.0	05/23/24	05/24/24
Aldrin	ND	ug/Kg	5.0	05/23/24	05/24/24
Heptachlor epoxide	ND	ug/Kg	5.0	05/23/24	05/24/24
Endosulfan I	ND	ug/Kg	5.0	05/23/24	05/24/24
Dieldrin	ND	ug/Kg	5.0	05/23/24	05/24/24
4,4'-DDE	ND	ug/Kg	5.0	05/23/24	05/24/24
Endrin	ND	ug/Kg	5.0	05/23/24	05/24/24
Endosulfan II	ND	ug/Kg	5.0	05/23/24	05/24/24
Endosulfan sulfate	ND	ug/Kg	5.0	05/23/24	05/24/24
4,4'-DDD	ND	ug/Kg	5.0	05/23/24	05/24/24
Endrin aldehyde	ND	ug/Kg	5.0	05/23/24	05/24/24
Endrin ketone	ND	ug/Kg	5.0	05/23/24	05/24/24
4,4'-DDT	ND	ug/Kg	5.0	05/23/24	05/24/24
Methoxychlor	ND	ug/Kg	9.9	05/23/24	05/24/24
Toxaphene	ND	ug/Kg	99	05/23/24	05/24/24
Chlordane (Technical)	ND	ug/Kg	50	05/23/24	05/24/24
Surrogates			Limits		
TCMX	84%	%REC	23-120	05/23/24	05/24/24
Decachlorobiphenyl	76%	%REC	24-120	05/23/24	05/24/24

Type: Lab Control Sample Lab ID: QC1155419 Batch: 340976

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1155419 Analyte	Result	Spiked	Units	Recovery Q	ual Limits
alpha-BHC	44.11	50.51	ug/Kg	87%	22-129
beta-BHC	47.33	50.51	ug/Kg	94%	28-125
gamma-BHC	44.89	50.51	ug/Kg	89%	22-128
delta-BHC	44.31	50.51	ug/Kg	88%	24-131
Heptachlor	37.66	50.51	ug/Kg	75%	18-124
Aldrin	37.03	50.51	ug/Kg	73%	23-120
Heptachlor epoxide	39.61	50.51	ug/Kg	78%	26-120
Endosulfan I	39.62	50.51	ug/Kg	78%	25-126
Dieldrin	39.09	50.51	ug/Kg	77%	23-124
4,4'-DDE	42.09	50.51	ug/Kg	83%	28-121
Endrin	43.12	50.51	ug/Kg	85%	25-127
Endosulfan II	45.56	50.51	ug/Kg	90%	29-121
Endosulfan sulfate	28.74	50.51	ug/Kg	57%	30-121
4,4'-DDD	42.65	50.51	ug/Kg	84%	26-120
Endrin aldehyde	36.00	50.51	ug/Kg	71%	10-120
Endrin ketone	47.81	50.51	ug/Kg	95%	28-125
4,4'-DDT	39.62	50.51	ug/Kg	78%	22-125
Methoxychlor	42.56	50.51	ug/Kg	84%	28-130
Surrogates					
TCMX	39.37	50.51	ug/Kg	78%	23-120
Decachlorobiphenyl	37.73	50.51	ug/Kg	75%	24-120

Type: Matrix Spike Lab ID: QC1155420 Batch: 340976

Matrix (Source ID): Soil (508728-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1155420 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	34.41	ND	50.00	ug/Kg	69%		46-120	1
beta-BHC	37.03	ND	50.00	ug/Kg	74%		41-120	1
gamma-BHC	36.50	ND	50.00	ug/Kg	73%		41-120	1
delta-BHC	34.26	ND	50.00	ug/Kg	69%		38-123	1
Heptachlor	31.87	ND	50.00	ug/Kg	64%		39-120	1
Aldrin	32.70	ND	50.00	ug/Kg	65%		34-120	1
Heptachlor epoxide	33.73	ND	50.00	ug/Kg	67%		43-120	1
Endosulfan I	34.11	ND	50.00	ug/Kg	68%		45-120	1
Dieldrin	32.60	ND	50.00	ug/Kg	65%		45-120	1
4,4'-DDE	35.84	ND	50.00	ug/Kg	72%		34-120	1
Endrin	37.20	ND	50.00	ug/Kg	74%		40-120	1
Endosulfan II	37.77	ND	50.00	ug/Kg	76%		41-120	1
Endosulfan sulfate	33.39	ND	50.00	ug/Kg	67%		42-120	1
4,4'-DDD	35.20	ND	50.00	ug/Kg	70%		41-120	1
Endrin aldehyde	33.51	ND	50.00	ug/Kg	67%		30-120	1
Endrin ketone	36.86	ND	50.00	ug/Kg	74%		45-120	1
4,4'-DDT	31.61	ND	50.00	ug/Kg	63%		35-127	1
Methoxychlor	33.02	ND	50.00	ug/Kg	66%		42-136	1
Surrogates								
TCMX	32.45		50.00	ug/Kg	65%		23-120	1
Decachlorobiphenyl	31.01		50.00	ug/Kg	62%		24-120	1

Type: Matrix Spike Duplicate Lab ID: QC1155421 Batch: 340976

Matrix (Source ID): Soil (508728-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1155421 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	37.23	ND	50.00	ug/Kg	74%		46-120	8	30	1
beta-BHC	38.44	ND	50.00	ug/Kg	77%		41-120	4	30	1
gamma-BHC	39.12	ND	50.00	ug/Kg	78%		41-120	7	30	1
delta-BHC	37.37	ND	50.00	ug/Kg	75%		38-123	9	30	1
Heptachlor	34.30	ND	50.00	ug/Kg	69%		39-120	7	30	1
Aldrin	34.88	ND	50.00	ug/Kg	70%		34-120	6	30	1
Heptachlor epoxide	35.44	ND	50.00	ug/Kg	71%		43-120	5	30	1
Endosulfan I	36.33	ND	50.00	ug/Kg	73%		45-120	6	30	1
Dieldrin	34.13	ND	50.00	ug/Kg	68%		45-120	5	30	1
4,4'-DDE	37.72	ND	50.00	ug/Kg	75%		34-120	5	30	1
Endrin	38.23	ND	50.00	ug/Kg	76%		40-120	3	30	1
Endosulfan II	39.79	ND	50.00	ug/Kg	80%		41-120	5	30	1
Endosulfan sulfate	34.42	ND	50.00	ug/Kg	69%		42-120	3	30	1
4,4'-DDD	37.33	ND	50.00	ug/Kg	75%		41-120	6	30	1
Endrin aldehyde	35.65	ND	50.00	ug/Kg	71%		30-120	6	30	1
Endrin ketone	38.53	ND	50.00	ug/Kg	77%		45-120	4	30	1
4,4'-DDT	34.53	ND	50.00	ug/Kg	69%		35-127	9	30	1
Methoxychlor	35.51	ND	50.00	ug/Kg	71%		42-136	7	30	1
Surrogates										
TCMX	34.65		50.00	ug/Kg	69%		23-120			1
Decachlorobiphenyl	33.02		50.00	ug/Kg	66%		24-120			1

Type: Lab Control Sample Lab ID: QC1154956 Batch: 340854

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1154956 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	51.81	50.00	ug/Kg	104%	70-131
MTBE	49.49	50.00	ug/Kg	99%	69-130
Benzene	55.71	50.00	ug/Kg	111%	70-130
Trichloroethene	46.79	50.00	ug/Kg	94%	70-130
Toluene	46.96	50.00	ug/Kg	94%	70-130
Chlorobenzene	52.25	50.00	ug/Kg	104%	70-130
Surrogates					
Dibromofluoromethane	50.30	50.00	ug/Kg	101%	70-130
1,2-Dichloroethane-d4	55.13	50.00	ug/Kg	110%	70-145
Toluene-d8	42.85	50.00	ug/Kg	86%	70-145
Bromofluorobenzene	48.32	50.00	ug/Kg	97%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC1154957 Batch: 340854

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1154957 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
1,1-Dichloroethene	51.65	50.00	ug/Kg	103%		70-131	0	33
MTBE	52.47	50.00	ug/Kg	105%		69-130	6	30
Benzene	54.73	50.00	ug/Kg	109%		70-130	2	30
Trichloroethene	44.63	50.00	ug/Kg	89%		70-130	5	30
Toluene	42.83	50.00	ug/Kg	86%		70-130	9	30
Chlorobenzene	46.21	50.00	ug/Kg	92%		70-130	12	30
Surrogates								
Dibromofluoromethane	57.23	50.00	ug/Kg	114%		70-130		
1,2-Dichloroethane-d4	53.85	50.00	ug/Kg	108%		70-145		
Toluene-d8	43.40	50.00	ug/Kg	87%		70-145		
Bromofluorobenzene	49.38	50.00	ug/Kg	99%		70-145		

Type: Blank Lab ID: QC1154961 Batch: 340854 Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1154961 Analyte	Result	Qual Units	RL	Prepared	Analyzed	
3-Chloropropene	ND	ug/Kg	5.0	05/22/24	05/22/24	
Freon 12	ND	ug/Kg	5.0	05/22/24	05/22/24	
Chloromethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Vinyl Chloride	ND	ug/Kg	5.0	05/22/24	05/22/24	
Bromomethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Chloroethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Trichlorofluoromethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Acetone	ND	ug/Kg	100	05/22/24	05/22/24	
Freon 113	ND	ug/Kg	5.0	05/22/24	05/22/24	
1,1-Dichloroethene	ND	ug/Kg	5.0	05/22/24	05/22/24	
Methylene Chloride	ND	ug/Kg	5.0	05/22/24	05/22/24	
MTBE	ND	ug/Kg	5.0	05/22/24	05/22/24	
rans-1,2-Dichloroethene	ND	ug/Kg	5.0	05/22/24	05/22/24	
1,1-Dichloroethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
2-Butanone	ND	ug/Kg	100	05/22/24	05/22/24	
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	05/22/24	05/22/24	
2,2-Dichloropropane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Chloroform	ND	ug/Kg	5.0	05/22/24	05/22/24	
Bromochloromethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
I,1,1-Trichloroethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
I,1-Dichloropropene	ND	ug/Kg	5.0	05/22/24	05/22/24	
Carbon Tetrachloride	ND	ug/Kg	5.0	05/22/24	05/22/24	
I,2-Dichloroethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Benzene	ND	ug/Kg	5.0	05/22/24	05/22/24	
Trichloroethene	ND ND	ug/Kg	5.0	05/22/24	05/22/24	
1,2-Dichloropropane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Bromodichloromethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Dibromomethane	ND ND	ug/Kg	5.0	05/22/24	05/22/24	
1-Methyl-2-Pentanone	ND ND	ug/Kg	5.0	05/22/24	05/22/24	
cis-1,3-Dichloropropene	ND ND		5.0	05/22/24	05/22/24	
• •		ug/Kg				
Foluene	ND	ug/Kg	5.0	05/22/24	05/22/24	
rans-1,3-Dichloropropene	ND	ug/Kg	5.0	05/22/24	05/22/24	
1,1,2-Trichloroethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
,3-Dichloropropane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Tetrachloroethene	ND	ug/Kg	5.0	05/22/24	05/22/24	
Dibromochloromethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
1,2-Dibromoethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Chlorobenzene	ND	ug/Kg	5.0	05/22/24	05/22/24	
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
Ethylbenzene	ND	ug/Kg	5.0	05/22/24	05/22/24	
n,p-Xylenes	ND	ug/Kg	10	05/22/24	05/22/24	
o-Xylene	ND	ug/Kg	5.0	05/22/24	05/22/24	
Styrene	ND	ug/Kg	5.0	05/22/24	05/22/24	
Bromoform	ND	ug/Kg	5.0	05/22/24	05/22/24	
sopropylbenzene	ND	ug/Kg	5.0	05/22/24	05/22/24	
,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	05/22/24	05/22/24	
1,2,3-Trichloropropane	ND	ug/Kg	5.0	05/22/24	05/22/24	

QC1154961 Analyte	Result	Qual Units	RL	Prepared	Analyzed
Propylbenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
Bromobenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
2-Chlorotoluene	ND	ug/Kg	5.0	05/22/24	05/22/24
4-Chlorotoluene	ND	ug/Kg	5.0	05/22/24	05/22/24
tert-Butylbenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
sec-Butylbenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
para-Isopropyl Toluene	ND	ug/Kg	5.0	05/22/24	05/22/24
1,3-Dichlorobenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
1,4-Dichlorobenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
n-Butylbenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
1,2-Dichlorobenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	05/22/24	05/22/24
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
Hexachlorobutadiene	ND	ug/Kg	5.0	05/22/24	05/22/24
Naphthalene	ND	ug/Kg	5.0	05/22/24	05/22/24
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	05/22/24	05/22/24
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	05/22/24	05/22/24
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	05/22/24	05/22/24
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	05/22/24	05/22/24
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	05/22/24	05/22/24
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	05/22/24	05/22/24
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	05/22/24	05/22/24
Xylene (total)	ND	ug/Kg	5.0	05/22/24	05/22/24
Surrogates			Limits		
Dibromofluoromethane	107%	%REC	70-130	05/22/24	05/22/24
1,2-Dichloroethane-d4	110%	%REC	70-145	05/22/24	05/22/24
Toluene-d8	86%	%REC	70-145	05/22/24	05/22/24
Bromofluorobenzene	98%	%REC	70-145	05/22/24	05/22/24

Type: Matrix Spike Lab ID: QC1155104 Batch: 340854

Matrix (Source ID): Soil (508749-001) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample						
QC1155104 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	46.88	ND	50.00	ug/Kg	94%		70-141	1
MTBE	50.61	ND	50.00	ug/Kg	101%		59-130	1
Benzene	52.60	ND	50.00	ug/Kg	105%		70-130	1
Trichloroethene	40.82	ND	50.00	ug/Kg	82%		69-130	1
Toluene	40.91	ND	50.00	ug/Kg	82%		70-130	1
Chlorobenzene	42.66	ND	50.00	ug/Kg	85%		70-130	1
Surrogates								
Dibromofluoromethane	55.24		50.00	ug/Kg	110%		70-145	1
1,2-Dichloroethane-d4	58.74		50.00	ug/Kg	117%		70-145	1
Toluene-d8	43.45		50.00	ug/Kg	87%		70-145	1
Bromofluorobenzene	49.13		50.00	ug/Kg	98%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1155105 Batch: 340854

Matrix (Source ID): Soil (508749-001) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1155105 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	52.87	ND	50.00	ug/Kg	106%		70-141	12	43	1
MTBE	57.59	ND	50.00	ug/Kg	115%		59-130	13	30	1
Benzene	59.48	ND	50.00	ug/Kg	119%		70-130	12	30	1
Trichloroethene	44.08	ND	50.00	ug/Kg	88%		69-130	8	30	1
Toluene	44.25	ND	50.00	ug/Kg	88%		70-130	8	30	1
Chlorobenzene	45.90	ND	50.00	ug/Kg	92%		70-130	7	30	1
Surrogates										
Dibromofluoromethane	55.54		50.00	ug/Kg	111%		70-145			1
1,2-Dichloroethane-d4	59.59		50.00	ug/Kg	119%		70-145			1
Toluene-d8	43.15		50.00	ug/Kg	86%		70-145			1
Bromofluorobenzene	49.92		50.00	ug/Kg	100%		70-145			1

Type: Lab Control Sample Lab ID: QC1156144 Batch: 341196
Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1156144 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	46.13	50.00	ug/Kg	92%	70-131
MTBE	39.48	50.00	ug/Kg	79%	69-130
Benzene	45.62	50.00	ug/Kg	91%	70-130
Trichloroethene	39.45	50.00	ug/Kg	79%	70-130
Toluene	42.30	50.00	ug/Kg	85%	70-130
Chlorobenzene	43.11	50.00	ug/Kg	86%	70-130
Surrogates					
Dibromofluoromethane	49.42	50.00	ug/Kg	99%	70-130
1,2-Dichloroethane-d4	51.60	50.00	ug/Kg	103%	70-145
Toluene-d8	49.21	50.00	ug/Kg	98%	70-145
Bromofluorobenzene	52.32	50.00	ug/Kg	105%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC1156145 Batch: 341196

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1156145 Analyte	Result	Spiked	Units	Recovery Qual	Limits	RPD	RPD Lim
1,1-Dichloroethene	48.10	50.00	ug/Kg	96%	70-131	4	33
MTBE	43.16	50.00	ug/Kg	86%	69-130	9	30
Benzene	47.84	50.00	ug/Kg	96%	70-130	5	30
Trichloroethene	42.38	50.00	ug/Kg	85%	70-130	7	30
Toluene	46.24	50.00	ug/Kg	92%	70-130	9	30
Chlorobenzene	47.15	50.00	ug/Kg	94%	70-130	9	30
Surrogates							
Dibromofluoromethane	49.03	50.00	ug/Kg	98%	70-130		
1,2-Dichloroethane-d4	46.91	50.00	ug/Kg	94%	70-145		
Toluene-d8	49.86	50.00	ug/Kg	100%	70-145		
Bromofluorobenzene	50.56	50.00	ug/Kg	101%	70-145		

Type: Matrix Spike Lab ID: QC1156148 Batch: 341196
Matrix (Source ID): Soil (508868-005) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample						
QC1156148 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	34.93	ND	50.00	ug/Kg	70%		70-141	1
MTBE	26.69	ND	50.00	ug/Kg	53%	*	59-130	1
Benzene	31.90	ND	50.00	ug/Kg	64%	*	70-130	1
Trichloroethene	29.94	ND	50.00	ug/Kg	60%	*	69-130	1
Toluene	30.24	ND	50.00	ug/Kg	60%	*	70-130	1
Chlorobenzene	30.83	ND	50.00	ug/Kg	62%	*	70-130	1
Surrogates								
Dibromofluoromethane	49.49		50.00	ug/Kg	99%		70-145	1
1,2-Dichloroethane-d4	48.71		50.00	ug/Kg	97%		70-145	1
Toluene-d8	49.41		50.00	ug/Kg	99%		70-145	1
Bromofluorobenzene	50.45		50.00	ug/Kg	101%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1156149 Batch: 341196

Matrix (Source ID): Soil (508868-005) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1156149 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	31.64	ND	50.00	ug/Kg	63%	*	70-141	10	43	1
MTBE	25.64	ND	50.00	ug/Kg	51%	*	59-130	4	30	
Benzene	29.24	ND	50.00	ug/Kg	58%	*	70-130	9	30	1
Trichloroethene	26.57	ND	50.00	ug/Kg	53%	*	69-130	12	30	1
Toluene	27.08	ND	50.00	ug/Kg	54%	*	70-130	11	30	1
Chlorobenzene	27.79	ND	50.00	ug/Kg	56%	*	70-130	10	30	1
Surrogates										
Dibromofluoromethane	49.91		50.00	ug/Kg	100%		70-145			1
1,2-Dichloroethane-d4	47.92		50.00	ug/Kg	96%		70-145			1
Toluene-d8	49.11		50.00	ug/Kg	98%		70-145			1
Bromofluorobenzene	50.44		50.00	ua/Ka	101%		70-145			

Type: Blank Lab ID: QC1156151 Batch: 341196
Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

			•		
QC1156151 Analyte	Result	Qual Units	RL	Prepared	Analyzed
3-Chloropropene	ND	ug/Kg	5.0	05/26/24	05/26/24
Freon 12	ND	ug/Kg	5.0	05/26/24	05/26/24
Chloromethane	ND	ug/Kg	5.0	05/26/24	05/26/24
Vinyl Chloride	ND	ug/Kg	5.0	05/26/24	05/26/24
Bromomethane	ND	ug/Kg	5.0	05/26/24	05/26/24
Chloroethane	ND	ug/Kg	5.0	05/26/24	05/26/24
Trichlorofluoromethane	ND	ug/Kg	5.0	05/26/24	05/26/24
Acetone	ND	ug/Kg	100	05/26/24	05/26/24
Freon 113	ND	ug/Kg	5.0	05/26/24	05/26/24
1,1-Dichloroethene	ND	ug/Kg	5.0	05/26/24	05/26/24
Methylene Chloride	ND	ug/Kg	5.0	05/26/24	05/26/24
MTBE	ND	ug/Kg	5.0	05/26/24	05/26/24
rans-1,2-Dichloroethene	ND	ug/Kg	5.0	05/26/24	05/26/24
I,1-Dichloroethane	ND	ug/Kg	5.0	05/26/24	05/26/24
2-Butanone	ND	ug/Kg	100	05/26/24	05/26/24
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	05/26/24	05/26/24
2,2-Dichloropropane	ND	ug/Kg	5.0	05/26/24	05/26/24
Chloroform	ND	ug/Kg	5.0	05/26/24	05/26/24
Bromochloromethane	ND	ug/Kg	5.0	05/26/24	05/26/24
I,1,1-Trichloroethane	ND	ug/Kg	5.0	05/26/24	05/26/24
1,1-Dichloropropene	ND	ug/Kg	5.0	05/26/24	05/26/24
Carbon Tetrachloride	ND	ug/Kg	5.0	05/26/24	05/26/24
,2-Dichloroethane	ND	ug/Kg	5.0	05/26/24	05/26/24
Benzene	ND	ug/Kg	5.0	05/26/24	05/26/24
Frichloroethene	ND	ug/Kg	5.0	05/26/24	05/26/24
I,2-Dichloropropane	ND	ug/Kg	5.0	05/26/24	05/26/24
Bromodichloromethane	ND	ug/Kg	5.0	05/26/24	05/26/24
Dibromomethane	ND	ug/Kg	5.0	05/26/24	05/26/24
4-Methyl-2-Pentanone	ND	ug/Kg	5.0	05/26/24	05/26/24
cis-1,3-Dichloropropene	ND	ug/Kg	5.0	05/26/24	05/26/24
Foluene	ND	ug/Kg	5.0	05/26/24	05/26/24
rans-1,3-Dichloropropene	ND	ug/Kg	5.0	05/26/24	05/26/24
1,1,2-Trichloroethane	ND ND	ug/Kg	5.0	05/26/24	05/26/24
1,3-Dichloropropane	ND	ug/Kg	5.0	05/26/24	05/26/24
Tetrachloroethene	ND	ug/Kg	5.0	05/26/24	05/26/24
Dibromochloromethane	ND	ug/Kg	5.0	05/26/24	05/26/24
1,2-Dibromoethane	ND	ug/Kg	5.0	05/26/24	05/26/24
Chlorobenzene	ND ND	ug/Kg	5.0	05/26/24	05/26/24
1,1,1,2-Tetrachloroethane	ND ND		5.0	05/26/24	05/26/24
	ND ND	ug/Kg		05/26/24	
Ethylbenzene		ug/Kg	5.0		05/26/24
n,p-Xylenes	ND	ug/Kg	10	05/26/24	05/26/24
o-Xylene	ND	ug/Kg	5.0	05/26/24	05/26/24
Styrene	ND	ug/Kg	5.0	05/26/24	05/26/24
Bromoform	ND	ug/Kg	5.0	05/26/24	05/26/24
sopropylbenzene	ND	ug/Kg	5.0	05/26/24	05/26/24
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	05/26/24	05/26/24
1,2,3-Trichloropropane	ND	ug/Kg	5.0	05/26/24	05/26/24

Propylbenzene	ND		ug/Kg	5.0	05/00/04	
	NID.		ug/rvg	5.0	05/26/24	05/26/24
Bromobenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
1,3,5-Trimethylbenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
2-Chlorotoluene	ND		ug/Kg	5.0	05/26/24	05/26/24
4-Chlorotoluene	ND		ug/Kg	5.0	05/26/24	05/26/24
ert-Butylbenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
1,2,4-Trimethylbenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
sec-Butylbenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
para-Isopropyl Toluene	ND		ug/Kg	5.0	05/26/24	05/26/24
1,3-Dichlorobenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
1,4-Dichlorobenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
n-Butylbenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
1,2-Dichlorobenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.0	05/26/24	05/26/24
1,2,4-Trichlorobenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
Hexachlorobutadiene	ND		ug/Kg	5.0	05/26/24	05/26/24
Naphthalene	ND		ug/Kg	5.0	05/26/24	05/26/24
1,2,3-Trichlorobenzene	ND		ug/Kg	5.0	05/26/24	05/26/24
cis-1,4-Dichloro-2-butene	ND		ug/Kg	5.0	05/26/24	05/26/24
rans-1,4-Dichloro-2-butene	ND		ug/Kg	5.0	05/26/24	05/26/24
ert-Butyl Alcohol (TBA)	ND		ug/Kg	100	05/26/24	05/26/24
sopropyl Ether (DIPE)	ND		ug/Kg	5.0	05/26/24	05/26/24
Ethyl tert-Butyl Ether (ETBE)	ND		ug/Kg	5.0	05/26/24	05/26/24
Methyl tert-Amyl Ether (TAME)	ND		ug/Kg	5.0	05/26/24	05/26/24
Xylene (total)	ND		ug/Kg	5.0	05/26/24	05/26/24
Surrogates				Limits		
Dibromofluoromethane	90%		%REC	70-130	05/26/24	05/26/24
1,2-Dichloroethane-d4	93%		%REC	70-145	05/26/24	05/26/24
Toluene-d8	98%		%REC	70-145	05/26/24	05/26/24
Bromofluorobenzene	102%	ı	%REC	70-145	05/26/24	05/26/24

[#] CCV drift outside limits; average CCV drift within limits per method

requirementsValue is outside QC limits

DO Diluted Out

ND Not Detected

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 508863

Report Level : II

Report Date : 05/30/2024

Analytical Report prepared for:

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Project: MIDWAY RISING - Sports Arena

Authorized for release by:

Taylor Nasu, Project Manager Taylor.Nasu@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chuck Houser

SCS Engineers

8799 Balboa #290

San Diego, CA

92123

Lab Job #: 508863

Project No: MIDWAY RISING

Location: Sports Arena

Date Received: 05/22/24

Sample ID	Lab ID	Collected	Matrix
SG-SB-24-1-1.5	508863-001	05/21/24 10:14	Soil
SG-SB-24-1-2.5	508863-002	05/21/24 10:14	Soil
SG-SB-24-1-3.5	508863-003	05/21/24 10:21	Soil
SG-SB-24-1-5	508863-004	05/21/24 10:21	Soil
SG-SB-24-1-6.5	508863-005	05/21/24 10:32	Soil
SG-SB-24-1-8	508863-006	05/21/24 10:32	Soil
SG-SB-24-2-1.5	508863-007	05/21/24 10:50	Soil
SG-SB-24-2-2.5	508863-008	05/21/24 10:50	Soil
SG-SB-24-2-4.5	508863-009	05/21/24 10:58	Soil
SG-SB-24-2-5.5	508863-010	05/21/24 10:58	Soil
SG-SB-24-2-7.5	508863-011	05/21/24 11:06	Soil
SG-SB-24-3-1.5	508863-012	05/21/24 11:24	Soil
SG-SB-24-3-2.5	508863-013	05/21/24 11:24	Soil
SG-SB-24-3-4	508863-014	05/21/24 11:32	Soil
SG-SB-24-3-5	508863-015	05/21/24 11:32	Soil
SG-SB-24-3-5.5	508863-016	05/21/24 11:32	Soil
SG-SB-24-3-7	508863-017	05/21/24 11:42	Soil

Case Narrative

SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Chuck Houser

Lab Job 508863

Number:

Project No: MIDWAY

RISING

Location: Sports Arena

Date Received: 05/22/24

This data package contains sample and QC results for nine soil samples, requested for the above referenced project on 05/22/24. The samples were received cold and intact.

Metals (EPA 6010B and EPA 7471A):

- Low recoveries were observed for antimony in the MS/MSD for batch 340940; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits.
- No other analytical problems were encountered.

Page:
W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water SW = Swab T = Tissue WP = Wipe O = Other
PROJECT INFORMATION
idway
512
12 (33)
3220-3500
Anewar Blud.
huck House
Matrix Container
Soil Aekte
_
Print Name
The Charles
strentanuar
HALL TANKER
M
N
2

Turn Around Time (rush by advanced notice only)	3 Day:	Custom TAT:	S	3 = HNO ₃ 6 = Other	(lab use only)	Test Instructions / Comments																			Date / Time	5/22/24 1055	5/22/4 1055	5/12/W	5-12 W 1620	5-12-W (950	Sturius (das
Around Time (rus	S Day:	1 Day:	Preservatives:	$1 = Na_2S_2O_3$ $2 = HCI$ $4 = H_2SO_4$ $5 = NaOH$		nest						7	NIV.	12/	Χ	×	X				×				Title	5 Show		5			
	Standard:	2 2 Day:	oil/Solid	g Wate SD = Sediment SEA = Sea Water	Wipe O = Other	Analysis Request		90	910	0))	1 7	8	العر				<u> </u>		X					Company /	305 Brail	EA-SO	as, 83	THE	THE	\$
Chain of Custody Record	Lab No: 508863	Page: 2 of	Matrix: A = Air S = Soil/Solid	DW = Drinkin ure Product	SW = Swab T = Tissue WP = Wipe	PROJECT INFORMATION	0)(5) *1		7	2.	Matrix No. / Size Pres.	soil Actite ice				_		> >				Print Name	1) and senter a	WHAPL THARMANGEN	Arl Tanwango	W. Che	NIChb	Scien
V DV	TTT	ICAL				PROJEC	Name:	Number:	P.O. #:	Address:		Global ID:	Sampled By:	Sampling Time	9011 t	1124	1124	1132	1132	1132	1142				•	1	Mil				
		ALYT	<<< Select a Laboratory >>>	#N/A	#N/A	ATION	4-152							Sampling Date	75 SPULZY	1.5	55.	北京 社	72	5,5	7				Signature	TO TO	Lowe	Pan	Vin	7	0
7		Z	<<< Select a			CUSTOMER INFORMATION	C se							Sample ID	58.24-2-	B-24-3-1	B-24-3-2	B-24-3-	-24-3-1	-24-3-	B-24-5-					3y: Q		3y:		3y:	
						CU	Company:	Report To:	Email:	Address:		Phone:	Fax:		1 501-58	2 56-51	5		5 SG-SB	8 - 5E - SB	7 56 -5	8	6	10		¹ Relinquished By:	¹ Received By:	² Relinquished By:	² Received By:	G ³ Relinquished By:	Received By:

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: SCS ENGINEERS	Project: MIDWAY RISING			
		∕ Yes	No	
Section 2				
	Marris as		e Temp (°C)	
Sample(s) received in a cooler? ✓ Yes, How many? 1			(No Cooler)	•——
Sample Temp (°C), One from each cooler: #1: 12 (Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptan	#2: #3:	_#4:	for sample	c collected
the same day as sample receipt to have a higher temperatu				Sconected
Shipping Information:				
Section 3				
Was the cooler packed with: ✓ Ice	Bubble Wrap Styrof	oam		
Paper None	Other			
Cooler Temp (°C): #1: 10 #2:	#3:	_#4:		
Section 4		YES	NO	N/A
Was a COC received?		1		-
Are sample IDs present?		1		
Are sampling dates & times present?		1		
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		✓		
Are custody seals present?			✓	
If custody seals are present, were they intact?	25			1
Are all samples sealed in plastic bags? (Recommended fo	r Microbiology samples)			1
Did all samples arrive intact? If no, indicate in Section 4 b	elow.	✓		
Did all bottle labels agree with COC? (ID, dates and times		✓		
Were the samples collected in the correct containers for	the required tests?	1		
Are the containers labeled with the correct preserva				1
Is there headspace in the VOA vials greater than 5-6 mm	in diameter?			1
Was a sufficient amount of sample submitted for the requ	uested tests?	✓		
Section 5 Explanations/Comments				
	A CONTRACTOR			
Section 6				
For discrepancies, how was the Project Manager notified	PM Initials:	Date/Time		
1	Email (email sent to/o			
Project Manager's response:				
	1		8 3	
	21 1			
Completed By:	Date: 5/22/24	_		

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist – Rev 4, 8/8/2017

SAMPLE ACCEPTANCE CHECKLIST

Section 1												
Client: SCSE Project: Midway	Hism	g										
Date Received: 5122124 Sampler's Name Present:	Yes	No										
Section 2												
Sample(s) received in a cooler? Yes, How many? No (skip section 2)		e Temp (°C) (No Cooler)	:									
Sample Temp (°C), One from each cooler: #1: 18 #2: #3:		(*** ,										
(Acceptance range is $< 6^{\circ}$ C but not frozen (for Microbiology samples, acceptance range is $< 10^{\circ}$ C but not frozen).		for sample	s collected									
the same day as sample receipt to have a higher temperature as long as there is evidence that	cooling has beg	un.)										
Shipping Information:												
Section 3												
Was the cooler packed with: Ice Ice Packs Bubble Wrap Sty	rofoam											
Paper None Other												
Cooler Temp (°C): #1: #2: #3: #4:												
Section 4	YES	NO	N/A									
Was a COC received?	125	1110	11,771									
Are sample IDs present?		?										
Are sampling dates & times present?												
Is a relinquished signature present?												
Are the tests required clearly indicated on the COC?												
Are custody seals present?												
If custody seals are present, were they intact?												
Are all samples sealed in plastic bags? (Recommended for Microbiology samples)		_										
Did all samples arrive intact? If no, indicate in Section 4 below.												
Did all bottle labels agree with COC? (ID, dates and times)												
Were the samples collected in the correct containers for the required tests?												
Are the containers labeled with the correct preservatives?												
Is there headspace in the VOA vials greater than 5-6 mm in diameter?												
Was a sufficient amount of sample submitted for the requested tests?												
Section 5 Explanations/Comments			1									
Section 6												
For discrepancies, how was the Project Manager notified?Verbal PM Initials:	Date/Time											
	o/on):	/										
Project Manager's response:												
Completed By: Date: 5/22/29												

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209

www.enthalpy.com/socal

Sample Acceptance Checklist – Rev 4, 8/8/2017

Analysis Results for 508863

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Lab Job #: 508863 Project No: MIDWAY RISING Location: Sports Arena Date Received: 05/22/24

Sample ID: SG-SB-24-1-3.5 Lab ID: 508863-003 Collected: 05/21/24 10:21

Matrix: Soil

508863-003 Analyte Result Units RL DF **Prepared** Qual **Batch Analyzed** Chemist Method: EPA 6010B Prep Method: EPA 3050B 0.99 0.99 340940 05/22/24 05/23/24 Lead 4.7 mg/Kg SBW

Sample ID: SG-SB-24-1-5 Lab ID: 508863-004 Collected: 05/21/24 10:21

Matrix: Soil

508863-004 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	2.9	0.98	340940	05/22/24	05/23/24	SBW
Arsenic	4.8		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Barium	54		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Beryllium	ND		mg/Kg	0.49	0.98	340940	05/22/24	05/23/24	SBW
Cadmium	ND		mg/Kg	0.49	0.98	340940	05/22/24	05/23/24	SBW
Chromium	14		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Cobalt	5.3		mg/Kg	0.49	0.98	340940	05/22/24	05/23/24	SBW
Copper	9.6		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Lead	6.8		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Molybdenum	ND		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Nickel	6.6		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Selenium	ND		mg/Kg	2.9	0.98	340940	05/22/24	05/23/24	SBW
Silver	ND		mg/Kg	0.49	0.98	340940	05/22/24	05/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.98	340940	05/22/24	05/23/24	SBW
Vanadium	38		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Zinc	36		mg/Kg	4.9	0.98	340940	05/22/24	05/23/24	SBW
Method: EPA 7471A Prep Method: METHOD			-						
Mercury	ND		mg/Kg	0.16	1.2	341031	05/23/24	05/23/24	DXC

Sample ID: SG-SB-24-1-6.5 Lab ID: 508863-005 Collected: 05/21/24 10:32

Matrix: Soil

508863-005 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	6.5		mg/Kg	0.95	0.95	340940	05/22/24	05/23/24	SBW

Analysis Results for 508863

Sample ID: SG-SB-24-2-2.5 Lab ID: 508863-008 Collected: 05/21/24 10:50

Matrix: Soil

508863-008 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	4.8		mg/Kg	0.95	0.95	340940	05/22/24	05/23/24	SBW

Sample ID: SG-SB-24-2-4.5 Lab ID: 508863-009 Collected: 05/21/24 10:58

Matrix: Soil

508863-009 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	2.9	0.98	340940	05/22/24	05/23/24	SBW
Arsenic	2.2		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Barium	120		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Beryllium	ND		mg/Kg	0.49	0.98	340940	05/22/24	05/23/24	SBW
Cadmium	ND		mg/Kg	0.49	0.98	340940	05/22/24	05/23/24	SBW
Chromium	22		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Cobalt	7.1		mg/Kg	0.49	0.98	340940	05/22/24	05/23/24	SBW
Copper	12		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Lead	1.8		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Molybdenum	ND		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Nickel	6.7		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Selenium	ND		mg/Kg	2.9	0.98	340940	05/22/24	05/23/24	SBW
Silver	ND		mg/Kg	0.49	0.98	340940	05/22/24	05/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.98	340940	05/22/24	05/23/24	SBW
Vanadium	56		mg/Kg	0.98	0.98	340940	05/22/24	05/23/24	SBW
Zinc	31		mg/Kg	4.9	0.98	340940	05/22/24	05/23/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND		mg/Kg	0.16	1.1	341031	05/23/24	05/23/24	DXC

Sample ID: SG-SB-24-2-5.5 Lab ID: 508863-010 Collected: 05/21/24 10:58

Matrix: Soil

508863-010 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	2.2		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW

Sample ID: SG-SB-24-3-4 Lab ID: 508863-014 Collected: 05/21/24 11:32

Matrix: Soil

508863-014 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	6.6		mg/Kg	0.95	0.95	340940	05/22/24	05/23/24	SBW

Analysis Results for 508863

Sample ID: SG-SB-24-3-5 Lab ID: 508863-015 Collected: 05/21/24 11:32

Matrix: Soil

508863-015 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B							<u> </u>		
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	2.9	0.97	340940	05/22/24	05/23/24	SBW
Arsenic	5.9		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW
Barium	60		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW
Beryllium	ND		mg/Kg	0.49	0.97	340940	05/22/24	05/23/24	SBW
Cadmium	ND		mg/Kg	0.49	0.97	340940	05/22/24	05/23/24	SBW
Chromium	13		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW
Cobalt	5.3		mg/Kg	0.49	0.97	340940	05/22/24	05/23/24	SBW
Copper	8.6		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW
Lead	7.0		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW
Molybdenum	ND		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW
Nickel	6.8		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW
Selenium	ND		mg/Kg	2.9	0.97	340940	05/22/24	05/23/24	SBW
Silver	ND		mg/Kg	0.49	0.97	340940	05/22/24	05/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.97	340940	05/22/24	05/23/24	SBW
Vanadium	36		mg/Kg	0.97	0.97	340940	05/22/24	05/23/24	SBW
Zinc	32		mg/Kg	4.9	0.97	340940	05/22/24	05/23/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND		mg/Kg	0.15	1.1	341031	05/23/24	05/23/24	DXC

Sample ID: SG-SB-24-3-5.5 Lab ID: 508863-016 Collected: 05/21/24 11:32

Matrix: Soil

508863-016 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	ND		mg/Kg	0.99	0.99	340940	05/22/24	05/23/24	SBW

ND Not Detected

Type: Blank Lab ID: QC1155279 Batch: 340940 Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1155279 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	05/22/24	05/23/24
Arsenic	ND		mg/Kg	1.0	05/22/24	05/23/24
Barium	ND		mg/Kg	1.0	05/22/24	05/23/24
Beryllium	ND		mg/Kg	0.50	05/22/24	05/23/24
Cadmium	ND		mg/Kg	0.50	05/22/24	05/23/24
Chromium	ND		mg/Kg	1.0	05/22/24	05/23/24
Cobalt	ND		mg/Kg	0.50	05/22/24	05/23/24
Copper	ND		mg/Kg	1.0	05/22/24	05/23/24
Lead	ND		mg/Kg	1.0	05/22/24	05/23/24
Molybdenum	ND		mg/Kg	1.0	05/22/24	05/23/24
Nickel	ND		mg/Kg	1.0	05/22/24	05/23/24
Selenium	ND		mg/Kg	3.0	05/22/24	05/23/24
Silver	ND		mg/Kg	0.50	05/22/24	05/23/24
Thallium	ND		mg/Kg	3.0	05/22/24	05/23/24
Vanadium	ND		mg/Kg	1.0	05/22/24	05/23/24
Zinc	ND		mg/Kg	5.0	05/22/24	05/23/24

Type: Lab Control Sample Lab ID: QC1155280 Batch: 340940
Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1155280 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	97.47	100.0	mg/Kg	97%	80-120
Arsenic	91.96	100.0	mg/Kg	92%	80-120
Barium	98.10	100.0	mg/Kg	98%	80-120
Beryllium	94.85	100.0	mg/Kg	95%	80-120
Cadmium	96.36	100.0	mg/Kg	96%	80-120
Chromium	95.17	100.0	mg/Kg	95%	80-120
Cobalt	101.3	100.0	mg/Kg	101%	80-120
Copper	92.95	100.0	mg/Kg	93%	80-120
Lead	99.81	100.0	mg/Kg	100%	80-120
Molybdenum	96.84	100.0	mg/Kg	97%	80-120
Nickel	98.20	100.0	mg/Kg	98%	80-120
Selenium	89.98	100.0	mg/Kg	90%	80-120
Silver	48.86	50.00	mg/Kg	98%	80-120
Thallium	97.17	100.0	mg/Kg	97%	80-120
Vanadium	97.27	100.0	mg/Kg	97%	80-120
Zinc	95.88	100.0	mg/Kg	96%	80-120

Type: Matrix Spike Lab ID: QC1155281 Batch: 340940

Matrix (Source ID): Soil (508878-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample			_			
QC1155281 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	40.61	ND	94.34	mg/Kg	43%	*	75-125	0.94
Arsenic	91.05	1.466	94.34	mg/Kg	95%		75-125	0.94
Barium	161.8	51.63	94.34	mg/Kg	117%		75-125	0.94
Beryllium	92.66	0.2189	94.34	mg/Kg	98%		75-125	0.94
Cadmium	90.80	0.08762	94.34	mg/Kg	96%		75-125	0.94
Chromium	100.5	8.982	94.34	mg/Kg	97%		75-125	0.94
Cobalt	99.54	3.626	94.34	mg/Kg	102%		75-125	0.94
Copper	99.46	4.229	94.34	mg/Kg	101%		75-125	0.94
Lead	94.44	1.108	94.34	mg/Kg	99%		75-125	0.94
Molybdenum	89.64	0.2966	94.34	mg/Kg	95%		75-125	0.94
Nickel	95.97	3.961	94.34	mg/Kg	98%		75-125	0.94
Selenium	87.64	ND	94.34	mg/Kg	93%		75-125	0.94
Silver	46.99	ND	47.17	mg/Kg	100%		75-125	0.94
Thallium	90.12	ND	94.34	mg/Kg	96%		75-125	0.94
Vanadium	134.0	31.96	94.34	mg/Kg	108%		75-125	0.94
Zinc	112.0	18.12	94.34	mg/Kg	100%		75-125	0.94

Type: Matrix Spike Duplicate Lab ID: QC1155282 Batch: 340940

Matrix (Source ID): Soil (508878-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1155282 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	43.18	ND	99.01	mg/Kg	44%	*	75-125	1	41	0.99
Arsenic	93.92	1.466	99.01	mg/Kg	93%		75-125	2	35	0.99
Barium	168.4	51.63	99.01	mg/Kg	118%		75-125	1	20	0.99
Beryllium	95.57	0.2189	99.01	mg/Kg	96%		75-125	2	20	0.99
Cadmium	93.56	0.08762	99.01	mg/Kg	94%		75-125	2	20	0.99
Chromium	103.7	8.982	99.01	mg/Kg	96%		75-125	1	20	0.99
Cobalt	104.4	3.626	99.01	mg/Kg	102%		75-125	0	20	0.99
Copper	102.9	4.229	99.01	mg/Kg	100%		75-125	1	20	0.99
Lead	97.56	1.108	99.01	mg/Kg	97%		75-125	2	20	0.99
Molybdenum	93.17	0.2966	99.01	mg/Kg	94%		75-125	1	20	0.99
Nickel	99.27	3.961	99.01	mg/Kg	96%		75-125	1	20	0.99
Selenium	90.68	ND	99.01	mg/Kg	92%		75-125	1	20	0.99
Silver	48.68	ND	49.50	mg/Kg	98%		75-125	1	20	0.99
Thallium	93.30	ND	99.01	mg/Kg	94%		75-125	1	20	0.99
Vanadium	138.5	31.96	99.01	mg/Kg	108%		75-125	0	20	0.99
Zinc	115.7	18.12	99.01	mg/Kg	99%		75-125	1	20	0.99

Type: Post Digest Spike Lab ID: QC1155283 Batch: 340940

Matrix (Source ID): Soil (508878-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1155283 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	99.83	ND	99.01	mg/Kg	101%		75-125	0.99
Arsenic	95.68	1.466	99.01	mg/Kg	95%		75-125	0.99
Barium	147.2	51.63	99.01	mg/Kg	97%		75-125	0.99
Beryllium	96.52	0.2189	99.01	mg/Kg	97%		75-125	0.99
Cadmium	95.87	0.08762	99.01	mg/Kg	97%		75-125	0.99
Chromium	103.8	8.982	99.01	mg/Kg	96%		75-125	0.99
Cobalt	103.3	3.626	99.01	mg/Kg	101%		75-125	0.99
Copper	102.5	4.229	99.01	mg/Kg	99%		75-125	0.99
Lead	99.74	1.108	99.01	mg/Kg	100%		75-125	0.99
Molybdenum	99.98	0.2966	99.01	mg/Kg	101%		75-125	0.99
Nickel	100.4	3.961	99.01	mg/Kg	97%		75-125	0.99
Selenium	93.09	ND	99.01	mg/Kg	94%		75-125	0.99
Silver	49.21	ND	49.50	mg/Kg	99%		75-125	0.99
Thallium	95.74	ND	99.01	mg/Kg	97%		75-125	0.99
Vanadium	130.7	31.96	99.01	mg/Kg	100%		75-125	0.99
Zinc	112.4	18.12	99.01	mg/Kg	95%		75-125	0.99

Type: Blank Lab ID: QC1155557 Batch: 341031

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1155557 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	05/23/24	05/23/24

Type: Lab Control Sample Lab ID: QC1155558 Batch: 341031

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1155558 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Mercury	0.7917	0.8333	mg/Kg	95%		80-120

Type: Matrix Spike Lab ID: QC1155559 Batch: 341031

Matrix (Source ID): Soil (508910-001) Method: EPA 7471A Prep Method: METHOD

Source Sample QC1155559 Analyte Result **Spiked** Units Recovery Qual Limits DF Result Mercury 0.8702 0.8621 mg/Kg 101% 75-125

Type: Matrix Spike Duplicate Lab ID: QC1155560 Batch: 341031

Matrix (Source ID): Soil (508910-001) Method: EPA 7471A Prep Method: METHOD

Source **RPD** Sample **RPD** QC1155560 Analyte Result Result **Spiked** Units Recovery Qual Limits Lim DF Mercury 0.9224 ND 0.9259 100% 75-125 20 1.1 mg/Kg

Value is outside QC limits

ND Not Detected

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 509012

Report Level : II

Report Date : 05/31/2024

Analytical Report prepared for:

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Project: MIDWAY RISING - Sports Arena

Authorized for release by:

Taylor Nasu, Project Manager Taylor.Nasu@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 503715

Report Level : II

Report Date : 04/13/2024

Analytical Report prepared for:

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Project: MIDWAY RISING - Sports Arena

Authorized for release by:

David Tripp, Project Manager

657-581-4710

david.tripp@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chuck Houser

SCS Engineers

8799 Balboa #290

San Diego, CA

92123

Lab Job #: 503715

Project No: MIDWAY RISING

Location: Sports Arena

Date Received: 03/05/24

Sample ID	Lab ID	Collected	Matrix
HA-24-010-0.5	503715-001	03/04/24 08:08	Soil
HA-24-010-1.5	503715-002	03/04/24 08:21	Soil
HA-24-010-2.5	503715-003	03/04/24 08:43	Soil
HA-24-010-4	503715-004	03/04/24 09:04	Soil
HA-24-007-0.5	503715-005	03/04/24 09:23	Soil
HA-24-007-1.5	503715-006	03/04/24 09:37	Soil
HA-24-007-2.5	503715-007	03/04/24 09:52	Soil
HA-24-007-4	503715-008	03/04/24 10:07	Soil
HA-24-003-0.5	503715-009	03/04/24 10:23	Soil
HA-24-003-1.5	503715-010	03/04/24 10:42	Soil
HA-24-003-2.5	503715-011	03/04/24 10:57	Soil
HA-24-003-3.5	503715-012	03/04/24 11:12	Soil
HA-24-001-0.5	503715-013	03/04/24 11:31	Soil
HA-24-001-1.5	503715-014	03/04/24 11:46	Soil
HA-24-001-3	503715-015	03/04/24 12:02	Soil
HA-24-001-4	503715-016	03/04/24 12:19	Soil
HA-24-002-0.5	503715-017	03/04/24 12:40	Soil
HA-24-002-1.5	503715-018	03/04/24 12:56	Soil
HA-24-002-2.5	503715-019	03/04/24 13:07	Soil
HA-24-002-4	503715-020	03/04/24 13:24	Soil
HA-24-006-0.5	503715-021	03/04/24 13:51	Soil
HA-24-006-1.5	503715-022	03/04/24 14:09	Soil
HA-24-006-2.5	503715-023	03/04/24 14:22	Soil
HA-24-006-3.5	503715-024	03/04/24 14:37	Soil
HA-24-005-0.5	503715-025	03/04/24 14:55	Soil
HA-24-005-1.5	503715-026	03/04/24 15:08	Soil

Sample Summary

Chuck Houser

SCS Engineers

8799 Balboa #290

San Diego, CA

92123

Lab Job #: 503715

Project No: MIDWAY RISING

Location: Sports Arena

Date Received: 03/05/24

Sample ID	Lab ID	Collected	Matrix
HA-24-005-2.5	503715-027	03/04/24 15:21	Soil
HA-24-005-4	503715-028	03/04/24 15:35	Soil
HA-24-004-0.5	503715-029	03/04/24 15:52	Soil
HA-24-004-1.5	503715-030	03/04/24 16:09	Soil
HA-24-004-2.5	503715-031	03/04/24 16:23	Soil
HA-24-004-4	503715-032	03/04/24 16:40	Soil
HA-24-009-0.5	503715-033	03/05/24 07:49	Soil
HA-24-009-1.5	503715-034	03/05/24 08:11	Soil
HA-24-009-2.5	503715-035	03/05/24 08:29	Soil
HA-24-009-4	503715-036	03/05/24 08:46	Soil
HA-24-011-0.5	503715-037	03/05/24 09:09	Soil
HA-24-011-1.5	503715-038	03/05/24 09:27	Soil
HA-24-011-2.5	503715-039	03/05/24 09:43	Soil
HA-24-011-4	503715-040	03/05/24 10:01	Soil
HA-24-008-0.5	503715-041	03/05/24 10:20	Soil
HA-24-008-1.5	503715-042	03/05/24 10:41	Soil
HA-24-008-2.5	503715-043	03/05/24 10:58	Soil
HA-24-008-4	503715-044	03/05/24 11:19	Soil
HA-24-012-0.5	503715-045	03/05/24 12:09	Soil
HA-24-012-1.5	503715-046	03/05/24 12:19	Soil
HA-24-012-2.5	503715-047	03/05/24 12:42	Soil
HA-24-012-4	503715-048	03/05/24 13:02	Soil

Case Narrative

SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Chuck Houser

Lab Job 503715

Number:

Project No: MIDWAY

RISING

Location: Sports Arena

Date Received: 03/05/24

• This data package contains sample and QC results for thirty three soil samples, requested for the above referenced project on 03/05/24. The samples were received cold and intact.

• REPORT REVISED for added Pesticides and STLC/TCLP Chlordane analyses and results. 041324dst

Pesticides (EPA 8081A) Soil:

- High recovery was observed for endrin ketone in the LCS for batch 334976; this analyte was not detected at or above the RL in the associated samples.
- High recoveries were observed for a number of analytes in the MS/MSD for batch 334976; the parent sample was not
 a project sample, the associated RPDs were within limits, and these analytes were not detected at or above the RL in
 the associated samples. High RPD was observed for dieldrin; this analyte was not detected at or above the RL in the
 associated samples.
- High recovery was observed for 4,4'-DDE in the LCS for batch 335083; this analyte was not detected at or above the RL in the associated samples.
- High recovery was observed for methoxychlor in the LCS for batch 335742; this analyte was not detected at or above the RL in the associated samples.
- High recoveries were observed for 4,4'-DDT and methoxychlor in the MS/MSD of HA-24-003-3.5 (lab # 503715-012); the associated RPDs were within limits, and these analytes were not detected at or above the RL in the associated samples.
- High recoveries were observed for many analytes in the MSD for batch 335083; the parent sample was not a project sample, and these analytes were not detected at or above the RL in the associated samples. High RPD was observed for 4,4'-DDD in the MS/MSD for batch 335083; this analyte was not detected at or above the RL in the associated samples.
- Response exceeding the instrument's linear range was observed for decachlorobiphenyl in the method blank for batch 334976; affected data was qualified with "E".
- High surrogate recoveries were observed for decachlorobiphenyl in HA-24-011-0.5 (lab # 503715-037) and the method blank for batch 334976; the corresponding TCMX surrogate recoveries were within limits, and no target analytes were detected in these samples.
- Many samples were prepared outside of hold time; affected data was qualified with "H".
- HA-24-003-2.5 (lab # 503715-011) was diluted due to the color of the sample extract.
- No other analytical problems were encountered.

Pesticides (EPA 8081A) TCLP Leachate:

- High surrogate recoveries were observed for decachlorobiphenyl in many samples; the corresponding TCMX surrogate recoveries were within limits.
- No other analytical problems were encountered.

Pesticides (EPA 8081A) WET Leachate:

- High surrogate recoveries were observed for decachlorobiphenyl in a number of samples; the corresponding TCMX surrogate recoveries were within limits, and no target analytes were detected in these samples.
- No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

- Low recoveries were observed for antimony in the MS/MSD of HA-24-001-1.5 (lab # 503715-014); the LCS was within limits, and the associated RPD was within limits.
- No other analytical problems were encountered.

	-	\ \						•				
				Lab No:	7507	7	Standard:	>	5 Day:	3 Day:	ay:	
A II	Z	[-		Page:		of	5 2 Day:		1 Day:	Cus	Custom TAT:	
<< Se	<<< Select a Laboratory >>>	ory >>>		# }	Matrix: A = Air Water DW = Drinkir PP = Pure Product	A = Air S = S Drinking Wat oduct SEA =		$ \begin{array}{c} \mathbf{p} \\ 1 = \mathrm{Na}_2 \mathrm{S}_2 \mathrm{C} \\ 4 = \mathrm{H}_2 \mathrm{SO}_4 \end{array} $	Preservatives: $1 = Na_2S_2O_3$ $2 = HCl$ $3 = 4 = H_2SO_4$ $5 = NaOH$ $6 = 4 = H_2SO_4$ $5 = NaOH$ $6 = 4 = 10$	3 = HNO ₃ 6 = Other	Sample Receipt Temp:	t Temp:
	#N/A			SW	SW = Swab T = Tissue	sue WP = Wipe	ő				(lab use only)	<u>[Ā</u>
CUSTOMER INFORMATION	IFORMATION		PRO	PROJECT INFORMATION	IMATION		Analysis Request	Request	T _P	st Instructio	Test Instructions / Comments	nts
Company: 565 Ex	Englineers	Z	Name:	Widowan	136		(
-	Houser	- N	Number:	012133	10.00C	<u> </u>	180					1
	chouse @ scsewingers.		COMP. #:	01213	01213320.07							
Address: 8789 Balbon	1, 1,00a L	3	Address:	350056	orts Anema	la Bull.	80					
Sand	1		3	San Dicago, C	5 2		108					
Phone: 664-4	19-458-2799	6	Global ID:						3-			
Fax:		S	Sampled By:	1x100	Overton			-	ヘル	(/)/	
Sample ID		Sampling Date	Sampling Time	Matrix	Container No. / Size	Pres.	4M1 370		اسم	$\tilde{\mathcal{C}}$	10/h.0	_
1 HA-24-010-	5.0	34124	808	2011	4029/css	3	X	_				
2 HA-24-010-1.5	6.1.5	440	921	** <u>.</u>	٠,	-			X			
3 HA - 24 - 610	-2.5		843				X					
4 44-24 -010	-4		कुल्म						X			
5 HA - 24 -007	1 - 6.5		973				X					
6 HA -24 - 007	7 -1.5		937		*.				X			
7 HA-24-007	7 - 2.5	·	957				X					
8 HA-24-007	6	-,,_	1007						X			
- 24-	'n		(223				X					
10 HA -24- 003	3 - 1.5	->	1042	7	7	7			X			
	is Co	Sig nature		Pri	Print Name		Company ,	y / Title		Date	/ Time	
¹ Relinquished By:	のと	1	2	Tules	Ser for		SCS Engilheers	Lens	36	,—1	1353	
¹ Received By:	1/4	2	2	11440	- TANUALAGO	NGG	1 to - sol		3/5	.hz/	1853	
Relinquished By:	MATT	the	7	1104101	2 TANOMANGO	८)वीऽ	97 to		3/5	124	प्रति	
Received By:		1		INT STATE	DIVITION	0	かかめ		100 AS	72	X T	
Rejinquished By:				MY NO	stratula,		\$ \$ 10 m		100 A	300		
' Received Bv:	1			歩/ご言	c 9		1		<u>`</u>	アクシア	ر د د	

Sample Day A A A A A A A A A											
A A L T E C L Page: Z of E 20pr; 10pr; 10p		,			No.	しんりょ				-	
Number N				• • • .		5		عرط:	5 Day:	3 Day:	
W = Water Description W = Water W = Water Description W = Water W			N N	ا پھ ا ر					1 Day:	Custom TAT:	
#W/A #W/A #W/A #W/A #W/A #W/A #W/A #W/A		<<< Select a Labor	atory >>>		Σ :	latrix: A = Air S	= Soil/Solid		l ši	Sample Receipt Temp:	Temp
Sampling		A/N#			W = Water PP =:	DW = Drinking \ Pure Product SE	Wate SD = Sedimen: A = Sea Water	- 4	m 60	lO ₃	
P.O. #. Name: P.O. #. Address: Address: Address: Address: Address: Sampling Sam	SIIS	STOMER INFORMATION		Odd	SW = SWAD	= 115Sue	ő			(lab use only)	Ę
Sampling Number: Sampling Number: Sampling Sampling Number: Sampling S	1	CINICIA IN CINICIA ION			CLI INFORMAL	ON	Analys	is Request	Test	Test Instructions / Comments	ıts
Number: Number: No. #: No.	Company:			ame:							
Address:	Report To:	?		umber:			+	-			
Sampling	Email:		<u>a</u>	.0. #:			(-			
Global ID: Sampling Samplin	Address:		A	ddress:			¥1	110	-U		
Sampled By: Sampling Matrix Container Pres. Sampled By: Sampling Matrix Container Pres. Colors Sampling Matrix Container Pres. Colors Sampling Sampling Matrix Sampling								7			
Sampling Sampling Matrix Container Pres. Col.	hone:		6	lobal ID:				`	J.		
OO3 - 2-5 3 4 24 1057 501 4029 e55 1Ce Sampling Natrix No./Size Pres. OO3 - 2-5 3 4 24 1057 501 4029 e55 1Ce SOO OO3 - 2-5 1130 Soo OO3 - 1-5 1140 Soo OO3 - 1-5 1140 Soo OO3 - 1-5 1202 Soo OO3 - 1-5 1204 Soo OO3 - 1-5 1204 Soo OO3 - 1-5 1204 Soo OO3 - 1-5 I254 Soo OO3 - 1-5 I307 OO3 - 1	ax:		Š	ampled By:			<u> </u>	<u> </u>	m		
003-2-5 314(24 1057 5031 4029/ess 122 × -001-0-5 1146 × -001-0-5 1146 × -001-0-5 1240 × -002-1-5 1249 × -002-1-5 1240 × -002-1-5 1254 × -002-1		Sample ID	Sampling Date	Sampling Time		<u> </u>		1000	24		
- 003 - 3.5 1112 1146 1121 1202 1202 1202 1202 1202 1204 1204 1204 1254 12		!	3/4/24	1057		-					
- 001 -0.5 - 1146 - 001 -4 - 002 - 1.5 - 0		1		1112	-	-			X		
-001 win 2002 -001 -4 1219 -002 -0.5 1240 -002 -1.5 1254 -002 -1.5 1307 -002 -1.5	44	4- 000 - H		1131					X		
-001 win with 3 -001 -4 -002 -4 -002 -1.5 -002 -1.5 -002 -2.5 -002 -2.5 -002 -4 -002 -	¥	.00.		1146			X				
-001 -4 -002 -0.5 -002 -1.	##	00-		1202			X				
- 002 - 1.5 1240 X X X X X X X X X	HA.	00,		1219			X				
- 002 - 15 - 002 - 15 - 002 - 15 - 002 - 15 - 002 - 15 - 002 - 1 - 002 - 15 - 003 - 15 -	7 HA-2	- 200 -		1240			X				
Signature Signature MICHARY PHINAMINGUE SISTA MICHARY PHINAMINGUE SISTA SISTA SISTA SISTA SISTA SISTA SISTA MICHARY PHINAMINGUE SISTA S	ーヤゼ	- 200 -1		1256			4		X		
Signature Print Mame Company / Title Company / Title SCS Charles 3/5/2 MICHARY PHINAMING CASS 3/5/2 MICHARY PHINAMING CASS 3/5/2 MICHARY PHINAMING CASS 3/5/2 3/5/2	¥.	- 200 -	,	1307			×				
Signature Print Wall of the Company / Title Signature Scs Company 315/2 MILLY PRINTING CASS 315/2 MILLY PRINTING CASS 315/2 3/5/2	せよ	- 200 -	>	1324	7	>			X		
MICHARY PRIVATE CHASS 3151 MICHARY PRIVATION CHASS 3151 MICHARY PRIVATIVE CHASS 3151 MICHARY PRIVATIVE CHASS 3151 MICHARY PRIVATIVE CHASS 3151					Print Man	ne	Compa	ny / Title		Date / Time	
MICHAEL PRIMARICA CASS 3/5/	Relinquished E	を び ··································	7	\(\)		when	SCS 620	ABELTS	12		
MICHARY PHYMINGUO EDSD Man'S MANTANA THEST MIN'S MINTHAND THEST	Received By:	A STAN	Sic	N	washin	E Propose	ならなり		8		
Minis Martina TARD	Relinquished E	V: SHADING	77	N	JAKER.	NWANGELO	CAKD		2/10-11	AMI	
Mrs. morted parts	Received By:	(MITH		Mary	S MANATA	10	大大		10	される	3
	Relinquished B	V: (%)		Only	S mort	the	12 A		12 J		E C
Received By: " A ST	Received By:	, 2/			Nilla	7	No.	7	2/2	1637 1632	3

Turn Around Time (rush by advanced notice only)	5 Day:		7	reservatives	$4 = H_2SO_4$ $5 = NaOH$ $6 = Other$	(lab use only)	lest Instructions / Comments					ે	win	214				×				X		×	Date / Time		WISIE	1000	2 X 70	25/24 1627	7-5-24 1637
	Standard:	5 2 Day:			Other	Analysis Reguest	Comban Co (man)	(8	010 \\) g) : 8J3	920	×		×		\ \ \ \		X	7	X		Company / Title	SCS Franker	\$7.4Q	57.52	9.5	EN ST	100 m
Chain of Custody Record	Lab No: 50575	Page: 3 of	P. Catalian	W=Water DW=Drinking Wate SD=Sediment PP=Pure Product SCA = Sediment		PROJECT INFORMATION								Matrix Container Pres.	50114020 1c	6								7	Print Name	Tentwenton ?	ME MANUMANCO	Per MANAN GO	MIMPHO	Montput	
	, H	I C A I				PROJECT	Name:	Number:	B O #:	Address:		Global ID:	Sampled By:	Sampling	1351	1489	1422	1437	M55	1508	1251	1535	1552	1609		7 1	NACE		DOMY	SUMMO	2/M/ 1001 1
			<<< Select a Laboratory >>>	#N/A	#N/A	CUSTOMER INFORMATION	1-500 px 1-3							Sample ID Sampling Date	1 8	-74-006-1.5	-24-006-2-5	124-006-3.5	-24-005-0.5	- 500	. "Ⅰ	7- 500 -	- 004 -0.5	8-1 - FOO -	Signature	くできる		STATE OF THE	Jun A	Who was a second	1-2-2740110
						CUSTO	Company:	Report To:	Email:	Address:		Phone:	Fax:	Sami	HA	Ĭ.	*	₹1	♥ !	\dashv	4	- ₩ *	<u>+</u>	17 JUL 07	1 1	Relinquished By:	Received By:	Relinquished By:	Received By:	Reinduished By:	

**************************************	Control Cont	Select at aboratory	05775 stands of 5 2 Days A = Air S = Soil/Solid
Sample ID Samp	Sample ID Samp	Sample D	of £ 2 Day: 1 Day:
Sample Date	Sample D Sam	***Select a Laboratory >>> ***Water DW = Arir S = Soil/Soilid ##W/A ##WA #	A = Air S = Soil/Solid
Sample ID Sample ID Date	Sample ID Sampling Sampling Sampling Sample ID Sample	Sample ID Sampling	A = Air S = Soil/Solid
Sample ID Samp	Sample ID	Sample ID Sampling	$1 = Na_2 S_2 O_3 2 = HCI 3$ $4 = H_2 SO_4 5 = NaOH 6$
Sample 1D	Sample ID 1 - 004 - 2 - 5 314124 1623 50 14004 60 1 - 5 5 4 - 004 - 4 24 - 004 - 4 24 - 004 - 4 24 - 004 - 4 24 - 004 - 4 24 - 004 - 4 24 - 004 - 4 24 - 004 - 5 24 - 004 - 4 24 - 004 - 5 24 - 004 - 4 24 - 004 - 5 24 - 004 - 4 24 - 004 - 5 24 - 004 - 4 24 - 004 - 5 25 - 004 - 4 26 - 004 - 6 27 - 004 - 6 28 - 004 - 4 29 - 004 - 6 29 - 004 - 6 20 - 004 - 7 20 - 004 - 7	Sample ID Sampling Sampling Matrix (Container Press. Date Time Matrix (Container Press. Date Time Matrix (Container Press. Date The Object Obj	= Tissue WP = Wipe O = Other
Sample 1D Sampling Sampling Sampling Activess: Activess: Sampling Sampling Activess: Activess: Sampling Sampling No. Size 1-004-2-5 314124 1623 Soi Ampling No. Size Activess: Activess: Sampling No. Size Activess: Acti	Sample ID Sampling S	Sample 10 Sampling Sampling Sampling Matrix Container 1-004 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 009 - 2-5 24 - 001 - 0-5 25 - 011 - 0-5 27 - 011 - 2-5 27 - 011 - 2-5 27 - 011 - 2-5 28 - 011 - 2-5 27 - 011 - 2-5 28 - 011 - 2-5 28 - 011 - 2-5 38 - 011	Analysis Request
Sampled by	Sample D Sample By: Sample B	Sample D Sampling	
Sample 10 Sampling	Sample to Date Poc. #: Address: Addres	Sample ID Sampling Sampl	
Sample D Sampling Sampling Watry Container Pres. Sample By: Sample D Sampling Sampling Watry Container Pres. Sall 24 1623 Soil 4704 Mark No. / Size Pres. Sall 24 1623 Soil 4704 Mark No. / Size Pres. Sall 24 1640 Mark No. / Size Pres. Sall 24 1650 Mark No. / Size Pres. Sall 25 1640 Mark No. / Size Pres. Sall 2640 Mark No. / Size Pres. Mark No. / Size Pres. Sall 2640 Mark No. / Size Pres. Mark No	Sample D. Sampling Sampling Matrix Container Pres. Sample By: 1 - 004 - 2 - 5 314124 1623 Soil 4004000000000000000000000000000000000	Sample ID	80
Sampling Sampling Matrix Container Press Container No./Sire Press Container No./Sire Press Container No./Sire Press Container No./Sire Container N	Sample 1D Sample 1D: Sample	Sample 1D Sample 1D Sample 1D Date Time Matrix Container 1-004-2-5 31412-4 16-23 Soil 4004/60 24-004-4 24-004-2-5 31512-4 16-004 24-004-2-5 31512-4 16-004 24-004-2-5 40-004-1-5 4	
Sample 1D Sample 1D The coot - 2-5 31412-4 16-23 Soil Ampling The coot - 4 16-40 14-604-2-5 31412-4 16-40 14-604-2-5 31412-4 16-40 14-604-2-5 14-60	Sampling Sampling Matrix Container Date Press. Date Trume Matrix Container Date Press. Date Trume Matrix Container Date Date Date Date Date Date Date Date	Sampled By: Sampled By: 1-004 - 2-5 314124 1623 301429 24-009-0-5 315124 149 24-009-1-5 315124 149 24-009-1-5 315124 149 24-009-1-5 315124 149 140 140 140 140 140 140 14	
Sample 1D Sample 1D Date Time Ti	Sample 1D Sample 1D Date Time Ti	Sampled By: Sampled By: 1-004 - 2-5 314124 1623 30:14024 24 - 004 - 4 24 - 004 - 1-5 315124 1640 1) :
Sampling Sampling Matrix Container Pres. C S S 14124 1623 Soil 4004 16	1	Sample 1D Sampling Sampling Matrix Container 14-004-2-5 31412-4 1623 Soi 4004/2004 24-009-0-5 24-009-0-5 24-009-0-6 24-009-0-6 24-009-0-6 24-009-0-6 24-001-0-5 4-001-0-5 4-011-0-5 4	<u> </u>
4-004-2-5 314124 1623 Soil Amplus, i.e. X 24-009-0-5 815124 149 1640 1640 1650	4-004-2-5 314124 1623 Soil Amplier, i.e. X 24-009-9-5 815124 1623 Soil Amplier, i.e. X 24-009-9-5 815124 149	14-004-2-5 314124 1623 50:14024 1.22 24-009-0-5 315124 149 24-009-1-5 911 24-009-2-5 912 24-009-4 940 24-011-0-5 9043 24-011-2-9 9043 24-011-4 9040 24-011-2-9 9043 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-1-5 901 24-011-4 9040 24-011-1-5 901 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 24-011-4 9040 25-011-4 9040 26-01-4 9040 26-01-4 9040 26-01-4 9040 26-01-4 9040 26-01-4 9040 26-01-4 9040 26	120 120 120 120
24 - 009 - 4	24 - 009 - 4 24 - 009 - 0.5 213 24 - 009 - 1.5 24 - 009 - 1.5 24 - 009 - 1.5 315 24 - 011 32 909 32 909 32 909 32 909 33 909 34.5 35 909 35	24-009-0.5 \$15124 749 24-009-0.5 \$15124 749 24-009-2.5 601 4-009-4 24-001-0.5 601 4-011-0.5 601 4-011-2.5 601 84: MILLARY MARCANAGE 58: MILLARY MARCANAGE	1
24 - 009 - 0.5	24 - 009. 0.5 \$15/24 749 24 - 009- 1.5 32 - 009- 2.5 32 - 009- 4 32 - 001- 0.5 32 - 001- 0.5 33 - 001- 0.5 34 - 001- 2.5 34 - 001- 2.5 35 - 001- 0.	24 -009-0.5 315124 749 24 -009-1.5	_
24 - 009 - 1.5 14 - 009 - 2.5 15 929 17 - 011 - 0.5 18 - 009 - 1.5 19 943 19 943 10 1 - 2.6 10 1 - 2.6 10 943 10 10 10 10 10 10 10 10 10 10 10 10 10 1	24 -009-1.5 14 -009-2.5 14 -009-2.5 14 -009-4 24 -009-4 24 -011-0.5 14 -011-0.	24 -009- 1.5 4 -009-25 929 24 -009-4 24 -011-0-5 24-011-2-5 24-011-2-5 24-011-2-5 24-011-2-5 24-011-2-5 24-011-2-5 24-011-2-5 3687 Mure BN: BN: WMS MARCHANGE FR	
14 - 0 0 9 - 2 5 14 - 0 0 9 - 4 14 - 0 0 9 - 4 15 9 4 5 17 9 4 17 9 4 5 17 9 4 17	14 - 009-25 14 - 009-4 15 - 011 - 0-5 17 - 011 - 0-5 18 - 011 - 0-	14 -009-25 829 829 14 -009-4 14 -001-0-5 9046 124 -011-2.5 9043 124 -011-2.5 9043 124 -011-2.5 9043 124 -011-2.5 9043 124 -011-2.5 9043 124 -011-2.5 9043 124 -011-2.5 9043 124 -011-2.5 9040 124 -011-2.5 9040 124 -011-2.5 9046 125 -011-2.5 9046 125 -011-2.5 9046 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 9047 125 -011-2.5 907 125 -0	
14 - 009 - 4 14 - 011 - 0.5 14 - 011 - 0.5 15 - 0.5 16 - 0.5 17 - 011 - 0.5 18 - 0.01	14 - 009-4 14 - 011-0-5 19-011-0-5 19-011-2-5 19-011-2-5 19-011-2-5 19-011-4 19-01-4 19-01-	14 - 009-4 24 - 011 - 0-5 409 4- 011 - 1-5 24-011 - 4 5180 Mure By: White Markey SCS MINICHAEL TANKANGE FINANCE FA	X
124 - 011 - 0.5 14 - 011 - 1.5 14 - 011 - 1.5 14 - 011 - 1.5 18 - 011 - 1.5 19 - 011 - 1.	124 - 011 - 0.5 14 - 011 - 1.5 14 - 011 - 1.5 14 - 011 - 1.5 14 - 011 - 1.5 15 - 011 - 1.5 16 - 012 17 - 011 - 1.5 18 - 012 18 - 013 18	24-011-0-5 24-011-1-5 24-011-4 24-011-4 (500) (100)	
943 (17) 24-011-7.5 943 White print work of the print o	14-011-15 14-011-2,5 14-011-4 1501 14-011-4 1501 14-011-4 1501 14-011-4 1501 14-011-4 1501 14-011-4 1501 1501 1601 1601 1601 1601 1601 1601	943 24-011-7.5 24-011-4 518phure By: Miller Marchance Print Name SCS Miller Marchance Print Name SCS Miller Marchance Print Name SCS Miller Marchance Print Name	
By: Continue Company Title Date Time	By: Cho 3-5-20 1901 White Markey SCS Engineers 3/5/24 1935 By: Markey Markey SCS Engineers 3/5/24 13:5 By: Markey Markey Markey 5/5/24 1948 By: Markey Markey Markey 5/5/24 1948 By: Markey Markey Markey 5/5/24 1948 By: Markey Markey 5/5/24 1948 By: Markey Markey 5/5/24 1948	By: By: By: By: By: By: By: By:	×
By: By: Company Title Date / Time By: By: By: By: Company Title Company Title Date / Time Company Title Date / Time Company Title Date / Time By: By: Company Title Date / Time Company Title Date / Time By: Company Title Date / Time Date / Time By: Company Title Date / Time Da	By: Signifure Print Name Company / Title Date / Time	By: Clark of 100 i V VINTANAME OF SESS INTERPRETATION OF THE PARTY OF THE WAY	X
By: By: By: By: By: By: By: By:	By: By: By: By: By: By: By: By:	By: White print Name SCS By: Mall Hare Tank Miles CT MINIS MINISME THE FROM THE	7
BY: The William Thrombon 505 Engineers 3/5/24 135 BY: MICHAEL MINISTRUCE 57.50 3/5/24 135 BY: MINISTRUCE THE SO 3/5/24 (4/18) BY: MINISTRUCE THE SO 3/5/24 (4/18) BY: MINISTRUCE THE SO 3/5/24 (4/18)	BY: WINDER MANNERS SCS ENGINEERS 3/5/24 135 BY: MINTHER MINTENDED EAST 3/5/24 13/5 BY: MINTHER MINTENDED EAST 3/5/24 14/5 BY: MINTHER MINTENDED EAST 3/5/24 11/5/5 BY: MINTHER MINTENDED EAST 3/5/24 11/5/5 BY: MINTHER MINTHENDED EAST 3/5/24 11/5/5 BY: MINTHER MINTHENDED EAST 3/5/24 11/5/5 BY: MINTHENDE EAST 3/5/24 11/5/5/5 BY: MINTHENDE EAST 3/5/24 11/5/5/5 BY: MINTHENDE EAST 3/5/24 11/5/5/5 BY: MINTHENDE EAST 3/5/24 11/5/5/5/5 BY: MINTHENDE EAST 3/5/24 11/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/	BY: WHICH THE WENT SCS BY: WHICH THE THE WAS TO THE BY: BY: WHICH THE MANNEY OF THE BY:	Company / Title
BY: HAMPEL THE WASHED TO SISTEM (3) BY: HAMPEL THE WASHED TO SISTEM (3) BY: HAMPEL THE WASHED THE SD SISTEM (4) BY: HAMPEL THE WASHED THE WASHED THE SD SISTEM (4) BY: HAMPEL THE WASHED THE WASHED THE SD SISTEM (4) BY: HAMPEL THE WASHED THE WASHE	BY: MANUS MINISTERIAL TO STAY (3) BY: MANUS MINISTERIAL THE STAY (4) BY: MANUS MINISTE	BY: MANNER MANNER OF THE BY: OF THE MANNER OF THE PARTY O	365 Engineers 3/5/2
BY: CHANGE MINUTERING THE ST TEST STATES STA	BY: Cho 3-5-70 1805 Kee Definition Series as significant of the Definition of the Series of the Seri	BY: WINDS MINISTER FA	2/2 05/2
BY: Charles The Training The Training The Training Training The Training Tr	BY: (M. Cho 3-5-24 1905 KG Structures)	BY: (M. M. M	13.87
By:	BY: (7/2 NICKO 3-5-24 1905 KW BAM	By: (7/4	MA ST STAN
	NICKO 3-5-24 180K KG - 274m		MAC FATO SKITU
	- CTO 2-5-10 1007 KG 1014		CO AM

M	Control Cont	0 4			y II II .		A	Chain of Custody Record	tody Recor	P P	Turn A	round, Tir	Turn Around, Time (rush by advanced notice only)	nced notice	only)
A N A 1 Y 1 C A 1 Page: To of 5 Drag: Drag	A A L T C E Page: T O T Dor. Picture	D		7		•	Lab No	M	37-15	1.	tandard:	>	5 Day:	3 Day:	
Standard or Standard or Standard or Standard Standard Standard or Standard	Simple to Date Sampling S			₹ Z		I C A		ĵv	of	5	Дау:		1 Day:	Custom TAT:	
#W/A #W/A #W/A #W/A #W/A #W/A #W/A #W/A	#W/A Sumple ID Sample ID One 1.5		<<< Sele	ect a Labor	ratory >>>				A=Air S=	Soil/Solid		P.	eservatives:	Sample Reco	ipt Temp:
Sumple December Sun Swift Sun Swif	Stander Information			#N/A			>	= Water DW = PPre Pre	Drinking War oduct SEA =	te SD = Sedi = Sea Water	ment	$1 = Na_2 S_2 O_3$ $4 = H_2 SO_4$			
Sample D Sampling Samplin	Sample ID Sampling Sa			#N/A	÷		SV				Other			(lab use	only)
Sample Date Nature Container Sample By:	Sampling	ರ	JSTOMER INFO	DRMATION		PRC	JECT INFC	RMATION		A	nalysis Requ	est	Test Inst	ructions / Comr	nents
Sample Date Sampling Samp	Sample Date	Company:	5.0e	91-		Name:					- (
Sample ID	Sample 10 Sample 10 Sample 20 Sample 10 Sample 40 Sample 50 Sample 10 Sample 10 Date 119 1-008 - 4 1	Report To:	<u> </u>			Number:					(5			ļ	
Sample D. Sampling Sampling Matrix Container Pres. Co. Sep. 1 402 60 860 1 402 40 860 1 402 40 860 1 402 40 860 1 402 40 860 1 102 0 860 1 402 40 860 1 102 0 860 1 402 40 860 1 102 0 860 1 402 40 860 1 102 0 860 1 402 40 860 1 102 0 860 1 402 40 860 1 102 0 860 1 402 40 860 1 102 0 860 1 402 40 860 1 102 0 860 1 102	Sample D Sample	Emajli				P.O. #:				(-	0		i		
Sample ID Sample B Sampl	Sample Date Sampling Sampling Sample Date Time Sampling Sam	Address:				Address:				V 1	10				
Sampling	Sample ID									GB	のつ				
Sampling	Sample 1D Sampling Sa	Phone:				Global ID:				8)) S 7))		
Sampling	Sampling Sampling Sampling Matrix Container Pres.	Fax:				Sampled By:				90	*		ıηa		
1:008 -0.5 3[5[24 1020 804] 4029[45] ite X 1:008 -1.5 1041 1:008 -4 1119 1:008 -4 1119 1:012 - 2.5 1242 1:012 - 4 1502 V V X 1:012 - 1.5 1041 1:01	1-008 -0.5 315124 1020 8041 4020425 102 X 1-008 -1.5 1058 1-008 -4 1119 1-012 - 0.5 1242 X 1-012 - 1.5 1242		Sample ID		Sampling Date		Matrix	Container No. / Size	Pres.	17Q	M)		₁ √√		
1.008 -1.5 1058 1058 X X X X X X X X X	1.008 - 1.5	1 14-2		-0.5	315/24		8001	18528A	à	X				and the second	
1-008 - 2-5 1058 1-008 - 4 1119 1-012 - 0.5 1242 1-012 - 1.5 1242 1-012 - 2.5 1242 1-012 - 2.5 1242 1252 V V V V V V V V V V V V V V V V V V V	1-008 - 2-5 1058 - 4 1119 1-008 - 4 1119 1-012 - 0.5 1-012 - 1.5 1	4A-2	4.008	5-1-		1401	۷	7	_				×		
1-008 - 4 (119	1-008 - 4 1-012 - 0.5 1-012 - 1.5 1-012 - 4 1-		4-008	. 2.5		8501				X					
# 1202 - 0.5 1209	1202 - 0.5 (219 X 1202 1242 X X X X X X X X X		4-008	· 4		6113							X		
-012 - 1.5 (2.42 X X X X X X X X X X X X X X X X X X	-012 - 1.5 (242 X X X X X X X X X	图	7.015	20.5		1209	_	-		X					
12.62 12.42 V X X X X X X X X X	1502 4 1 1 1502 4 1 1 1502 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7		1.5		1219							X		
By: A 1302 V V V Bate / Time Date / Time	By: A Signature Print Name Company / Title Date / Time By: A NUMBER OF THE SIGNATURE THE SISTEM SIST	\$	$\tilde{\mathbf{v}}$			1242				X					
By: A Signature Print Name Company/Title Date/Time Date/Time Sur A Signature No. 135 24 135 2	By: A Signature Print Name Company / Title Date / Time A Signature Millian Month of the Signature A Signary (WIR Month of the Signary A Signary (WIR Month of the Signary A Signary (WIR Month of the Si	\$, l	4	>	1502		>					X		
By: A Signature Print Name Company / Title Date / Time By: A MINISTER PRINTED THE SCS Engineers 3/5/24 135 By: A MINISTER PRINTENS THE SISTEM BY: SKYLL PAYS By: A SIMPLE MONTH THE THE SISTEM BY: SKYLL PAYS By: A SIMPLE MONTH THE SISTEM BY: SKYLL PAYS By: A SIMPLE MONTH THE SISTEM BY: SKYLL PAYS SKYLL	By: M. W. W. E. S. C. Company / Title Date / Time By: M. W. W. E. S. C.	10													
BY: A SULL MINISTER SCS ENGINEERS 315/24 135'S BY: A SULL THINGTON THE STAND	BY: A SULL MINION BOWN SCS ENGINEOUS 3/5/24 135. BY: AND MINION PRIMITION THE SULL STATE SISTEM 13/5/24 14/8 SULL STATE SISTEM 13/5/24 14/8 SULL STATE SISTEM 14/8 SULL STATE SISTEM 14/8 SULL STATE SISTEM 16/35 SULL SULL SULL SULL SULL SULL SULL SUL			7	Signature		Pŗ	iat Name		သ	_	itle		_	
BY: Address of the St St St 12 13:5 BY: Address of the St	BY: State Militar Montral FALS 35/24 1275 By: Mart 1805 Rec Structure 5 35/24 1835 White A 3-5-24 1805 Rec Structure 5 35/24 1835	¹ Relinquished	l By:	1		M	MoluT		3	3 575	ععلاامير	مرک	315/2-	135	
BY: CANAL MINISTRACE THE SD BY: CANAL MONTH OF THE SD CANAL MONTH	BY: CANDER OF THE MONTHAND THE SE BY: MULKET 9-5-24 1805 RRCS America. S 25/2/1883	¹ Received By:		A CONTRACTOR OF THE PROPERTY O		2	15-25/N	2 THWAN	260	白	d)/t		3/5/2	4 13.	5,
BY: Charles Monterials Markerials	BY: Mark 9-5-24 1805 Rec 5 America: 5 355.74	² Relinquished	l By:		h		WHELL	PHWW ANGO	3	#2	US-		3/5/24	以为 /	
RINK MINERAL	WULFER 3-5-24 (805 Rec C) Amobes, 5 3/8/24	*Received By:	1	1			MIS N	4	7	4			3K/DL	1 /14B	
	WULFER 9-5-64 1805 Rec CS Amores. 5 3/5/24 1	³ Relinquished	By:				M	DIVINO		FH C	QS		14,30	7 (137)	
	WARA 9-5-64 1805 Rec CS Amores, S 3/2/24	Received By:	,	Ì			M	11/11/6			200		3-6	-20, 16	47

Section 1				
Client: SCS Engineers	Aliduras Dining			
Date Received: 3/5/24	Project: Midway Rising			-
	Sampler's Name Present:	√ Yes	No	
Sample(s) received in a cooler? Yes, How many Sample Temp (°C), One from each cooler: #1: O (Acceptance range is < 6°C but not frozen (for Microbiology samples, the same day as sample receipt to have a higher tel Shipping Information:	43: #3:	_#4:	le Temp (°C) (No Cooler) e for sample jun.)):
Section 3 Was the cooler packed with: □ lce □ lce Pac □ Paper □ None Cooler Temp (°C): #1: □ ↓ #2:	ks Bubble Wrap Styrof Other	foam _#4:		
Section 4		YES	NO	N/A
Was a COC received?		√ /	140	N/A
Are sample IDs present?		1		
Are sampling dates & times present?		7		
ls a relinquished signature present?		7		
Are the tests required clearly indicated on the COC?		7		
Are custody seals present?			1	
If custody seals are present, were they intact?			•	1
Are all samples sealed in plastic bags? (Recommend	led for Microbiology samples)			
Did all samples arrive intact? If no, indicate in Sectio	n 4 below.	1		
Did all bottle labels agree with COC? (ID, dates and t		1		
Were the samples collected in the correct containers	s for the required tests?	1		
Are the containers labeled with the correct pre	eservatives?			$\overline{}$
Is there headspace in the VOA vials greater than 5-6	mm in diameter?			1
Was a sufficient amount of sample submitted for the	requested tests?	√		,
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager not Project Manager's response:	ified?Verbal PM Initials: E Email (email sent to/on	_	1	
931 W. Barkley Ave, Orange, CA 92 www.en	Date: MAR 05 2024 ry of Montrose Environmental Group ,Inc. 2868 • T: (714) 771-6900 • F: (714) 538-1209 http://doi.org/10.1001/10.10			

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Lab Job #: 503715 Project No: MIDWAY RISING Location: Sports Arena Date Received: 03/05/24

Sample ID: HA-24-010-0.5 Lab ID: 503715-001 Collected: 03/04/24 08:08

03715-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
lethod: EPA 8081A								
rep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
beta-BHC	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
delta-BHC	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Heptachlor	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Aldrin	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Dieldrin	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endrin	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Methoxychlor	ND	ug/Kg	10	1	334976	03/09/24	03/11/24	MES
Toxaphene	ND	ug/Kg	100	1	334976	03/09/24	03/11/24	MES
Chlordane (Technical)	3,400	ug/Kg	250	5.1	334976	03/09/24	03/12/24	MES
urrogates			Limits					
TCMX	90%	%REC	23-120	1	334976	03/09/24	03/11/24	MES
Decachlorobiphenyl	109%	%REC	24-120	1	334976	03/09/24	03/11/24	MES

Sample ID: HA-24-010-1.5 Lab ID: 503715-002 Collected: 03/04/24 08:21

503715-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A							-		
Prep Method: EPA 3546									
alpha-BHC	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
beta-BHC	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
gamma-BHC	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
delta-BHC	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Heptachlor	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Aldrin	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Heptachlor epoxide	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Endosulfan I	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Dieldrin	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
4,4'-DDE	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Endrin	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Endosulfan II	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Endosulfan sulfate	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
4,4'-DDD	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Endrin aldehyde	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Endrin ketone	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
4,4'-DDT	ND	Н	ug/Kg	5.0	0.99	335742	03/19/24	03/21/24	MTS
Methoxychlor	ND	Н	ug/Kg	9.9	0.99	335742	03/19/24	03/21/24	MTS
Toxaphene	ND	Н	ug/Kg	99	0.99	335742	03/19/24	03/21/24	MTS
Chlordane (Technical)	1,800	Н	ug/Kg	250	5	335742	03/19/24	03/22/24	MTS
Surrogates				Limits					
TCMX	106%	Н	%REC	23-120	0.99	335742	03/19/24	03/21/24	MTS
Decachlorobiphenyl	67%	Н	%REC	24-120	0.99	335742	03/19/24	03/21/24	MTS

Sample ID: HA-24-010-2.5 Lab ID: 503715-003 Collected: 03/04/24 08:43

503715-003 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A						•	•	
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
beta-BHC	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
delta-BHC	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Heptachlor	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Aldrin	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Dieldrin	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Endrin	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	334976	03/09/24	03/11/24	MES
Methoxychlor	ND	ug/Kg	10	1	334976	03/09/24	03/11/24	MES
Toxaphene	ND	ug/Kg	100	1	334976	03/09/24	03/11/24	MES
Chlordane (Technical)	250	ug/Kg	50	1	334976	03/09/24	03/11/24	MES
Surrogates			Limits					
TCMX	89%	%REC	23-120	1	334976	03/09/24	03/11/24	MES
Decachlorobiphenyl	116%	%REC	24-120	1	334976	03/09/24	03/11/24	MES

Sample ID: HA	\-24-007	-0.5		Lab ID:	503715-005		Co	llected: 03	/04/24 09:23	
503715-005 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A										
Prep Method: EPA 3510C										
Chlordane (Technical)	3.9		ug/L	2.0	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Surrogates				Limits						
TCMX	82%		%REC	14-120	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Decachlorobiphenyl	140%	*	%REC	20-120	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
beta-BHC	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
gamma-BHC	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
delta-BHC	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Heptachlor	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Aldrin	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan I	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Dieldrin	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDE	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endrin	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan II	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan sulfate	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDD	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endrin ketone	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDT	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Methoxychlor	ND		ug/Kg	10	Soil	1	334976	03/09/24	03/11/24	MES
Toxaphene	ND		ug/Kg	100	Soil	1	334976	03/09/24	03/11/24	MES
Chlordane (Technical)	9,500		ug/Kg	1,000	Soil	20	334976	03/09/24	03/12/24	MES
Surrogates				Limits						
TCMX	84%		%REC	23-120	Soil	1	334976	03/09/24	03/11/24	MES
Decachlorobiphenyl	102%		%REC	24-120	Soil	1	334976	03/09/24	03/11/24	MES

Sample ID: HA-24-007-1.5 Lab ID: 503715-006 Collected: 03/04/24 09:37

03715-006 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 8081A							<u> </u>	<u> </u>	
rep Method: EPA 3546									
alpha-BHC	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
beta-BHC	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
gamma-BHC	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
delta-BHC	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Heptachlor	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Aldrin	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Heptachlor epoxide	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endosulfan I	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Dieldrin	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
4,4'-DDE	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endrin	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endosulfan II	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endosulfan sulfate	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
4,4'-DDD	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endrin aldehyde	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endrin ketone	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
4,4'-DDT	ND	Н	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Methoxychlor	ND	Н	ug/Kg	10	1	335742	03/19/24	03/21/24	MTS
Toxaphene	ND	Н	ug/Kg	100	1	335742	03/19/24	03/21/24	MTS
Chlordane (Technical)	530	Н	ug/Kg	50	1	335742	03/19/24	03/21/24	MTS
urrogates				Limits					
TCMX	106%	Н	%REC	23-120	1	335742	03/19/24	03/21/24	MTS
Decachlorobiphenyl	74%	Н	%REC	24-120	1	335742	03/19/24	03/21/24	MTS

Sample ID: HA-24-007-2.5 Lab ID: 503715-007 Collected: 03/04/24 09:52

503715-007 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A						-		
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
beta-BHC	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
delta-BHC	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Heptachlor	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Aldrin	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Dieldrin	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endrin	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	334976	03/09/24	03/11/24	MES
Methoxychlor	ND	ug/Kg	10	1	334976	03/09/24	03/11/24	MES
Toxaphene	ND	ug/Kg	100	1	334976	03/09/24	03/11/24	MES
Chlordane (Technical)	62	ug/Kg	51	1	334976	03/09/24	03/11/24	MES
Surrogates		-	Limits					
TCMX	90%	%REC	23-120	1	334976	03/09/24	03/11/24	MES
Decachlorobiphenyl	110%	%REC	24-120	1	334976	03/09/24	03/11/24	MES

Sample ID: HA	\-24-003·	-0.5		Lab ID:	503715-009	Collected: 03/04/24 10:23				
503715-009 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A Prep Method: EPA 3510C										
Chlordane (Technical)	ND		ug/L	2.0	TCLP Leachate	1	337215	04/08/24	04/09/24	MES
Surrogates				Limits						
TCMX	83%		%REC	14-120	TCLP Leachate	1	337215	04/08/24	04/09/24	MES
Decachlorobiphenyl	154%	*	%REC	20-120	TCLP Leachate	1	337215	04/08/24	04/09/24	MES
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
beta-BHC	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
gamma-BHC	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
delta-BHC	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Heptachlor	5.1		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Aldrin	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan I	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Dieldrin	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDE	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endrin	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan II	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDD	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endrin ketone	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDT	ND		ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Methoxychlor	ND		ug/Kg	10	Soil	1	334976	03/09/24	03/11/24	MES
Toxaphene	ND		ug/Kg	100	Soil	1	334976	03/09/24	03/11/24	MES
Chlordane (Technical)	2,800		ug/Kg	250	Soil	5.1	334976	03/09/24	03/12/24	MES
Surrogates				Limits						
TCMX	103%		%REC	23-120	Soil	5.1	334976	03/09/24	03/12/24	MES
Decachlorobiphenyl	109%		%REC	24-120	Soil	5.1	334976	03/09/24	03/12/24	MES

Sample ID: HA-24-003-2.5 Lab ID: 503715-011 Collected: 03/04/24 10:57

503715-011 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
beta-BHC	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
gamma-BHC	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
delta-BHC	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Heptachlor	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Aldrin	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Heptachlor epoxide	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Endosulfan I	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Dieldrin	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
4,4'-DDE	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Endrin	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Endosulfan II	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Endosulfan sulfate	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
4,4'-DDD	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Endrin aldehyde	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Endrin ketone	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
4,4'-DDT	ND	ug/Kg	10	2	334976	03/09/24	03/11/24	MES
Methoxychlor	ND	ug/Kg	20	2	334976	03/09/24	03/11/24	MES
Toxaphene	ND	ug/Kg	200	2	334976	03/09/24	03/11/24	MES
Chlordane (Technical)	470	ug/Kg	100	2	334976	03/09/24	03/11/24	MES
Surrogates			Limits					
TCMX	99%	%REC	23-120	2	334976	03/09/24	03/11/24	MES
Decachlorobiphenyl	104%	%REC	24-120	2	334976	03/09/24	03/11/24	MES

Sample ID: HA-24-003-3.5 Lab ID: 503715-012 Collected: 03/04/24 11:12

503715-012 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A							<u> </u>		
Prep Method: EPA 3546									
alpha-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
beta-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
gamma-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
delta-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Heptachlor	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Aldrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Heptachlor epoxide	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan I	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Dieldrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDE	5.2	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan II	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan sulfate	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDD	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin aldehyde	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin ketone	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDT	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Methoxychlor	ND	Н	ug/Kg	10	1	335742	03/19/24	03/21/24	MTS
Toxaphene	ND	Н	ug/Kg	100	1	335742	03/19/24	03/21/24	MTS
Chlordane (Technical)	450	Н	ug/Kg	51	1	335742	03/19/24	03/21/24	MTS
Surrogates				Limits					
TCMX	112%	Н	%REC	23-120	1	335742	03/19/24	03/21/24	MTS
Decachlorobiphenyl	72%	Н	%REC	24-120	1	335742	03/19/24	03/21/24	MTS

Sample ID: HA	A-24-001	-1.5	Lab ID	: 503715-014	Collected: 03/04/24 11:46					
503715-014 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist	
Method: EPA 6010B							•			
Prep Method: EPA 3050B										
Antimony	ND	mg/Kg	2.9	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Arsenic	10	mg/Kg	0.96	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Barium	84	mg/Kg	0.96	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Beryllium	ND	mg/Kg	0.48	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Cadmium	ND	mg/Kg	0.48	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Chromium	16	mg/Kg	0.96	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Cobalt	6.0	mg/Kg	0.48	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Copper	11	mg/Kg	0.96	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Lead	12	mg/Kg	0.96	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Molybdenum	ND	mg/Kg	1.1	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Nickel	7.8	mg/Kg	0.96	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Selenium	ND	mg/Kg	2.9	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Silver	ND	mg/Kg	0.48	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Thallium	ND	mg/Kg	2.9	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Vanadium	36	mg/Kg	0.96	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Zinc	51	mg/Kg	4.8	Soil	0.96	334768	03/06/24	03/07/24	SBW	
Method: EPA 7471A Prep Method: METHOD										
Mercury	ND	mg/Kg	0.15	Soil	1.1	334789	03/07/24	03/07/24	KAM	
Method: EPA 8081A Prep Method: EPA 3510C										
Chlordane (Technical)	ND	ug/L	2.0	WET Leachate	2	337215	04/08/24	04/09/24	MES	
Surrogates			Limits							
TCMX	60%	%REC	14-120	WET Leachate	2	337215	04/08/24	04/09/24	MES	
Decachlorobiphenyl	95%	%REC	20-120	WET Leachate	2	337215	04/08/24	04/09/24	MES	
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
beta-BHC	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
gamma-BHC	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
delta-BHC	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Heptachlor	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Aldrin	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Heptachlor epoxide	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Endosulfan I	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Dieldrin	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
4,4'-DDE	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Endrin	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Endosulfan II	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Endosulfan sulfate	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
4,4'-DDD	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Endrin aldehyde	ND	ug/Kg ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
Endrin ketone	ND	ug/Kg ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES	
4,4'-DDT	ND		5.1	Soil	1	334976	03/09/24	03/11/24	MES	
	ND	ug/Kg			1	334976	03/09/24	03/11/24	MES	
Methoxychlor		ug/Kg	100	Soil	I					
Toxaphene	ND	ug/Kg	100	Soil	1	334976	03/09/24	03/11/24	MES	

503715-014 Analyte	Result	Qual Un	ts F	RL Matri	x DF	Batch	Prepared	Analyzed	Chemist
Chlordane (Technical)	1,200	ug/	Kg 20	60 Soil	5.1	334976	03/09/24	03/12/24	MES
Surrogates			Limi	ts					
TCMX	63%	%R	EC 23-1	20 Soil	1	334976	03/09/24	03/11/24	MES
Decachlorobiphenyl	79%	%R	EC 24-1	20 Soil	1	334976	03/09/24	03/11/24	MES

Sample ID: H	A-24-001	-3		Lab ID:	503715-015		Col	lected: 03/	04/24 12:02	
503715-015 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	Soil	0.99	334768	03/06/24	03/07/24	SBW
Arsenic	7.0		mg/Kg	0.99	Soil	0.99	334768	03/06/24	03/07/24	SBW
Barium	87		mg/Kg	0.99	Soil	0.99	334768	03/06/24	03/07/24	SBW
Beryllium	ND		mg/Kg	0.50	Soil	0.99	334768	03/06/24	03/07/24	SBW
Cadmium	ND		mg/Kg	0.50	Soil	0.99	334768	03/06/24	03/07/24	SBW
Chromium	12		mg/Kg	0.99	Soil	0.99	334768	03/06/24	03/07/24	SBW
Cobalt	5.4		mg/Kg	0.50	Soil	0.99	334768	03/06/24	03/07/24	SBW
Copper	9.1		mg/Kg	0.99	Soil	0.99	334768	03/06/24	03/07/24	SBW
Lead	11		mg/Kg	0.99	Soil	0.99	334768	03/06/24	03/07/24	SBW
Molybdenum	ND		mg/Kg	1.1	Soil	0.99	334768	03/06/24	03/07/24	SBW
Nickel	5.8		mg/Kg	0.99	Soil	0.99	334768	03/06/24	03/07/24	SBW
Selenium	ND		mg/Kg	3.0	Soil	0.99	334768	03/06/24	03/07/24	SBW
Silver	ND		mg/Kg	0.50	Soil	0.99	334768	03/06/24	03/07/24	SBW
Thallium	ND		mg/Kg	3.0	Soil	0.99	334768	03/06/24	03/07/24	SBW
Vanadium	29		mg/Kg	0.99	Soil	0.99	334768	03/06/24	03/07/24	SBW
Zinc	37		mg/Kg	5.0	Soil	0.99	334768	03/06/24	03/07/24	SBW
Method: EPA 7471A	<u> </u>		mg/rtg	0.0		0.00	001700	00/00/21	00/01/21	
Prep Method: METHOD										
Mercury	ND		mg/Kg	0.16	Soil	1.2	334789	03/07/24	03/07/24	KAM
Method: EPA 8081A Prep Method: EPA 3510C										
Chlordane (Technical)	ND		ug/L	2.0	WET Leachate	2	337215	04/08/24	04/09/24	MES
Surrogates				Limits						
TCMX	93%		%REC	14-120	WET Leachate	2	337215	04/08/24	04/09/24	MES
Decachlorobiphenyl	167%	*	%REC	20-120	WET Leachate	2	337215	04/08/24	04/09/24	MES
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
beta-BHC	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
gamma-BHC	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
delta-BHC	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Heptachlor	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Aldrin	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Heptachlor epoxide	6.0	С	ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan I	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Dieldrin	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDE	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endrin	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan II	ND			5.0	Soil		334976	03/09/24	03/11/24	MES
Endosulfan sulfate	ND		ug/Kg ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
						1				
4,4'-DDD	ND		ug/Kg	5.0	Soil	I	334976	03/09/24	03/11/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Endrin ketone	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDT	ND		ug/Kg	5.0	Soil	1	334976	03/09/24	03/11/24	MES
Methoxychlor	ND		ug/Kg	10	Soil	1	334976	03/09/24	03/11/24	MES
Toxaphene	ND		ug/Kg	100	Soil	1	334976	03/09/24	03/11/24	MES

503715-015 Analyte	Result	Qual Unit	s RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Chlordane (Technical)	650	ug/K	g 50	Soil	1	334976	03/09/24	03/11/24	MES
Surrogates			Limits						
TCMX	84%	%RE	23-120	Soil	1	334976	03/09/24	03/11/24	MES
Decachlorobiphenyl	109%	%RE	C 24-120	Soil	1	334976	03/09/24	03/11/24	MES

Sample ID: H	A-24-001	-4	Lab ID:	503715-016		Col	lected: 03/	04/24 12:19	
503715-016 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Antimony	ND	mg/Kg	2.9	Soil	0.97	334768	03/06/24	03/07/24	SBW
Arsenic	12	mg/Kg	0.97	Soil	0.97	334768	03/06/24	03/07/24	SBW
Barium	76	mg/Kg	0.97	Soil	0.97	334768	03/06/24	03/07/24	SBW
Beryllium	ND	mg/Kg	0.49	Soil	0.97	334768	03/06/24	03/07/24	SBW
Cadmium	ND	mg/Kg	0.49	Soil	0.97	334768	03/06/24	03/07/24	SBW
Chromium	13	mg/Kg	0.10	Soil	0.97	334768	03/06/24	03/07/24	SBW
Cobalt	5.6	mg/Kg	0.49	Soil	0.97	334768	03/06/24	03/07/24	SBW
Copper	8.9	mg/Kg	0.43	Soil	0.97	334768	03/06/24	03/07/24	SBW
Lead	8.9	mg/Kg	0.97	Soil	0.97	334768	03/06/24	03/07/24	SBW
Molybdenum	ND	mg/Kg	1.1	Soil	0.97	334768	03/06/24	03/07/24	SBW
Nickel	5.9	mg/Kg	0.97	Soil	0.97	334768	03/06/24	03/07/24	SBW
Selenium	ND	mg/Kg	2.9	Soil	0.97	334768	03/06/24	03/07/24	SBW
Silver	ND		0.49	Soil	0.97	334768	03/06/24	03/07/24	SBW
Thallium		mg/Kg		Soil	0.97	334768	03/06/24	03/07/24	SBW
	ND	mg/Kg	2.9						
Vanadium	32	mg/Kg	0.97	Soil	0.97	334768	03/06/24	03/07/24	SBW
Zinc	33	mg/Kg	4.9	Soil	0.97	334768	03/06/24	03/07/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND	mg/Kg	0.15	Soil	1.1	334789	03/07/24	03/07/24	KAM
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	ND	ug/L	2.0	WET Leachate	2	337215	04/08/24	04/09/24	MES
Surrogates			Limits						
TCMX	83%	%REC	14-120	WET Leachate	2	337215	04/08/24	04/09/24	MES
Decachlorobiphenyl	143%	* %REC	20-120	WET Leachate	2	337215	04/08/24	04/09/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
beta-BHC	ND	ug/Kg	5.1	Soil	<u>.</u>	334976	03/09/24	03/11/24	MES
gamma-BHC	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
delta-BHC	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Heptachlor	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Aldrin	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Heptachlor epoxide	ND	ug/Kg ug/Kg	5.1	Soil	- 1	334976	03/09/24	03/11/24	MES
Endosulfan I	ND			Soil	1	334976	03/09/24	03/11/24	MES
Dieldrin		ug/Kg	5.1		1				
	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDE	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endrin	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan II	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDD	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Endrin ketone	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
4,4'-DDT	ND	ug/Kg	5.1	Soil	1	334976	03/09/24	03/11/24	MES
Methoxychlor	ND	ug/Kg	10	Soil	1	334976	03/09/24	03/11/24	MES
Toxaphene	ND	ug/Kg	100	Soil	1	334976	03/09/24	03/11/24	MES

503715-016 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Chlordane (Technical)	1,500		ug/Kg	250	Soil	5.1	334976	03/09/24	03/12/24	MES
Surrogates				Limits						
TCMX	85%		%REC	23-120	Soil	1	334976	03/09/24	03/11/24	MES
Decachlorobiphenyl	86%		%REC	24-120	Soil	1	334976	03/09/24	03/11/24	MES

Sample ID: HA	-24-002	-0.5		Lab ID:	503715-017		Co	llected: 03	/04/24 12:40	
503715-017 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A Prep Method: EPA 3510C										
Chlordane (Technical)	ND		ug/L	2.0	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Surrogates			9/	Limits		-				
TCMX	94%		%REC	14-120	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Decachlorobiphenyl	159%	*	%REC	20-120	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Aldrin	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Endrin	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND		ug/Kg	5.0	Soil	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND		ug/Kg	10	Soil	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND		ug/Kg	100	Soil	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	3,800		ug/Kg	500	Soil	10	335083	03/11/24	03/12/24	MES
Surrogates				Limits						
TCMX	95%		%REC	23-120	Soil	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	83%		%REC	24-120	Soil	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-002-2.5 Lab ID: 503715-019 Collected: 03/04/24 13:07

503715-019 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	1,000	ug/Kg	250	5.1	335083	03/11/24	03/12/24	MES
Surrogates		-	Limits					
TCMX	103%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	103%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-002-4 Lab ID: 503715-020 Collected: 03/04/24 13:24

503715-020 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A									
Prep Method: EPA 3546									
alpha-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
beta-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
gamma-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
delta-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Heptachlor	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Aldrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Heptachlor epoxide	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan I	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Dieldrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDE	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan II	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan sulfate	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDD	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin aldehyde	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin ketone	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDT	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Methoxychlor	ND	Н	ug/Kg	10	1	335742	03/19/24	03/21/24	MTS
Toxaphene	ND	Н	ug/Kg	100	1	335742	03/19/24	03/21/24	MTS
Chlordane (Technical)	1,600	Н	ug/Kg	250	5.1	335742	03/19/24	03/22/24	MTS
Surrogates	, -		- 0 0	Limits					
TCMX	102%	Н	%REC	23-120	1	335742	03/19/24	03/21/24	MTS
Decachlorobiphenyl	63%	Н	%REC	24-120	1	335742	03/19/24	03/21/24	MTS
				: : - •					•••••

Sample ID: HA	A-24-006	-0.5		Lab ID	: 503715-021		Col	lected: 03/	/04/24 13:51	
503715-021 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A	Ticsuit	Quui	Oilito		Matrix		Daton	Trepared	Anaryzea	Oncinist
Prep Method: EPA 3510C										
Chlordane (Technical)	ND		ug/L	2.0	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Surrogates				Limits						
TCMX	76%		%REC	14-120	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Decachlorobiphenyl	138%	*	%REC	20-120	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
beta-BHC	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
gamma-BHC	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
delta-BHC	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Heptachlor	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Aldrin	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Endosulfan I	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Dieldrin	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Endrin	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Endosulfan II	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Endrin ketone	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND		ug/Kg	5.0	Soil	0.99	335083	03/11/24	03/12/24	MES
Methoxychlor	ND		ug/Kg	9.9	Soil	0.99	335083	03/11/24	03/12/24	MES
Toxaphene	ND		ug/Kg	99	Soil	0.99	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	5,400		ug/Kg	500	Soil	9.9	335083	03/11/24	03/12/24	MES
Surrogates				Limits						
TCMX	107%		%REC	23-120	Soil	0.99	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	88%		%REC	24-120	Soil	0.99	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-006-1.5 Lab ID: 503715-022 Collected: 03/04/24 14:09

503715-022 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A									
Prep Method: EPA 3546									
alpha-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
beta-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
gamma-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
delta-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Heptachlor	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Aldrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Heptachlor epoxide	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan I	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Dieldrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDE	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan II	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan sulfate	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDD	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin aldehyde	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin ketone	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDT	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Methoxychlor	ND	Н	ug/Kg	10	1	335742	03/19/24	03/21/24	MTS
Toxaphene	ND	Н	ug/Kg	100	1	335742	03/19/24	03/21/24	MTS
Chlordane (Technical)	470	Н	ug/Kg	51	1	335742	03/19/24	03/21/24	MTS
Surrogates				Limits					
TCMX	101%	Н	%REC	23-120	1	335742	03/19/24	03/21/24	MTS
Decachlorobiphenyl	68%	Н	%REC	24-120	1	335742	03/19/24	03/21/24	MTS

Sample ID: HA-24-006-2.5 Lab ID: 503715-023 Collected: 03/04/24 14:22

503715-023 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A	ricourt	Guai Onito		<u> </u>	Duton	Trepared	Anaryzea	Onemat
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	170	ug/Kg	51	1	335083	03/11/24	03/12/24	MES
Surrogates		-	Limits					
TCMX	106%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	96%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

Sample ID: HA	-24-005-	0.5		Lab ID:	503715-025		Со	llected: 03	/04/24 14:55	
503715-025 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 8081A										
Prep Method: EPA 3510C										
Chlordane (Technical)	ND		ug/L	2.0	WET Leachate	2	337215	04/08/24	04/09/24	MES
Surrogates				Limits						
TCMX	82%		%REC	14-120	WET Leachate	2	337215	04/08/24	04/09/24	MES
Decachlorobiphenyl	153%	*	%REC	20-120	WET Leachate	2	337215	04/08/24	04/09/24	MES
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Aldrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND		ug/Kg	10	Soil	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND		ug/Kg	100	Soil	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	1,700		ug/Kg	250	Soil	5.1	335083	03/11/24	03/12/24	MES
Surrogates			-	Limits						
TCMX	96%		%REC	23-120	Soil	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	87%		%REC	24-120	Soil	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-005-2.5 Lab ID: 503715-027 Collected: 03/04/24 15:21

Matrix: Soil

503715-027 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A	ricourt	Guai Onito		<u> </u>	Duton	Trepared	Anaryzea	Onemise
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	1,200	ug/Kg	260	5.1	335083	03/11/24	03/12/24	MES
Surrogates			Limits					
TCMX	107%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	97%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

22 of 35

Sample ID: HA-24-005-4 Lab ID: 503715-028 Collected: 03/04/24 15:35

Matrix: Soil

503715-028 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A							<u> </u>	<u> </u>	
Prep Method: EPA 3546									
alpha-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
beta-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
gamma-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
delta-BHC	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Heptachlor	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Aldrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Heptachlor epoxide	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan I	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Dieldrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDE	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan II	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endosulfan sulfate	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDD	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin aldehyde	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Endrin ketone	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
4,4'-DDT	ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
Methoxychlor	ND	Н	ug/Kg	10	1	335742	03/19/24	03/21/24	MTS
Toxaphene	ND	Н	ug/Kg	100	1	335742	03/19/24	03/21/24	MTS
Chlordane (Technical)	ND	Н	ug/Kg	51	1	335742	03/19/24	03/21/24	MTS
Surrogates				Limits					
TCMX	110%	Н	%REC	23-120	1	335742	03/19/24	03/21/24	MTS
Decachlorobiphenyl	73%	Н	%REC	24-120	1	335742	03/19/24	03/21/24	MTS

23 of 35

Sample ID: HA	-24-004-	-0.5		Lab ID:	503715-029		Co	llected: 03	/04/24 15:52	
503715-029 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A										
Prep Method: EPA 3510C										
Chlordane (Technical)	ND		ug/L	2.0	WET Leachate	2	337215	04/08/24	04/09/24	MES
Surrogates				Limits						
TCMX	57%		%REC	14-120	WET Leachate	2	337215	04/08/24	04/09/24	MES
Decachlorobiphenyl	108%		%REC	20-120	WET Leachate	2	337215	04/08/24	04/09/24	MES
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Aldrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND		ug/Kg	10	Soil	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND		ug/Kg	100	Soil	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	2,400		ug/Kg	260	Soil	5.1	335083	03/11/24	03/12/24	MES
Surrogates				Limits						
TCMX	108%		%REC	23-120	Soil	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	92%		%REC	24-120	Soil	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-004-2.5 Lab ID: 503715-031 Collected: 03/04/24 16:23

503715-031 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A						•		
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	1,300	ug/Kg	260	5.1	335083	03/11/24	03/12/24	MES
Surrogates			Limits					
TCMX	101%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	86%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-004-4 Lab ID: 503715-032 Collected: 03/04/24 16:40

Result	Qual							Ol! - 1
		Units	RL	DF	Batch	Prepared	Analyzed	Chemist
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	5.1	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	10	1	335742	03/19/24	03/21/24	MTS
ND	Н	ug/Kg	100	1	335742	03/19/24	03/21/24	MTS
450	Н	ug/Kg	51	1	335742	03/19/24	03/21/24	MTS
			Limits					
112%	Н	%REC	23-120	1	335742	03/19/24	03/21/24	MTS
81%	Н	%REC	24-120	1	335742	03/19/24	03/21/24	MTS
	ND N	ND H	ND H ug/Kg ND H ug/Kg	ND H ug/Kg 5.1 ND H ug/Kg 5.1	ND H ug/Kg 5.1 1 ND H ug/Kg 10 1 <td>ND H ug/Kg 5.1 1 335742 ND H ug/Kg 5.1 1 335742</td> <td>ND H ug/Kg 5.1 1 335742 03/19/24 ND H ug/Kg 5.1 1 335742 03/19/24</td> <td>ND H ug/Kg 5.1 1 335742 03/19/24 03/21/24 ND H ug/Kg 5.1 1 335742 03/19/24 03/21/24</td>	ND H ug/Kg 5.1 1 335742 ND H ug/Kg 5.1 1 335742	ND H ug/Kg 5.1 1 335742 03/19/24 ND H ug/Kg 5.1 1 335742 03/19/24	ND H ug/Kg 5.1 1 335742 03/19/24 03/21/24 ND H ug/Kg 5.1 1 335742 03/19/24 03/21/24

Sample ID: HA	\- <mark>24-009</mark>	-0.5		Lab ID:	503715-033		Co	llected: 03	/05/24 07:49	
503715-033 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A										
Prep Method: EPA 3510C										
Chlordane (Technical)	ND		ug/L	2.0	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Surrogates				Limits						
TCMX	81%		%REC	14-120	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Decachlorobiphenyl	140%	*	%REC	20-120	TCLP Leachate	1	337020	04/04/24	04/05/24	MES
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Aldrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND		ug/Kg	5.1	Soil	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND		ug/Kg	10	Soil	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND		ug/Kg	100	Soil	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	3,400		ug/Kg	250	Soil	5.1	335083	03/11/24	03/12/24	MES
Surrogates			·	Limits						
TCMX	106%		%REC	23-120	Soil	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	82%		%REC	24-120	Soil	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-009-2.5 Lab ID: 503715-035 Collected: 03/05/24 08:29

Matrix: Soil

03715-035 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
lethod: EPA 8081A								
rep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	3,300	ug/Kg	510	10	335083	03/11/24	03/12/24	MES
urrogates			Limits					
TCMX	105%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	115%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

28 of 35

Sample ID: HA-24-009-4 Lab ID: 503715-036 Collected: 03/05/24 08:46

Matrix: Soil

503715-036 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
beta-BHC	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
gamma-BHC	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
delta-BHC	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Heptachlor	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Aldrin	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Heptachlor epoxide	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endosulfan I	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Dieldrin	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
4,4'-DDE	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endrin	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endosulfan II	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endosulfan sulfate	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
4,4'-DDD	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endrin aldehyde	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Endrin ketone	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
4,4'-DDT	ND	ug/Kg	5.0	1	335742	03/19/24	03/21/24	MTS
Methoxychlor	ND	ug/Kg	10	1	335742	03/19/24	03/21/24	MTS
Toxaphene	ND	ug/Kg	100	1	335742	03/19/24	03/21/24	MTS
Chlordane (Technical)	2,200	ug/Kg	250	5	335742	03/19/24	03/22/24	MTS
Surrogates	*		Limits					
TCMX	107%	%REC	23-120	1	335742	03/19/24	03/21/24	MTS
Decachlorobiphenyl	71%	%REC	24-120	1	335742	03/19/24	03/21/24	MTS

29 of 35

Sample ID: HA-24-011-0.5 Lab ID: 503715-037 Collected: 03/05/24 09:09

503715-037 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A									
Prep Method: EPA 3546									
alpha-BHC	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND		ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND		ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND		ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	ND		ug/Kg	51	1	335083	03/11/24	03/12/24	MES
Surrogates				Limits					
TCMX	105%		%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	130%	*	%REC	24-120	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-011-2.5 Lab ID: 503715-039 Collected: 03/05/24 09:43

503715-039 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A						<u> </u>		
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	ND	ug/Kg	51	1	335083	03/11/24	03/12/24	MES
Surrogates			Limits					
TCMX	103%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	116%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-008-0.5 Lab ID: 503715-041 Collected: 03/05/24 10:20

503715-041 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A	ricourt	Quai Onits		<u> </u>	Duton	Trepared	Anaryzea	Onemise
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	300	ug/Kg	51	1	335083	03/11/24	03/12/24	MES
Surrogates			Limits					
TCMX	107%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	98%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-008-2.5 Lab ID: 503715-043 Collected: 03/05/24 10:58

503715-043 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A						<u>-</u>	<u> </u>	
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	ND	ug/Kg	51	1	335083	03/11/24	03/12/24	MES
Surrogates			Limits					
TCMX	93%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	110%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-012-0.5 Lab ID: 503715-045 Collected: 03/05/24 12:09

503715-045 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A						•	•	
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	ND	ug/Kg	51	1	335083	03/11/24	03/12/24	MES
Surrogates			Limits					
TCMX	104%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	119%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

Sample ID: HA-24-012-2.5 Lab ID: 503715-047 Collected: 03/05/24 12:42

503715-047 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A	ricount	Quai Ointo			Buton	Tioparca	Anaryzou	<u> </u>
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
beta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
gamma-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
delta-BHC	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Aldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan I	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Dieldrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDE	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan II	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDD	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Endrin ketone	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1	335083	03/11/24	03/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	335083	03/11/24	03/12/24	MES
Toxaphene	ND	ug/Kg	100	1	335083	03/11/24	03/12/24	MES
Chlordane (Technical)	ND	ug/Kg	51	1	335083	03/11/24	03/12/24	MES
Surrogates			Limits					
TCMX	103%	%REC	23-120	1	335083	03/11/24	03/12/24	MES
Decachlorobiphenyl	120%	%REC	24-120	1	335083	03/11/24	03/12/24	MES

^{*} Value is outside QC limits

C Presence confirmed, but RPD between columns exceeds 40%

H Holding time was exceeded

ND Not Detected

Type: Blank Lab ID: QC1134359 Batch: 334768
Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1134359 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	03/06/24	03/07/24
Arsenic	ND		mg/Kg	1.0	03/06/24	03/07/24
Barium	ND		mg/Kg	1.0	03/06/24	03/07/24
Beryllium	ND		mg/Kg	0.50	03/06/24	03/07/24
Cadmium	ND		mg/Kg	0.50	03/06/24	03/07/24
Chromium	ND		mg/Kg	1.0	03/06/24	03/07/24
Cobalt	ND		mg/Kg	0.50	03/06/24	03/07/24
Copper	ND		mg/Kg	1.0	03/06/24	03/07/24
Lead	ND		mg/Kg	1.0	03/06/24	03/07/24
Molybdenum	ND		mg/Kg	1.1	03/06/24	03/07/24
Nickel	ND		mg/Kg	1.0	03/06/24	03/07/24
Selenium	ND		mg/Kg	3.0	03/06/24	03/07/24
Silver	ND		mg/Kg	0.50	03/06/24	03/07/24
Thallium	ND		mg/Kg	3.0	03/06/24	03/07/24
Vanadium	ND		mg/Kg	1.0	03/06/24	03/07/24
Zinc	ND		mg/Kg	5.0	03/06/24	03/07/24

Type: Lab Control Sample Lab ID: QC1134360 Batch: 334768
Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1134360 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	95.45	100.0	mg/Kg	95%	80-120
Arsenic	96.73	100.0	mg/Kg	97%	80-120
Barium	99.73	100.0	mg/Kg	100%	80-120
Beryllium	103.7	100.0	mg/Kg	104%	80-120
Cadmium	103.6	100.0	mg/Kg	104%	80-120
Chromium	99.90	100.0	mg/Kg	100%	80-120
Cobalt	105.4	100.0	mg/Kg	105%	80-120
Copper	92.92	100.0	mg/Kg	93%	80-120
Lead	103.3	100.0	mg/Kg	103%	80-120
Molybdenum	98.93	100.0	mg/Kg	99%	80-120
Nickel	103.8	100.0	mg/Kg	104%	80-120
Selenium	91.12	100.0	mg/Kg	91%	80-120
Silver	47.66	50.00	mg/Kg	95%	80-120
Thallium	101.0	100.0	mg/Kg	101%	80-120
Vanadium	99.86	100.0	mg/Kg	100%	80-120
Zinc	102.8	100.0	mg/Kg	103%	80-120

Type: Matrix Spike Lab ID: QC1134361 Batch: 334768

Matrix (Source ID): Soil (503715-014) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1134361 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	42.37	ND	95.24	mg/Kg	44%	*	75-125	0.95
Arsenic	106.1	10.31	95.24	mg/Kg	101%		75-125	0.95
Barium	173.7	84.36	95.24	mg/Kg	94%		75-125	0.95
Beryllium	101.2	0.4100	95.24	mg/Kg	106%		75-125	0.95
Cadmium	99.07	0.1320	95.24	mg/Kg	104%		75-125	0.95
Chromium	110.0	16.09	95.24	mg/Kg	99%		75-125	0.95
Cobalt	105.0	5.977	95.24	mg/Kg	104%		75-125	0.95
Copper	106.7	11.39	95.24	mg/Kg	100%		75-125	0.95
Lead	111.0	12.36	95.24	mg/Kg	104%		75-125	0.95
Molybdenum	93.44	ND	95.24	mg/Kg	98%		75-125	0.95
Nickel	105.2	7.775	95.24	mg/Kg	102%		75-125	0.95
Selenium	88.10	ND	95.24	mg/Kg	92%		75-125	0.95
Silver	47.51	ND	47.62	mg/Kg	100%		75-125	0.95
Thallium	96.66	ND	95.24	mg/Kg	101%		75-125	0.95
Vanadium	132.0	35.53	95.24	mg/Kg	101%		75-125	0.95
Zinc	146.7	50.97	95.24	mg/Kg	100%		75-125	0.95

Type: Matrix Spike Duplicate Lab ID: QC1134362 Batch: 334768

Matrix (Source ID): Soil (503715-014) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1134362 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	42.22	ND	100.0	mg/Kg	42%	*	75-125	5	41	1
Arsenic	109.5	10.31	100.0	mg/Kg	99%		75-125	1	35	1
Barium	171.4	84.36	100.0	mg/Kg	87%		75-125	4	20	1
Beryllium	105.2	0.4100	100.0	mg/Kg	105%		75-125	1	20	1
Cadmium	103.2	0.1320	100.0	mg/Kg	103%		75-125	1	20	1
Chromium	111.8	16.09	100.0	mg/Kg	96%		75-125	3	20	1
Cobalt	111.0	5.977	100.0	mg/Kg	105%		75-125	1	20	1
Copper	109.9	11.39	100.0	mg/Kg	99%		75-125	1	20	1
Lead	115.5	12.36	100.0	mg/Kg	103%		75-125	0	20	1
Molybdenum	97.21	ND	100.0	mg/Kg	97%		75-125	1	20	1
Nickel	108.9	7.775	100.0	mg/Kg	101%		75-125	1	20	1
Selenium	91.38	ND	100.0	mg/Kg	91%		75-125	1	20	1
Silver	49.17	ND	50.00	mg/Kg	98%		75-125	1	20	1
Thallium	99.70	ND	100.0	mg/Kg	100%		75-125	2	20	1
Vanadium	134.2	35.53	100.0	mg/Kg	99%		75-125	2	20	1
Zinc	150.7	50.97	100.0	mg/Kg	100%		75-125	0	20	1

Type: Post Digest Spike Lab ID: QC1134363 Batch: 334768

Matrix (Source ID): Soil (503715-014) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1134363 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	96.91	ND	100.0	mg/Kg	97%		75-125	1
Arsenic	106.0	10.31	100.0	mg/Kg	96%		75-125	
Barium	183.1	84.36	100.0	mg/Kg	99%		75-125	
Beryllium	102.1	0.4100	100.0	mg/Kg	102%		75-125	
Cadmium	100.2	0.1320	100.0	mg/Kg	100%		75-125	
Chromium	113.2	16.09	100.0	mg/Kg	97%		75-125	
Cobalt	107.5	5.977	100.0	mg/Kg	102%		75-125	
Copper	107.6	11.39	100.0	mg/Kg	96%		75-125	
Lead	112.1	12.36	100.0	mg/Kg	100%		75-125	
Molybdenum	99.73	ND	100.0	mg/Kg	100%		75-125	
Nickel	107.2	7.775	100.0	mg/Kg	99%		75-125	
Selenium	90.44	ND	100.0	mg/Kg	90%		75-125	1
Silver	47.92	ND	50.00	mg/Kg	96%		75-125	
Thallium	97.72	ND	100.0	mg/Kg	98%		75-125	
Vanadium	135.2	35.53	100.0	mg/Kg	100%		75-125	1
Zinc	150.7	50.97	100.0	mg/Kg	100%		75-125	1

Type: Blank Lab ID: QC1134452 Batch: 334789

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1134452 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	03/07/24	03/07/24

Type: Lab Control Sample Lab ID: QC1134453 Batch: 334789

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1134453 Analyte	Result	Spiked	Units	Recovery	Qual Limits
Mercury	0.8435	0.8333	mg/Kg	101%	80-120

Type: Matrix Spike Lab ID: QC1134454 Batch: 334789

Matrix (Source ID): Soil (503715-014) Method: EPA 7471A Prep Method: METHOD

Source Sample QC1134454 Analyte Result **Spiked** Units Recovery Qual Limits DF Result Mercury 0.9242 0.02709 0.8929 mg/Kg 100% 75-125 1.1

Type: Matrix Spike Duplicate Lab ID: QC1134455 Batch: 334789

Matrix (Source ID): Soil (503715-014) Method: EPA 7471A Prep Method: METHOD

Source **RPD** Sample **RPD** QC1134455 Analyte Result Result **Spiked** Units Recovery Qual Limits Lim DF 1.013 0.02709 0.9434 104% 75-125 20 1.1 Mercury mg/Kg

Type: Blank Lab ID: QC1142723 Batch: 337215
Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1142723 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	1.0	04/08/24	04/09/24
Surrogates				Limits		
TCMX	69%		%REC	14-120	04/08/24	04/09/24
Decachlorobiphenyl	136%	*	%REC	20-120	04/08/24	04/09/24

Type: Lab Control Sample Lab ID: QC1142724 Batch: 337215

Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1142724 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Dieldrin	0.4070	0.5000	ug/L	81%	55-120
Endrin	0.4154	0.5000	ug/L	83%	57-120
Surrogates					
TCMX	0.3227	0.5000	ug/L	65%	14-120
Decachlorobiphenyl	0.4292	0.5000	ug/L	86%	20-120

Type: Lab Control Sample Duplicate Lab ID: QC1142725 Batch: 337215

Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1142725 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
Dieldrin	0.3877	0.5000	ug/L	78%		55-120	5	20
Endrin	0.3955	0.5000	ug/L	79%		57-120	5	20
Surrogates								
TCMX	0.3161	0.5000	ug/L	63%		14-120		
Decachlorobiphenyl	0.3963	0.5000	ug/L	79%		20-120		

Type: Blank Lab ID: QC1142726 Batch: 337215

Matrix: WET Leachate Method: EPA 8081A Prep Method: EPA 3510C

QC1142726 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	2.0	04/08/24	04/09/24
Surrogates				Limits		
TCMX	114%		%REC	14-120	04/08/24	04/09/24
Decachlorobiphenyl	212%	*	%REC	20-120	04/08/24	04/09/24

Type: Blank Lab ID: QC1141954 Batch: 337020

Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1141954 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	1.0	04/04/24	04/05/24
Surrogates				Limits		
TCMX	93%		%REC	14-120	04/04/24	04/05/24
Decachlorobiphenyl	124%	*	%REC	20-120	04/04/24	04/05/24

Type: Blank Lab ID: QC1141959 Batch: 337020 Matrix: TCLP Leachate Method: EPA 8081A Prep Method: EPA 3510C

QC1141959 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	2.0	04/04/24	04/05/24
Surrogates				Limits		
TCMX	83%		%REC	14-120	04/04/24	04/05/24
Decachlorobiphenyl	152%	*	%REC	20-120	04/04/24	04/05/24

Type: Blank Lab ID: QC1135098 Batch: 334976

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1135098 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
alpha-BHC	ND		ug/Kg	5.0	03/09/24	03/11/24
beta-BHC	ND		ug/Kg	5.0	03/09/24	03/11/24
gamma-BHC	ND		ug/Kg	5.0	03/09/24	03/11/24
delta-BHC	ND		ug/Kg	5.0	03/09/24	03/11/24
Heptachlor	ND		ug/Kg	5.0	03/09/24	03/11/24
Aldrin	ND		ug/Kg	5.0	03/09/24	03/11/24
Heptachlor epoxide	ND		ug/Kg	5.0	03/09/24	03/11/24
Endosulfan I	ND		ug/Kg	5.0	03/09/24	03/11/24
Dieldrin	ND		ug/Kg	5.0	03/09/24	03/11/24
4,4'-DDE	ND		ug/Kg	5.0	03/09/24	03/11/24
Endrin	ND		ug/Kg	5.0	03/09/24	03/11/24
Endosulfan II	ND		ug/Kg	5.0	03/09/24	03/11/24
Endosulfan sulfate	ND		ug/Kg	5.0	03/09/24	03/11/24
4,4'-DDD	ND		ug/Kg	5.0	03/09/24	03/11/24
Endrin aldehyde	ND		ug/Kg	5.0	03/09/24	03/11/24
Endrin ketone	ND		ug/Kg	5.0	03/09/24	03/11/24
4,4'-DDT	ND		ug/Kg	5.0	03/09/24	03/11/24
Methoxychlor	ND		ug/Kg	10	03/09/24	03/11/24
Toxaphene	ND		ug/Kg	100	03/09/24	03/11/24
Chlordane (Technical)	ND		ug/Kg	50	03/09/24	03/11/24
Surrogates				Limits		
TCMX	113%		%REC	23-120	03/09/24	03/11/24
Decachlorobiphenyl	121%	*,E	%REC	24-120	03/09/24	03/11/24

Type: Lab Control Sample Lab ID: QC1135099 Batch: 334976

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1135099 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	62.28	50.51	ug/Kg	123%		22-129
beta-BHC	60.14	50.51	ug/Kg	119%		28-125
gamma-BHC	62.53	50.51	ug/Kg	124%		22-128
delta-BHC	40.33	50.51	ug/Kg	80%		24-131
Heptachlor	54.29	50.51	ug/Kg	107%		18-124
Aldrin	27.45	50.51	ug/Kg	54%		23-120
Heptachlor epoxide	58.20	50.51	ug/Kg	115%		26-120
Endosulfan I	58.21	50.51	ug/Kg	115%		25-126
Dieldrin	60.52	50.51	ug/Kg	120%		23-124
4,4'-DDE	61.19	50.51	ug/Kg	121%	#	28-121
Endrin	49.63	50.51	ug/Kg	98%		25-127
Endosulfan II	61.08	50.51	ug/Kg	121%		29-121
Endosulfan sulfate	47.29	50.51	ug/Kg	94%		30-121
4,4'-DDD	52.13	50.51	ug/Kg	103%	#	26-120
Endrin aldehyde	15.54	50.51	ug/Kg	31%		10-120
Endrin ketone	68.04	50.51	ug/Kg	135%	#,*	28-125
4,4'-DDT	21.40	50.51	ug/Kg	42%		22-125
Methoxychlor	31.83	50.51	ug/Kg	63%		28-130
Surrogates						
TCMX	51.57	50.51	ug/Kg	102%		23-120
Decachlorobiphenyl	49.88	50.51	ug/Kg	99%		24-120

Type: Matrix Spike Lab ID: QC1135119 Batch: 334976

Matrix (Source ID): Soil (503622-045) Method: EPA 8081A Prep Method: EPA 3546

		Source						
QC1135119 Analyte	Result	Sample Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	48.85	ND	51.02	ug/Kg	96%		46-120	5.1
beta-BHC	56.17	ND	51.02	ug/Kg	110%		41-120	5.1
gamma-BHC	52.33	ND	51.02	ug/Kg	103%		41-120	5.1
delta-BHC	48.31	ND	51.02	ug/Kg	95%		38-123	5.1
Heptachlor	55.03	ND	51.02	ug/Kg	108%		39-120	5.1
Aldrin	52.60	ND	51.02	ug/Kg	103%		34-120	5.1
Heptachlor epoxide	45.46	ND	51.02	ug/Kg	89%		43-120	5.1
Endosulfan I	48.80	ND	51.02	ug/Kg	96%		45-120	5.1
Dieldrin	301.9	241.1	51.02	ug/Kg	119%	#,NM	45-120	5.1
4,4'-DDE	66.86	ND	51.02	ug/Kg	131%	#,*	34-120	5.1
Endrin	63.90	ND	51.02	ug/Kg	125%	*	40-120	5.1
Endosulfan II	54.73	ND	51.02	ug/Kg	107%	#	41-120	5.1
Endosulfan sulfate	51.39	ND	51.02	ug/Kg	101%	#	42-120	5.1
4,4'-DDD	48.89	ND	51.02	ug/Kg	96%	#	41-120	5.1
Endrin aldehyde	50.36	ND	51.02	ug/Kg	99%	#	30-120	5.1
Endrin ketone	52.65	ND	51.02	ug/Kg	103%	#	45-120	5.1
4,4'-DDT	88.77	20.52	51.02	ug/Kg	134%	*	35-127	5.1
Methoxychlor	87.63	ND	51.02	ug/Kg	172%	*	42-136	5.1
Surrogates								
TCMX	49.46		51.02	ug/Kg	97%		23-120	5.1
Decachlorobiphenyl	55.21		51.02	ug/Kg	108%		24-120	5.1

Type: Matrix Spike Duplicate Lab ID: QC1135120 Batch: 334976

Matrix (Source ID): Soil (503622-045) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1135120 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	52.53	ND	50.51	ug/Kg	104%		46-120	8	30	5.1
beta-BHC	60.17	ND	50.51	ug/Kg	119%		41-120	8	30	5.1
gamma-BHC	57.28	ND	50.51	ug/Kg	113%		41-120	10	30	5.1
delta-BHC	52.19	ND	50.51	ug/Kg	103%		38-123	9	30	5.1
Heptachlor	60.38	ND	50.51	ug/Kg	120%		39-120	10	30	5.1
Aldrin	55.27	ND	50.51	ug/Kg	109%		34-120	6	30	5.1
Heptachlor epoxide	51.16	ND	50.51	ug/Kg	101%		43-120	13	30	5.1
Endosulfan I	53.92	ND	50.51	ug/Kg	107%		45-120	11	30	5.1
Dieldrin	113.0	241.1	50.51	ug/Kg	-254%	#,NM	45-120	91*	30	5.1
4,4'-DDE	59.93	ND	50.51	ug/Kg	119%	#	34-120	10	30	5.1
Endrin	61.03	ND	50.51	ug/Kg	121%	*	40-120	4	30	5.1
Endosulfan II	57.25	ND	50.51	ug/Kg	113%	#	41-120	6	30	5.1
Endosulfan sulfate	54.64	ND	50.51	ug/Kg	108%	#	42-120	7	30	5.1
4,4'-DDD	51.99	ND	50.51	ug/Kg	103%	#	41-120	7	30	5.1
Endrin aldehyde	48.62	ND	50.51	ug/Kg	96%	#	30-120	3	30	5.1
Endrin ketone	53.37	ND	50.51	ug/Kg	106%	#	45-120	2	30	5.1
4,4'-DDT	92.09	20.52	50.51	ug/Kg	142%	*	35-127	4	30	5.1
Methoxychlor	74.00	ND	50.51	ug/Kg	147%	*	42-136	16	30	5.1
Surrogates										
TCMX	54.26		50.51	ug/Kg	107%		23-120			5.1
Decachlorobiphenyl	55.48		50.51	ug/Kg	110%		24-120			5.1

Type: Blank Lab ID: QC1135553 Batch: 335083

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1135553 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.1	03/11/24	03/12/24
beta-BHC	ND	ug/Kg	5.1	03/11/24	03/12/24
gamma-BHC	ND	ug/Kg	5.1	03/11/24	03/12/24
delta-BHC	ND	ug/Kg	5.1	03/11/24	03/12/24
Heptachlor	ND	ug/Kg	5.1	03/11/24	03/12/24
Aldrin	ND	ug/Kg	5.1	03/11/24	03/12/24
Heptachlor epoxide	ND	ug/Kg	5.1	03/11/24	03/12/24
Endosulfan I	ND	ug/Kg	5.1	03/11/24	03/12/24
Dieldrin	ND	ug/Kg	5.1	03/11/24	03/12/24
4,4'-DDE	ND	ug/Kg	5.1	03/11/24	03/12/24
Endrin	ND	ug/Kg	5.1	03/11/24	03/12/24
Endosulfan II	ND	ug/Kg	5.1	03/11/24	03/12/24
Endosulfan sulfate	ND	ug/Kg	5.1	03/11/24	03/12/24
4,4'-DDD	ND	ug/Kg	5.1	03/11/24	03/12/24
Endrin aldehyde	ND	ug/Kg	5.1	03/11/24	03/12/24
Endrin ketone	ND	ug/Kg	5.1	03/11/24	03/12/24
4,4'-DDT	ND	ug/Kg	5.1	03/11/24	03/12/24
Methoxychlor	ND	ug/Kg	10	03/11/24	03/12/24
Toxaphene	ND	ug/Kg	100	03/11/24	03/12/24
Chlordane (Technical)	ND	ug/Kg	51	03/11/24	03/12/24
Surrogates			Limits		
TCMX	92%	%REC	23-120	03/11/24	03/12/24
Decachlorobiphenyl	90%	%REC	24-120	03/11/24	03/12/24

Type: Lab Control Sample Lab ID: QC1135554 Batch: 335083

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1135554 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	46.83	49.50	ug/Kg	95%		22-129
beta-BHC	52.37	49.50	ug/Kg	106%		28-125
gamma-BHC	51.04	49.50	ug/Kg	103%		22-128
delta-BHC	48.18	49.50	ug/Kg	97%		24-131
Heptachlor	50.88	49.50	ug/Kg	103%		18-124
Aldrin	51.56	49.50	ug/Kg	104%		23-120
Heptachlor epoxide	51.64	49.50	ug/Kg	104%		26-120
Endosulfan I	49.65	49.50	ug/Kg	100%		25-126
Dieldrin	55.45	49.50	ug/Kg	112%		23-124
4,4'-DDE	60.59	49.50	ug/Kg	122%	*	28-121
Endrin	46.49	49.50	ug/Kg	94%		25-127
Endosulfan II	46.91	49.50	ug/Kg	95%		29-121
Endosulfan sulfate	32.12	49.50	ug/Kg	65%		30-121
4,4'-DDD	51.55	49.50	ug/Kg	104%		26-120
Endrin aldehyde	5.334	49.50	ug/Kg	11%		10-120
Endrin ketone	37.42	49.50	ug/Kg	76%		28-125
4,4'-DDT	51.39	49.50	ug/Kg	104%		22-125
Methoxychlor	48.85	49.50	ug/Kg	99%		28-130
Surrogates						
TCMX	45.70	49.50	ug/Kg	92%		23-120
Decachlorobiphenyl	43.28	49.50	ug/Kg	87%		24-120

Type: Matrix Spike Lab ID: QC1135555 Batch: 335083

Matrix (Source ID): Soil (503672-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1135555 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	52.52	ND	50.51	ug/Kg	104%		46-120	1
beta-BHC	55.28	ND	50.51	ug/Kg	109%		41-120	1
gamma-BHC	55.15	ND	50.51	ug/Kg	109%		41-120	1
delta-BHC	52.63	ND	50.51	ug/Kg	104%		38-123	1
Heptachlor	53.20	ND	50.51	ug/Kg	105%		39-120	1
Aldrin	54.67	ND	50.51	ug/Kg	108%		34-120	1
Heptachlor epoxide	52.56	ND	50.51	ug/Kg	104%		43-120	1
Endosulfan I	59.34	ND	50.51	ug/Kg	118%		45-120	1
Dieldrin	56.94	ND	50.51	ug/Kg	113%		45-120	1
4,4'-DDE	82.61	22.17	50.51	ug/Kg	120%		34-120	1
Endrin	59.02	ND	50.51	ug/Kg	117%		40-120	1
Endosulfan II	55.47	ND	50.51	ug/Kg	110%		41-120	1
Endosulfan sulfate	50.33	ND	50.51	ug/Kg	100%		42-120	1
4,4'-DDD	65.15	8.427	50.51	ug/Kg	112%		41-120	1
Endrin aldehyde	51.59	ND	50.51	ug/Kg	102%		30-120	1
Endrin ketone	48.11	ND	50.51	ug/Kg	95%		45-120	1
4,4'-DDT	86.66	28.33	50.51	ug/Kg	116%		35-127	1
Methoxychlor	54.22	ND	50.51	ug/Kg	107%		42-136	1
Surrogates								
TCMX	47.07		50.51	ug/Kg	93%		23-120	1
Decachlorobiphenyl	43.29		50.51	ug/Kg	86%		24-120	1

Type: Matrix Spike Duplicate Lab ID: QC1135556 Batch: 335083

Matrix (Source ID): Soil (503672-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1135556 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	57.10	ND	50.00	ug/Kg	114%		46-120	9	30	1
beta-BHC	61.12	ND	50.00	ug/Kg	122%	*	41-120	11	30	1
gamma-BHC	59.86	ND	50.00	ug/Kg	120%		41-120	9	30	1
delta-BHC	57.71	ND	50.00	ug/Kg	115%		38-123	10	30	1
Heptachlor	58.35	ND	50.00	ug/Kg	117%		39-120	10	30	1
Aldrin	58.61	ND	50.00	ug/Kg	117%		34-120	8	30	1
Heptachlor epoxide	57.70	ND	50.00	ug/Kg	115%		43-120	10	30	1
Endosulfan I	65.26	ND	50.00	ug/Kg	131%	*	45-120	11	30	1
Dieldrin	63.21	ND	50.00	ug/Kg	126%	*	45-120	11	30	1
4,4'-DDE	103.4	22.17	50.00	ug/Kg	162%	*	34-120	23	30	1
Endrin	64.98	ND	50.00	ug/Kg	130%	*	40-120	11	30	1
Endosulfan II	62.94	ND	50.00	ug/Kg	126%	*	41-120	14	30	1
Endosulfan sulfate	55.51	ND	50.00	ug/Kg	111%		42-120	11	30	1
4,4'-DDD	95.68	8.427	50.00	ug/Kg	175%	*	41-120	39*	30	1
Endrin aldehyde	56.53	ND	50.00	ug/Kg	113%		30-120	10	30	1
Endrin ketone	53.42	ND	50.00	ug/Kg	107%		45-120	11	30	1
4,4'-DDT	115.3	28.33	50.00	ug/Kg	174%	*	35-127	29	30	1
Methoxychlor	62.50	ND	50.00	ug/Kg	125%		42-136	15	30	1
Surrogates										
TCMX	51.54		50.00	ug/Kg	103%		23-120			1
Decachlorobiphenyl	51.41		50.00	ug/Kg	103%		24-120			1

Type: Blank Lab ID: QC1137639 Batch: 335742

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1137639 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	03/19/24	03/21/24
beta-BHC	ND	ug/Kg	5.0	03/19/24	03/21/24
gamma-BHC	ND	ug/Kg	5.0	03/19/24	03/21/24
delta-BHC	ND	ug/Kg	5.0	03/19/24	03/21/24
Heptachlor	ND	ug/Kg	5.0	03/19/24	03/21/24
Aldrin	ND	ug/Kg	5.0	03/19/24	03/21/24
Heptachlor epoxide	ND	ug/Kg	5.0	03/19/24	03/21/24
Endosulfan I	ND	ug/Kg	5.0	03/19/24	03/21/24
Dieldrin	ND	ug/Kg	5.0	03/19/24	03/21/24
4,4'-DDE	ND	ug/Kg	5.0	03/19/24	03/21/24
Endrin	ND	ug/Kg	5.0	03/19/24	03/21/24
Endosulfan II	ND	ug/Kg	5.0	03/19/24	03/21/24
Endosulfan sulfate	ND	ug/Kg	5.0	03/19/24	03/21/24
4,4'-DDD	ND	ug/Kg	5.0	03/19/24	03/21/24
Endrin aldehyde	ND	ug/Kg	5.0	03/19/24	03/21/24
Endrin ketone	ND	ug/Kg	5.0	03/19/24	03/21/24
4,4'-DDT	ND	ug/Kg	5.0	03/19/24	03/21/24
Methoxychlor	ND	ug/Kg	10	03/19/24	03/21/24
Toxaphene	ND	ug/Kg	100	03/19/24	03/21/24
Chlordane (Technical)	ND	ug/Kg	50	03/19/24	03/21/24
Surrogates			Limits		
TCMX	112%	%REC	23-120	03/19/24	03/21/24
Decachlorobiphenyl	71%	%REC	24-120	03/19/24	03/21/24

Type: Lab Control Sample Lab ID: QC1137640 Batch: 335742

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1137640 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	42.86	50.00	ug/Kg	86%		22-129
beta-BHC	50.44	50.00	ug/Kg	101%		28-125
gamma-BHC	44.78	50.00	ug/Kg	90%		22-128
delta-BHC	47.92	50.00	ug/Kg	96%	#	24-131
Heptachlor	49.63	50.00	ug/Kg	99%		18-124
Aldrin	44.42	50.00	ug/Kg	89%		23-120
Heptachlor epoxide	44.58	50.00	ug/Kg	89%		26-120
Endosulfan I	43.01	50.00	ug/Kg	86%		25-126
Dieldrin	43.29	50.00	ug/Kg	87%		23-124
4,4'-DDE	45.66	50.00	ug/Kg	91%		28-121
Endrin	48.64	50.00	ug/Kg	97%		25-127
Endosulfan II	46.11	50.00	ug/Kg	92%		29-121
Endosulfan sulfate	48.10	50.00	ug/Kg	96%		30-121
4,4'-DDD	38.97	50.00	ug/Kg	78%		26-120
Endrin aldehyde	18.82	50.00	ug/Kg	38%		10-120
Endrin ketone	46.73	50.00	ug/Kg	93%		28-125
4,4'-DDT	62.29	50.00	ug/Kg	125%	#	22-125
Methoxychlor	65.70	50.00	ug/Kg	131%	#,*	28-130
Surrogates						
TCMX	47.30	50.00	ug/Kg	95%		23-120
Decachlorobiphenyl	31.21	50.00	ug/Kg	62%		24-120

Type: Matrix Spike Lab ID: QC1137641 Batch: 335742

Matrix (Source ID): Soil (503715-012) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1137641 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	49.44	ND	50.51	ug/Kg	98%		46-120	1
beta-BHC	58.06	ND	50.51	ug/Kg	115%		41-120	1
gamma-BHC	53.14	ND	50.51	ug/Kg	105%		41-120	1
delta-BHC	48.01	ND	50.51	ug/Kg	95%	#	38-123	1
Heptachlor	58.87	ND	50.51	ug/Kg	117%		39-120	1
Aldrin	51.34	ND	50.51	ug/Kg	102%		34-120	1
Heptachlor epoxide	47.68	ND	50.51	ug/Kg	94%		43-120	1
Endosulfan I	53.40	ND	50.51	ug/Kg	106%		45-120	1
Dieldrin	48.93	ND	50.51	ug/Kg	97%		45-120	1
4,4'-DDE	54.17	5.207	50.51	ug/Kg	97%		34-120	1
Endrin	57.49	ND	50.51	ug/Kg	114%		40-120	1
Endosulfan II	55.26	ND	50.51	ug/Kg	109%		41-120	1
Endosulfan sulfate	58.56	ND	50.51	ug/Kg	116%		42-120	1
4,4'-DDD	54.96	ND	50.51	ug/Kg	109%		41-120	1
Endrin aldehyde	54.62	ND	50.51	ug/Kg	108%		30-120	1
Endrin ketone	56.99	ND	50.51	ug/Kg	113%		45-120	1
4,4'-DDT	71.78	ND	50.51	ug/Kg	142%	#,*	35-127	
Methoxychlor	81.69	ND	50.51	ug/Kg	162%	#,*	42-136	1
Surrogates								
TCMX	55.51		50.51	ug/Kg	110%		23-120	1
Decachlorobiphenyl	37.29		50.51	ug/Kg	74%		24-120	1

Type: Matrix Spike Duplicate Lab ID: QC1137642 Batch: 335742

Matrix (Source ID): Soil (503715-012) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1137642 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	47.31	ND	50.51	ug/Kg	94%		46-120	4	30	1
beta-BHC	55.85	ND	50.51	ug/Kg	111%		41-120	4	30	1
gamma-BHC	50.98	ND	50.51	ug/Kg	101%		41-120	4	30	1
delta-BHC	44.33	ND	50.51	ug/Kg	88%	#	38-123	8	30	1
Heptachlor	56.10	ND	50.51	ug/Kg	111%		39-120	5	30	1
Aldrin	49.38	ND	50.51	ug/Kg	98%		34-120	4	30	1
Heptachlor epoxide	45.98	ND	50.51	ug/Kg	91%		43-120	4	30	1
Endosulfan I	50.36	ND	50.51	ug/Kg	100%		45-120	6	30	1
Dieldrin	47.45	ND	50.51	ug/Kg	94%		45-120	3	30	1
4,4'-DDE	50.99	5.207	50.51	ug/Kg	91%		34-120	6	30	1
Endrin	55.04	ND	50.51	ug/Kg	109%		40-120	4	30	1
Endosulfan II	51.02	ND	50.51	ug/Kg	101%		41-120	8	30	1
Endosulfan sulfate	53.36	ND	50.51	ug/Kg	106%		42-120	9	30	1
4,4'-DDD	54.28	ND	50.51	ug/Kg	107%		41-120	1	30	1
Endrin aldehyde	53.55	ND	50.51	ug/Kg	106%		30-120	2	30	1
Endrin ketone	53.01	ND	50.51	ug/Kg	105%		45-120	7	30	1
4,4'-DDT	65.48	ND	50.51	ug/Kg	130%	#,*	35-127	9	30	1
Methoxychlor	72.22	ND	50.51	ug/Kg	143%	#,*	42-136	12	30	1
Surrogates										
TCMX	54.05		50.51	ug/Kg	107%		23-120			1
Decachlorobiphenyl	32.49		50.51	ug/Kg	64%		24-120			1

CCV drift outside limits; average CCV drift within limits per method

[#] requirements

Value is outside QC limits

E Response exceeds instrument's linear range

ND Not Detected

NM Not Meaningful

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 511777

Report Level : II

Report Date : 07/31/2024

Analytical Report prepared for:

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Project: MIDWAY RISING - Sports Arena - REVISED REPORT

Authorized for release by:

David Tripp, Project Manager

657-581-4710

david.tripp@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chuck Houser Lab Job #: 511777

SCS Engineers Project No: MIDWAY RISING

8799 Balboa #290 Location: Sports Arena - REVISED REPORT San Diego, CA Date Received: 07/09/24

92123 Date Received: 07/09/24

Sample ID	Lab ID	Collected	Matrix
HA-24-026-0.5	511777-001	07/09/24 06:14	Soil
HA-24-026-1.5	511777-002	07/09/24 06:26	Soil
HA-24-026-2.5	511777-003	07/09/24 06:42	Soil
HA-24-026-4	511777-004	07/09/24 06:57	Soil
HA-24-026-5	511777-005	07/09/24 07:11	Soil
HA-24-027-0.5	511777-006	07/09/24 07:42	Soil
HA-24-027-1.5	511777-007	07/09/24 07:58	Soil
HA-24-027-2.5	511777-008	07/09/24 08:14	Soil
HA-24-015A-0.5	511777-009	07/09/24 08:39	Soil
HA-24-015A-1.5	511777-010	07/09/24 08:55	Soil
HA-24-015A-2.5	511777-011	07/09/24 09:15	Soil
HA-24-015A-4	511777-012	07/09/24 09:28	Soil
HA-24-015A-5	511777-013	07/09/24 09:41	Soil
HA-24-031-0.5	511777-014	07/09/24 10:06	Soil
HA-24-031-1.5	511777-015	07/09/24 10:24	Soil
HA-24-031-2.5	511777-016	07/09/24 10:43	Soil
HA-24-031-4	511777-017	07/09/24 10:57	Soil
HA-24-031-5	511777-018	07/09/24 11:17	Soil
HA-24-032-0.5	511777-019	07/09/24 11:34	Soil
HA-24-032-1.5	511777-020	07/09/24 11:52	Soil
HA-24-033-0.5	511777-021	07/09/24 12:09	Soil
HA-24-033-1.5	511777-022	07/09/24 12:24	Soil
HA-24-033-2.5	511777-023	07/09/24 12:39	Soil
HA-24-033-4	511777-024	07/09/24 12:51	Soil
HA-24-033-5	511777-025	07/09/24 13:00	Soil
HA-24-034-0.5	511777-026	07/09/24 13:12	Soil

Sample Summary

Chuck Houser Lab Job #: 511777

SCS Engineers Project No: MIDWAY RISING 8799 Balboa #290 Location: Sports Arena - RF

8799 Balboa #290 Location: Sports Arena - REVISED REPORT San Diego, CA Date Received: 07/09/24

92123 Date Received: 07/09/24

Sample ID	Lab ID	Collected	Matrix
HA-24-034-1.5	511777-027	07/09/24 13:22	Soil
HA-24-034-2.5	511777-028	07/09/24 13:35	Soil

Case Narrative

SCS Engineers 8799 Balboa #290

San Diego, CA 92123

Chuck Houser

Lab Job 511777

Number:

Project No: MIDWAY RISING

Location: Sports Arena - REVISED

REPORT

Date Received: 07/09/24

This data package contains sample and QC results for sixteen soil samples, requested for the above referenced project on 07/09/24. The samples were received cold and intact.

Pesticides (EPA 8081A) Soil:

- HA-24-015A-0.5 (lab # 511777-009) was diluted due to the color of the sample extract.
- REPORT REVISED to include Chlordane as STLC Add-on results (requested following the final report).
- · No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

- Low recoveries were observed for many analytes in the MS/MSD of HA-24-026-0.5 (lab # 511777-001); the LCS was within limits. High RPD was also observed for many analytes.
- No other analytical problems were encountered.

ANALYTICA					
		Lab No: 01 ++	Standard:	5 Day:	3 Day:
		L Page: / of	3 г рау:	1 Day:	Custom TAT:
<<< Select a Laboratory >>>	^	Matrix: A=Air S	7	servatives:	Sample Receipt Temp:
#N/A			= Sediment Vater	$1 = Na_2S_2O_3$ $2 = HCl$ $3 = HNO_3$ $4 = H_2SO_4$ $5 = NaOH$ $6 = Other$) ₃ er
#N/A		SW = Swab T = Tissue WP	WP = Wipe O = Other		(lab use only)
CUSTOMER INFORMATION	PRO	PROJECT INFORMATION	Analysis Request	Test In	Test Instructions / Comments
Engineer	Name:	Nidway Risma			
Chuck Houser	Number:		(9) (9)		
Monsor (B) S CS EN A) New 17. COM	P.O. #:		170 019 510		
8799 Balloon Ave. #290	Address:		9 ;		
San Dieno Cut 9223			ö. ö.		
12-	Global ID:			A	
	Sampled By:	Tiles Creybon		AIU	
Sampling Date	ng Sampling Time	Matrix Container Pres.	2920 H9T 1940 1000 1000 1000 1000 1000 1000 1000	_)	5.2/01
-24-026-0.5 79124	510	Soil 4020 has 1'ce	XXXX		
24-026-15	626			X	
9	642		×× ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
4-920	157			メ	
026-5	711			<u>×</u>	
027-0.5	742		×××		
-24-027-1.5	758			X	
tA-24-027-2-5	814		×		
-015A - 0.5	839		 X X X		
015A - 1-5 🖖	855	マーマーシー		X	
A Signature		Print Name	Company / Title		Date / Time
NA XX	7	1 Th a/ (Nev-ton)	SCS Frankers	61.	24 14.8
	7	MINE MANNERS	4	1/2	74 BUC.
	[]	MIX MINIMANS	(8)本	いると	u 17(3
	<u>\</u>	MUNCO	t/3,	1779	UN. 1713
		NGB	t/z	7-4.	Jy 1830
4. Onelowella	* <u> </u>	BERT CONTUGULA	E-4, -0R	02/00/20	1830

ANALTICA <<> Select a Laboratory >>>			1 2 S S S S S S S S S S S S S S S S S S	リアニ			5 Day:	0	
A M A A A A A A A A A A A A A A A A A A			Ldb ivo.	111	7 Standard:	>	d day.	з Day:	
<<< Select a Labo			Page: Z	of	3 2 Day:		1 Day:	Custom TAT:	4T:
	oratory >>>		Matrix:	A=Air S	= Soil/Solid	<u> </u>	<u>iš</u>	├-	Sample Receipt Temp:
#N/A			W = Water DW = Drinki PP = Pure Product	= Drinking War	" >	1 = Na2S2($4 = H2SO4$	$1 = Na_2S_2O_3$ $2 = HCl$ $3 = 1$ $4 = H_2SO_4$ $5 = NaOH$ $6 = 0$	3 = HNO ₃ 6 = Other	
CUSTOMER INFORMATION	Z	PROJE	SW = Swab = ROJECT INFORMATION	= IIssue WP = N	WP = Wipe O = Other Analysis Request	Gequest	Test	(iab use only) Test Instructions / Comments	(lab use only) Comments
Company: 654 24 1		Name:							THE TAXABLE OF TA
	Z	Number:			\{\gamma}{\xi}				
Email:	i d	P.O. #:		_	821 2010 2010 2010				
Address:	Ac	Address:			09 09				
					8 49 49. 49. 49. 49.				
Phone:	15	Global ID:		- 1	<u>i</u>)		نامر		
	Sa	Sampled By:			5		42		
Sample ID	Sampling Date	Sampling Time	Matrix Container	Pres.	2520 1947 1940 1901 1905 1905		nΑ		
HA-24-015A-2.5	19/24	915	Soll 4029/455	a' '	XX				
1-4-24-0154-4		_	<u></u>				×		
HA-24-015A-5		176					7		
HA-24-031- 0.5		1006			×××		y		
14-24-031-1.5		h701					X		
HA-24 031-25		(043			XXXXXX				
-031-		1057					X		
HA-24-031-5		1117					×		
4A-24-032-0-5	10	1134		/	XXX				
14.24-032-1.5	→	1157	7	<u>/`</u> →	X				
	Signature		Print Name		Company	//Title		Date / Time	е
Relinquished By:		5	Theoreman	NA	Ses frail	whees	16/2	31 162	ଦ୍ଧ
Received By:			MKI MINTAFT	702	年、分		1. P.	NY K	0.HG
Relinquished By:			Wis Market	NO N	450		4	万 万	0
² Received By:			N/CACO	2	ELY		\	1 22-1	(/)
³ Relinquished By:	100		ALOW CAND	1111	12/4 T		07/00	1 22-01	Se Con
Received by:	VINITURAL	720	1	ty/\2	で、4、5		50//2	(C)	2

			Lab No:	2	ノナナ	Standard:	1	5 Day:	3 Day:
7 7 7		CAL		3	1 p	2 Day:	>	1 Day:	Custom TAT:
<<< Select a Laboratory >>>	atory >>>			Matrix: A	A = Air S = Soil/Solid	olid		1 56	Sample Receipt Temp:
#N/A			% 	Vater DW = Drinki PP = Pure Product) = Sediment Water	$1 = Na_2S_2O_3$ 2 = HCl $4 = H_2SO_4$ 5 = NaOH	= $Na_2S_2O_3$ 2 = HCl 3 = HNO_3 = H_2SO_4 5 = $NaOH$ 6 = Other	
HIN/A		1000	= WS	SW = Swab T = Tissue	sue WP = Wipe	ö			(lab use only)
R INFORMATION		PROJE	OJECI INFORMATION	JATION		Analysis Request	luest	Test Instr	Test Instructions / Comments
See pa 1	Nar	Name:			((
	Nu	Number:			も	වි ව ව			
	P.O	P.O. #:	i i		180	100			
	Adc	Address:			ନ୍ତ <u>'</u>) 9 -			
					72	49-		4	
	Glo	Global ID:			!)) []		Vír	
	San	Sampled By:			<u> </u>	57		12)	
Sample ID	Sampling Date	Sampling Time	Matrix	Container No. / Size	27 <u>0</u>	Meta Meta Land Mood		J.A.	
HA-24-033-0.5	7/9/24	1209	Soil 4	4029/455	×	, , , , ,			
1+ -24-033- 1.5	~	1224		3				X	
-24-033-25		1239			X 	X			
-1		1251	_					X	
333		1300	-					X	
.24-034-0.5		1312			X	XX			
		1322						×	· ·
-24-0345-5		1335	>	>	X	X			
			M	- M	A				
		are Same	#	770	#				
R	Algnature		Print	Print Name		Company / Title	Title	Ğ	Date / Time
) Noting	(Nevan	265	FINANNERS	٦	7/9/22	Or .77!
スク		MIN	N/M	¥ <	8	4.8		40/04	YOU'S
			NSV//X	NATOR	\	\$. S S		リプラグ	正元
	7		1.1	are o) 	474		7-6-4	4 170
	11		NI	C/E6		the		7-4-1	1835
10:4			Brog	QUE TO PROVIDE	77	1 1 - PO		1010010	1. Dex

SAMPLE ACCEPTANCE CHECKLIST

Section 1		1		
Client: SCS Engineers	Project: Sports Arena			
Date Received: 07/09/2024	Sampler's Name Present:	✓ Yes	No	
Section 2 Sample(s) received in a cooler? Yes, How many? 1 Sample Temp (°C), One from each cooler: #1: 4.8 (Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptance the same day as sample receipt to have a higher temperate Shipping Information:	#2: #3:	#4: is acceptable		
Section 3				
Was the cooler packed with:	Bubble Wrap Styro Other	foam 		
Section 4	<u> </u>	YES	NO	N/A
Was a COC received?		 	110	1,77.
Are sample IDs present?		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Are sampling dates & times present?		<u> </u>		
Is a relinquished signature present?		-		
Are the tests required clearly indicated on the COC?		<u> </u>		1
Are custody seals present?		 '		10
			<i>,</i>	
If custody seals are present, were they intact? Are all samples sealed in plastic bags? (Recommended for	or Microbiology camples)			
		1		<i>\</i>
Did all samples arrive intact? If no, indicate in Section 4 b		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Did all bottle labels agree with COC? (ID, dates and times		- V		
Were the samples collected in the correct containers for		 		
Are the containers labeled with the correct preserv		 		./
Is there headspace in the VOA vials greater than 5-6 mm in diameter?			1	
Was a sufficient amount of sample submitted for the req	uestea tests?	1 1		
Section 5 Explanations/Comments 511777	dis not one			
Section 6 For discrepancies, how was the Project Manager notified Project Manager's response:	? Verbal PM Initials: Email (email sent to/			
Completed By: Enthalpy Analytical, a subsidiary of N 931 W. Barkley Ave, Orange, CA 92868			· · · · · · · · · · · · · · · · · · ·	

www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

[External] - Midway Rising project.

Houser, Chuck < CHouser@scsengineers.com>

Fri 7/19/2024 5:57 PM

To:Taylor Nasu <taylor.nasu@enthalpy.com>

Cc:Overton, Tyler <TOverton@scsengineers.com>;Montague, Luke <LMontague@scsengineers.com>

Taylor,

For our Midway Rising project, please perform the following additional analyses:

Sample ID	Requested Analyses
HA-24-15A-0.5	WET & TCLP for Chlordane
HA-24-15A-2.5	WET & TCLP for Chlordane, Title 22 Metals (EPA 6010B)
HA-24-15A-4	OCPs (EPA 8081A)
HA-24-15A-5	OCPs (EPA 8081A)
HA-24-34-0.5	WET & TCLP for Chlordane
HA-24-34-2.5	WET & TCLP for Chlordane, Title 22 Metals (EPA 6010B)

Chuck Houser, CHg Project Manager

SCS Engineers

Office 858-571-5500 Ext. 2908

Direct: 858-583-7738 Mobile: 858-805-5523 <u>chouser@scsengineers.com</u>

CONFIDENTIALITY NOTICE: The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential, proprietary and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments and the reply from your system. If you are not the intended recipient, you are hereby notified that any disclosure, use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Lab Job #: 511777
Project No: MIDWAY RISING
Location: Sports Arena - REVISED REPORT
Date Received: 07/09/24

Sample ID: HA-24-026-0.5 Lab ID: 511777-001 Collected: 07/09/24 06:14

511777-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Arsenic	3.9	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Barium	54	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Chromium	14	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Cobalt	4.6	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Copper	11	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Lead	23	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Nickel	6.6	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Vanadium	33	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Zinc	68	mg/Kg	4.8	0.96	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD	ND	11.7	0.40	1.0	044004	07/14/04	07/14/04	NA 1.1
Mercury	ND	mg/Kg	0.16	1.2	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	344821	07/11/24	07/12/24	KMB
TPH (C13-C22)	ND	mg/Kg	10	1	344821	07/11/24	07/12/24	KMB
TPH (C23-C44)	57	mg/Kg	20	1	344821	07/11/24	07/12/24	KMB
Surrogates			Limits					
n-Triacontane	100%	%REC	70-130	1	344821	07/11/24	07/12/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
beta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
gamma-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
delta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Heptachlor	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Aldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Endosulfan I	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Dieldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Endrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR

511777-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Endrin ketone	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
4,4'-DDT	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Methoxychlor	ND	ug/Kg	9.9	0.99	344770	07/10/24	07/12/24	KLR
Toxaphene	ND	ug/Kg	99	0.99	344770	07/10/24	07/12/24	KLR
Chlordane (Technical)	63	ug/Kg	50	0.99	344770	07/10/24	07/12/24	KLR
Surrogates			Limits					
TCMX	85%	%REC	23-120	0.99	344770	07/10/24	07/12/24	KLR
Decachlorobiphenyl	83%	%REC	24-120	0.99	344770	07/10/24	07/12/24	KLR

Sample ID: HA-24-026-2.5 Lab ID: 511777-003 Collected: 07/09/24 06:42

511777-003 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	6.8	mg/Kg	0.99	0.99	344752	07/10/24	07/11/24	SBW
Lead	8.1	mg/Kg	0.99	0.99	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A								
Prep Method: EPA 3546	ND	// /	F 0		0.4.4770	07/40/04	07/40/04	MEO
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates		-	Limits					
TCMX	87%	%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	82%	%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-027-0.5 Lab ID: 511777-006 Collected: 07/09/24 07:42

511777-006 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Arsenic	23	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Barium	130	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Beryllium	1.0	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Chromium	9.4	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Cobalt	15	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Copper	14	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Lead	12	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Molybdenum	1.8	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Nickel	6.4	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Vanadium	39	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Zinc	53	mg/Kg	4.8	0.95	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.2	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	ND	mg/Kg	20	0.99	344822	07/14/24	07/16/24	KMB
Surrogates			Limits					
n-Triacontane	83%	%REC	70-130	0.99	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES

511777-006 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND		ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND		ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates				Limits					
TCMX	89%		%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	87%		%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-027-2.5 Lab ID: 511777-008 Collected: 07/09/24 08:14

511777-008 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B	Hoodit						7a.y 20 a	
Prep Method: EPA 3050B								
Arsenic	6.5	mg/Kg	0.98	0.98	344752	07/10/24	07/11/24	SBW
Lead	5.4	mg/Kg	0.98	0.98	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates		-	Limits					
TCMX	90%	%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	89%	%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA	-24-015/	A-0.5	Lab II	D: 511777-009		Co	llected: 07	7/09/24 08:39	9
511777-009 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									_
Antimony	ND	mg/Kg	3.0	Soil	1	344752	07/10/24	07/11/24	SBW
Arsenic	6.8	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Barium	79	mg/Kg	1.0	Soil	<u>.</u>	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.50	Soil	1	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.50	Soil	1	344752	07/10/24	07/11/24	SBW
Chromium	14	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Cobalt	15	mg/Kg	0.50	Soil	1	344752	07/10/24	07/11/24	SBW
Copper	21	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Lead	10	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Nickel	7.0	mg/Kg	1.0	Soil	<u>.</u>	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	3.0	Soil	1	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.50	Soil	<u>.</u>	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	3.0	Soil	<u>.</u>	344752	07/10/24	07/11/24	SBW
Vanadium	32	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Zinc	40	mg/Kg	5.0	Soil	1	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD		9,19			<u>·</u>		0.7,10,21		
Mercury	ND	mg/Kg	0.14	Soil	1	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M		3 3							
TPH (C6-C12)	ND	mg/Kg	9.9	Soil	0.99	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/Kg	9.9	Soil	0.99	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	130	mg/Kg	20	Soil	0.99	344822	07/14/24	07/16/24	KMB
Surrogates			Limits						,
n-Triacontane	92%	%REC	70-130	Soil	0.99	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	ND	ug/L	2.9	WET Leachate	2.9	346325	07/29/24	07/30/24	MES
Surrogates			Limits						
TCMX	65%	%REC	14-120	WET Leachate	2.9	346325	07/29/24	07/30/24	MES
Decachlorobiphenyl	99%	%REC	20-120	WET Leachate	2.9	346325	07/29/24	07/30/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
		5 9							

511777-009 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Endosulfan sulfate	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	20	Soil	2	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	200	Soil	2	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	5,400	ug/Kg	500	Soil	10	344770	07/10/24	07/15/24	MES
Surrogates			Limits						
TCMX	92%	%REC	23-120	Soil	2	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	88%	%REC	24-120	Soil	2	344770	07/10/24	07/12/24	MES

Sample ID: HA	-24-015/	A-2.5	Lab II	D: 511777-011		Co	llected: 07	7/09/24 09:15	5
511777-011 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B							<u>-</u>	<u> </u>	
Prep Method: EPA 3050B	ND		0.0	0-:1	0.00	044750	07/40/04	07/11/04	ODW
Antimony	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Arsenic	5.0	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Barium	100	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Chromium	22	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Cobalt	7.3	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Copper	13	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Lead	8.7	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Nickel	7.6	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Vanadium	53	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Zinc	43	mg/Kg	4.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND	mg/Kg	0.16	Soil	1.2	346010	07/25/24	07/25/24	MLL
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	3.1	ug/L	2.2	WET Leachate	2.2	346325	07/29/24	07/30/24	MES
Surrogates			Limits						
TCMX	68%	%REC	14-120	WET Leachate	2.2	346325	07/29/24	07/30/24	MES
Decachlorobiphenyl	94%	%REC	20-120	WET Leachate	2.2	346325	07/29/24	07/30/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	Soil	<u>.</u>	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND			Soil		344770	07/10/24	07/12/24	MES
4,4'-DDD		ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	
	ND	ug/Kg	5.0		1				MES
Endrin aldehyde	ND	ug/Kg	5.0	Soil	<u> </u>	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	10	Soil	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	100	Soil	1	344770	07/10/24	07/12/24	MES

511777-011 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Chlordane (Technical)	2,900		ug/Kg	250	Soil	5	344770	07/10/24	07/15/24	MES
Surrogates				Limits						
TCMX	78%		%REC	23-120	Soil	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	75%		%REC	24-120	Soil	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-015A-4 Lab ID: 511777-012 Collected: 07/09/24 09:28

511777-012 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
beta-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
delta-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Heptachlor	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Aldrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Dieldrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan sulfate	ND	ug/Kg	5.3	1	345741	07/23/24	07/23/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Methoxychlor	ND	ug/Kg	10	1	345741	07/23/24	07/23/24	MES
Toxaphene	ND	ug/Kg	100	1	345741	07/23/24	07/23/24	MES
Chlordane (Technical)	4,400	ug/Kg	1,000	20	345741	07/23/24	07/24/24	MES
Surrogates			Limits					
TCMX	97%	%REC	23-120	1	345741	07/23/24	07/23/24	MES
Decachlorobiphenyl	96%	%REC	24-120	1	345741	07/23/24	07/23/24	MES

Sample ID: HA-24-015A-5 Lab ID: 511777-013 Collected: 07/09/24 09:41

511777-013 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
beta-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
delta-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Heptachlor	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Aldrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Dieldrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Methoxychlor	ND	ug/Kg	10	1	345741	07/23/24	07/23/24	MES
Toxaphene	ND	ug/Kg	100	1	345741	07/23/24	07/23/24	MES
Chlordane (Technical)	780	ug/Kg	100	2	345741	07/23/24	07/24/24	MES
Surrogates			Limits					
TCMX	96%	%REC	23-120	1	345741	07/23/24	07/23/24	MES
Decachlorobiphenyl	88%	%REC	24-120	1	345741	07/23/24	07/23/24	MES

Sample ID: HA-24-031-0.5 Lab ID: 511777-014 Collected: 07/09/24 10:06

511777-014 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Anumony	4.1	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Barium	120	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.90	0.96	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Chromium	25	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Cobalt	9.1	mg/Kg	0.90	0.96	344752	07/10/24	07/11/24	SBW
Copper	15	mg/Kg	0.46	0.96	344752	07/10/24	07/11/24	SBW
Lead	7.8	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Nickel	8.5		0.96	0.96	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Silver	ND ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
		mg/Kg					07/11/24	
Thallium	ND	mg/Kg	2.9	0.96	344752	07/10/24		SBW
Vanadium	62	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Zinc	48	mg/Kg	4.8	0.96	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.15	1.1	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	ND	mg/Kg	20	0.99	344822	07/14/24	07/16/24	KMB
urrogates			Limits					
n-Triacontane	86%	%REC	70-130	0.99	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
•	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldenvde	–	- 9'9	0.0	•	•	- · · -· - ·	- · · — - ·	
Endrin aldehyde Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES

511777-014 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND		ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	100		ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates				Limits					
TCMX	81%		%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	73%		%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-031-2.5 Lab ID: 511777-016 Collected: 07/09/24 10:43

511777-016 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Arsenic	4.7	mg/Kg	0.98	0.98	344752	07/10/24	07/11/24	SBW
Lead	7.5	mg/Kg	0.98	0.98	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	99	0.99	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	0.99	344770	07/10/24	07/12/24	MES
Surrogates		<u> </u>	Limits					
TCMX	85%	%REC	23-120	0.99	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	83%	%REC	24-120	0.99	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-032-0.5 Lab ID: 511777-019 Collected: 07/09/24 11:34

511777-019 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.97	344752	07/10/24	07/11/24	SBW
Arsenic	4.6	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Barium	100	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.49	0.97	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.49	0.97	344752	07/10/24	07/11/24	SBW
Chromium	22	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Cobalt	11	mg/Kg	0.49	0.97	344752	07/10/24	07/11/24	SBW
Copper	19	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Lead	7.2	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Nickel	7.9	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.97	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.49	0.97	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	0.97	344752	07/10/24	07/11/24	SBW
Vanadium	57	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Zinc	45	mg/Kg	4.9	0.97	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.1	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/15/24	KMB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/15/24	KMB
TPH (C23-C44)	ND	mg/Kg	20	0.99	344822	07/14/24	07/15/24	KMB
Surrogates			Limits					
n-Triacontane	87%	%REC	70-130	0.99	344822	07/14/24	07/15/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES

511777-019 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND		ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND		ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates				Limits					
TCMX	82%		%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	72%		%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-032-1.5 Lab ID: 511777-020 Collected: 07/09/24 11:52

511777-020 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B							<u> </u>	
Prep Method: EPA 3050B								
Arsenic	3.5	mg/Kg	1.0	1	344752	07/10/24	07/11/24	SBW
Lead	4.8	mg/Kg	1.0	1	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	99	0.99	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	0.99	344770	07/10/24	07/12/24	MES
Surrogates			Limits					
TCMX	88%	%REC	23-120	0.99	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	86%	%REC	24-120	0.99	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-033-0.5 Lab ID: 511777-021 Collected: 07/09/24 12:09

511777-021 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Arsenic	1.2	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Barium	98	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Chromium	14	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Cobalt	33	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Copper	48	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Lead	1.6	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Nickel	6.8	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Vanadium	66	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Zinc	28	mg/Kg	4.8	0.95	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.17	1.2	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/Kg	10	1	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	ND	mg/Kg	20	1	344822	07/14/24	07/16/24	KMB
Surrogates			Limits					
n-Triacontane	80%	%REC	70-130	1	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES

511777-021 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND		ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND		ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates				Limits					
TCMX	85%		%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	81%		%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-033-2.5 Lab ID: 511777-023 Collected: 07/09/24 12:39

511777-023 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Arsenic	2.9	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Lead	2.4	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
	2.4	mg/Rg	0.90	0.90	344732	07/10/24	07/11/24	3000
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates		3 0	Limits					
TCMX	85%	%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	82%	%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA	-24-034	-0.5	Lab ID	: 511777-026		Co	llected: 07	/09/24 13:12	
511777-026 Analyte	Result	Qual Unit	s RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B							Торигои	7 7	
Antimony	ND	mg/K	g 3.0	Soil	0.99	344752	07/10/24	07/11/24	SBW
Arsenic	6.8	mg/K	· ·	Soil	0.99	344752	07/10/24	07/11/24	SBW
Barium	87	mg/K		Soil	0.99	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Chromium	13	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Cobalt	81	mg/k	-	Soil	0.99	344752	07/10/24	07/11/24	SBW
Copper	47	mg/k		Soil	0.99	344752	07/10/24	07/11/24	SBW
Lead	10	mg/k	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/k	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Nickel	7.2	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/K		Soil	0.99	344752	07/10/24	07/11/24	SBW
Silver	0.71	mg/K	-	Soil	0.99	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/K		Soil	0.99	344752	07/10/24	07/11/24	SBW
Vanadium	32	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Zinc	58	mg/K		Soil	0.99	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND	mg/K	.g 0.16	Soil	1.1	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND	mg/k	.g 10	Soil	1	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/k	.g 10	Soil	1	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	110	mg/k	.g 20	Soil	1	344822	07/14/24	07/16/24	KMB
Surrogates			Limits						
n-Triacontane	88%	%RE	C 70-130	Soil	1	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	ND	ug/l	2.8	WET Leachate	2.8	346325	07/29/24	07/30/24	MES
Surrogates			Limits						
TCMX	72%	%RE	C 14-120	WET Leachate	2.8	346325	07/29/24	07/30/24	MES
Decachlorobiphenyl	97%	%RE	C 20-120	WET Leachate	2.8	346325	07/29/24	07/30/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES

511777-026 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Endosulfan sulfate	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	20	Soil	2	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	200	Soil	2	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	7,200	ug/Kg	500	Soil	10	344770	07/10/24	07/15/24	MES
Surrogates			Limits						
TCMX	86%	%REC	23-120	Soil	2	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	77%	%REC	24-120	Soil	2	344770	07/10/24	07/12/24	MES

Sample ID: HA	\-24-034	-2.5	Lab ID	: 511777-028		Co	llected: 07	/09/24 13:35	
511777-028 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B							•		
Prep Method: EPA 3050B									
Antimony	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Arsenic	6.6	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Barium	98	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Chromium	13	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Cobalt	21	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Copper	25	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Lead	15	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Nickel	7.4	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Vanadium	30	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Zinc	39	mg/Kg	4.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND	mg/Kg	0.17	Soil	1.2	346010	07/25/24	07/25/24	MLL
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	2.7	ug/L	2.6	WET Leachate	2.6	346325	07/29/24	07/30/24	MES
Surrogates			Limits						
TCMX	72%	%REC	14-120	WET Leachate	2.6	346325	07/29/24	07/30/24	MES
Decachlorobiphenyl	93%	%REC	20-120	WET Leachate	2.6	346325	07/29/24	07/30/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg ug/Kg	10	Soil		344770	07/10/24	07/12/24	MES
Endrin ketone	ND			Soil	2	344770	07/10/24	07/12/24	MES
		ug/Kg	10		2	344770			
4,4'-DDT	ND	ug/Kg	10	Soil	2		07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	20	Soil	2	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	200	Soil	2	344770	07/10/24	07/12/24	MES

511777-028 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Chlordane (Technical)	5,800		ug/Kg	500	Soil	10	344770	07/10/24	07/15/24	MES
Surrogates				Limits						
TCMX	96%		%REC	23-120	Soil	2	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	92%		%REC	24-120	Soil	2	344770	07/10/24	07/12/24	MES

ND Not Detected

Type: Blank Lab ID: QC1168194 Batch: 344752
Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1168194 Analyte	Result	Qual Units	s RL	Prepared	Analyzed
Antimony	ND	mg/K	g 3.0	07/10/24	07/11/24
Arsenic	ND	mg/K	g 1.0	07/10/24	07/11/24
Barium	ND	mg/K	g 1.0	07/10/24	07/11/24
Beryllium	ND	mg/K	g 0.50	07/10/24	07/11/24
Cadmium	ND	mg/K	g 0.50	07/10/24	07/11/24
Chromium	ND	mg/K	g 1.0	07/10/24	07/11/24
Cobalt	ND	mg/K	g 0.50	07/10/24	07/11/24
Copper	ND	mg/K	g 1.0	07/10/24	07/11/24
Lead	ND	mg/K	g 1.0	07/10/24	07/11/24
Molybdenum	ND	mg/K	g 1.0	07/10/24	07/11/24
Nickel	ND	mg/K	g 1.0	07/10/24	07/11/24
Selenium	ND	mg/K	g 3.0	07/10/24	07/11/24
Silver	ND	mg/K	g 0.50	07/10/24	07/11/24
Thallium	ND	mg/K	g 3.0	07/10/24	07/11/24
Vanadium	ND	mg/K	g 1.0	07/10/24	07/11/24
Zinc	ND	mg/K	g 5.0	07/10/24	07/11/24

Type: Lab Control Sample Lab ID: QC1168195 Batch: 344752

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1168195 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	106.4	100.0	mg/Kg	106%	80-120
Arsenic	100.7	100.0	mg/Kg	101%	80-120
Barium	105.8	100.0	mg/Kg	106%	80-120
Beryllium	102.2	100.0	mg/Kg	102%	80-120
Cadmium	102.9	100.0	mg/Kg	103%	80-120
Chromium	104.0	100.0	mg/Kg	104%	80-120
Cobalt	111.7	100.0	mg/Kg	112%	80-120
Copper	102.9	100.0	mg/Kg	103%	80-120
Lead	110.9	100.0	mg/Kg	111%	80-120
Molybdenum	101.5	100.0	mg/Kg	101%	80-120
Nickel	108.6	100.0	mg/Kg	109%	80-120
Selenium	94.62	100.0	mg/Kg	95%	80-120
Silver	50.93	50.00	mg/Kg	102%	80-120
Thallium	111.2	100.0	mg/Kg	111%	80-120
Vanadium	103.5	100.0	mg/Kg	103%	80-120
Zinc	107.2	100.0	mg/Kg	107%	80-120

Type: Matrix Spike Lab ID: QC1168196 Batch: 344752

Matrix (Source ID): Soil (511777-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1168196 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	28.27	ND	96.15	mg/Kg	29%	*	75-125	0.96
Arsenic	66.96	3.933	96.15	mg/Kg	66%	*	75-125	0.96
Barium	118.0	54.23	96.15	mg/Kg	66%	*	75-125	0.96
Beryllium	64.33	0.2143	96.15	mg/Kg	67%	*	75-125	0.96
Cadmium	63.12	0.1064	96.15	mg/Kg	66%	*	75-125	0.96
Chromium	77.45	13.82	96.15	mg/Kg	66%	*	75-125	0.96
Cobalt	71.60	4.582	96.15	mg/Kg	70%	*	75-125	0.96
Copper	76.23	11.15	96.15	mg/Kg	68%	*	75-125	0.96
Lead	82.45	22.57	96.15	mg/Kg	62%	*	75-125	0.96
Molybdenum	61.97	ND	96.15	mg/Kg	64%	*	75-125	0.96
Nickel	70.93	6.570	96.15	mg/Kg	67%	*	75-125	0.96
Selenium	61.44	ND	96.15	mg/Kg	64%	*	75-125	0.96
Silver	31.86	ND	48.08	mg/Kg	66%	*	75-125	0.96
Thallium	67.09	ND	96.15	mg/Kg	70%	*	75-125	0.96
Vanadium	99.48	33.23	96.15	mg/Kg	69%	*	75-125	0.96
Zinc	120.2	67.93	96.15	mg/Kg	54%	*	75-125	0.96

Type: Matrix Spike Duplicate Lab ID: QC1168197 Batch: 344752

Matrix (Source ID): Soil (511777-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1168197 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	36.32	ND	98.04	mg/Kg	37%	*	75-125	23	41	0.98
Arsenic	102.5	3.933	98.04	mg/Kg	101%		75-125	40*	35	0.98
Barium	175.4	54.23	98.04	mg/Kg	124%		75-125	38*	20	0.98
Beryllium	99.04	0.2143	98.04	mg/Kg	101%		75-125	41*	20	0.98
Cadmium	96.37	0.1064	98.04	mg/Kg	98%		75-125	40*	20	0.98
Chromium	118.5	13.82	98.04	mg/Kg	107%		75-125	40*	20	0.98
Cobalt	109.7	4.582	98.04	mg/Kg	107%		75-125	40*	20	0.98
Copper	117.5	11.15	98.04	mg/Kg	108%		75-125	41*	20	0.98
Lead	123.9	22.57	98.04	mg/Kg	103%		75-125	39*	20	0.98
Molybdenum	93.99	ND	98.04	mg/Kg	96%		75-125	39*	20	0.98
Nickel	108.6	6.570	98.04	mg/Kg	104%		75-125	40*	20	0.98
Selenium	93.46	ND	98.04	mg/Kg	95%		75-125	39*	20	0.98
Silver	49.37	ND	49.02	mg/Kg	101%		75-125	41*	20	0.98
Thallium	102.8	ND	98.04	mg/Kg	105%		75-125	40*	20	0.98
Vanadium	149.6	33.23	98.04	mg/Kg	119%		75-125	39*	20	0.98
Zinc	169.1	67.93	98.04	mg/Kg	103%		75-125	33*	20	0.98

Type: Post Digest Spike Lab ID: QC1168198 Batch: 344752

Matrix (Source ID): Soil (511777-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample			_			
QC1168198 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	100.1	ND	96.15	mg/Kg	104%		75-125	0.96
Arsenic	100.0	3.933	96.15	mg/Kg	100%		75-125	0.96
Barium	151.1	54.23	96.15	mg/Kg	101%		75-125	0.96
Beryllium	96.41	0.2143	96.15	mg/Kg	100%		75-125	0.96
Cadmium	95.00	0.1064	96.15	mg/Kg	99%		75-125	0.96
Chromium	109.5	13.82	96.15	mg/Kg	100%		75-125	0.96
Cobalt	106.2	4.582	96.15	mg/Kg	106%		75-125	0.96
Copper	110.4	11.15	96.15	mg/Kg	103%		75-125	0.96
Lead	124.2	22.57	96.15	mg/Kg	106%		75-125	0.96
Molybdenum	97.26	ND	96.15	mg/Kg	101%		75-125	0.96
Nickel	105.1	6.570	96.15	mg/Kg	102%		75-125	0.96
Selenium	95.10	ND	96.15	mg/Kg	99%		75-125	0.96
Silver	48.44	ND	48.08	mg/Kg	101%		75-125	0.96
Thallium	102.3	ND	96.15	mg/Kg	106%		75-125	0.96
Vanadium	129.7	33.23	96.15	mg/Kg	100%		75-125	0.96
Zinc	164.1	67.93	96.15	mg/Kg	100%		75-125	0.96

Type: Blank Lab ID: QC1168443 Batch: 344824

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1168443 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	07/11/24	07/11/24

Type: Lab Control Sample Lab ID: QC1168444 Batch: 344824

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1168444 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Mercury	0.8293	0.8333	mg/Kg	100%	80-120

Type: Matrix Spike Lab ID: QC1168445 Batch: 344824

Matrix (Source ID): Soil (511777-001) Method: EPA 7471A Prep Method: METHOD

Source Sample QC1168445 Analyte Result **Spiked** Units Recovery Qual Limits DF Result Mercury 0.8184 0.8475 mg/Kg 97% 75-125

Type: Matrix Spike Duplicate Lab ID: QC1168446 Batch: 344824

Matrix (Source ID): Soil (511777-001) Method: EPA 7471A Prep Method: METHOD

Source RPD Sample **RPD** QC1168446 Analyte Result **Spiked** Units Recovery Qual Limits Lim DF Result 0.8089 ND 0.8621 mg/Kg 94% 75-125 3 20 Mercury 1

Type: Blank Lab ID: QC1172453 Batch: 346010

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

 QC1172453 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Mercury
 ND
 mg/Kg
 0.14
 07/25/24
 07/25/24

Type: Lab Control Sample Lab ID: QC1172454 Batch: 346010

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

 QC1172454 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Mercury
 0.9037
 0.8333
 mg/Kg
 108%
 80-120

Type: Matrix Spike Lab ID: QC1172455 Batch: 346010

Matrix (Source ID): Soil (512714-001) Method: EPA 7471A Prep Method: METHOD

Source Sample

Result QC1172455 Analyte Result **Spiked** Units Recovery Qual Limits DF 1.078 ND 108% 75-125 Mercury 1.000 mg/Kg 1.2

Type: Matrix Spike Duplicate Lab ID: QC1172456 Batch: 346010

Matrix (Source ID): Soil (512714-001) Method: EPA 7471A Prep Method: METHOD

Source Sample **RPD** QC1172456 Analyte Result Result Spiked Units Recovery Qual Limits **RPD** Lim DF 0.9553 ND 0.8929 107% 75-125 Mercury mg/Kg 20 1.1

Type: Blank Lab ID: QC1168433 Batch: 344821
Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1168433 Analyte Result Qual Units RL **Prepared Analyzed** TPH (C6-C12) ND 10 07/11/24 07/11/24 mg/Kg ND 10 07/11/24 TPH (C13-C22) mg/Kg 07/11/24 TPH (C23-C44) ND mg/Kg 20 07/11/24 07/11/24 Surrogates Limits n-Triacontane 90% %REC 70-130 07/11/24 07/11/24

Type: Lab Control Sample Lab ID: QC1168434 Batch: 344821

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1168434 Analyte Result Spiked Units Recovery Qual Limits Diesel C10-C28 274.0 248.8 mg/Kg 110% 76-122 Surrogates n-Triacontane 9.632 9.950 97% 70-130 mg/Kg

Type: Matrix Spike Lab ID: QC1168435 Batch: 344821

Matrix (Source ID): Soil (511591-022) Method: EPA 8015M Prep Method: EPA 3580M

		Source Sample						
QC1168435 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	301.9	84.11	248.6	mg/Kg	88%		62-126	5
Surrogates								
n-Triacontane	9.015		9.945	mg/Kg	91%		70-130	5

Type: Matrix Spike Duplicate Lab ID: QC1168436 Batch: 344821

Matrix (Source ID): Soil (511591-022) Method: EPA 8015M Prep Method: EPA 3580M

		Source Sample							RPD	
QC1168436 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Diesel C10-C28	314.4	84.11	247.6	mg/Kg	93%		62-126	4	35	5
Surrogates										
n-Triacontane	9.484		9.906	mg/Kg	96%		70-130			5

Type: Blank Lab ID: QC1168437 Batch: 344822
Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1168437 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
TPH (C6-C12)	ND		mg/Kg	10	07/14/24	07/15/24
TPH (C13-C22)	ND		mg/Kg	10	07/14/24	07/15/24
TPH (C23-C44)	ND		mg/Kg	20	07/14/24	07/15/24
Surrogates				Limits		
n-Triacontane	96%		%REC	70-130	07/14/24	07/15/24

Type: Lab Control Sample Lab ID: QC1168438 Batch: 344822

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1168438 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	246.2	248.8	mg/Kg	99%	76-122
Surrogates					
n-Triacontane	8.481	9.950	mg/Kg	85%	70-130

Type: Matrix Spike Lab ID: QC1169292 Batch: 344822
Matrix (Source ID): Soil (511777-019) Method: EPA 8015M Prep Method: EPA 3580M

Source Sample QC1169292 Analyte DF Result Result **Spiked** Units Recovery Qual Limits Diesel C10-C28 243.8 249.8 62-126 ND mg/Kg 98% 1 Surrogates n-Triacontane 8.058 9.990 70-130 mg/Kg 81% 1

Type: Matrix Spike Duplicate Lab ID: QC1169293 Batch: 344822

Matrix (Source ID): Soil (511777-019) Method: EPA 8015M Prep Method: EPA 3580M

QC1169293 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim	DF
Diesel C10-C28	241.2	ND	249.1	mg/Kg	97%		62-126	1	35	1
Surrogates										
n-Triacontane	7.968		9.965	mg/Kg	80%		70-130			1

Type: Blank Lab ID: QC1173491 Batch: 346325
Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1173491 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	1.0	07/29/24	07/30/24
Surrogates				Limits		
TCMX	70%		%REC	14-120	07/29/24	07/30/24
Decachlorobiphenyl	87%		%REC	20-120	07/29/24	07/30/24

Type: Lab Control Sample Lab ID: QC1173492 Batch: 346325
Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1173492 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
4,4'-DDD	0.5129	0.5000	ug/L	103%		53-120
4,4'-DDE	0.4876	0.5000	ug/L	98%	#	55-120
4,4'-DDT	0.4802	0.5000	ug/L	96%	#	58-120
Surrogates						
TCMX	0.3936	0.5000	ug/L	79%		14-120
Decachlorobiphenyl	0.4375	0.5000	ug/L	87%		20-120

Type: Lab Control Sample Duplicate Lab ID: QC1173493 Batch: 346325

Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1173493 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
4,4'-DDD	0.5519	0.5000	ug/L	110%		53-120	7	20
4,4'-DDE	0.5239	0.5000	ug/L	105%	#	55-120	7	20
4,4'-DDT	0.5272	0.5000	ug/L	105%	#	58-120	9	20
Surrogates								
TCMX	0.4145	0.5000	ug/L	83%		14-120		
Decachlorobiphenyl	0.4727	0.5000	ug/L	95%		20-120		

Type: Blank Lab ID: QC1173496 Batch: 346325

Matrix: WET Leachate Method: EPA 8081A Prep Method: EPA 3510C

QC1173496 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	2.0	07/29/24	07/30/24
Surrogates				Limits		
TCMX	74%		%REC	14-120	07/29/24	07/30/24
Decachlorobiphenyl	92%		%REC	20-120	07/29/24	07/30/24

Type: Blank Lab ID: QC1173497 Batch: 346325 Matrix: WET Leachate Method: EPA 8081A Prep Method: EPA 3510C

QC1173497 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	2.0	07/29/24	07/30/24
Surrogates				Limits		
TCMX	69%		%REC	14-120	07/29/24	07/30/24
Decachlorobiphenyl	90%		%REC	20-120	07/29/24	07/30/24

Type: Blank Lab ID: QC1168234 Batch: 344770

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1168234 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	07/10/24	07/12/24
beta-BHC	ND	ug/Kg	5.0	07/10/24	07/12/24
gamma-BHC	ND	ug/Kg	5.0	07/10/24	07/12/24
delta-BHC	ND	ug/Kg	5.0	07/10/24	07/12/24
Heptachlor	ND	ug/Kg	5.0	07/10/24	07/12/24
Aldrin	ND	ug/Kg	5.0	07/10/24	07/12/24
Heptachlor epoxide	ND	ug/Kg	5.0	07/10/24	07/12/24
Endosulfan I	ND	ug/Kg	5.0	07/10/24	07/12/24
Dieldrin	ND	ug/Kg	5.0	07/10/24	07/12/24
4,4'-DDE	ND	ug/Kg	5.0	07/10/24	07/12/24
Endrin	ND	ug/Kg	5.0	07/10/24	07/12/24
Endosulfan II	ND	ug/Kg	5.0	07/10/24	07/12/24
Endosulfan sulfate	ND	ug/Kg	5.0	07/10/24	07/12/24
4,4'-DDD	ND	ug/Kg	5.0	07/10/24	07/12/24
Endrin aldehyde	ND	ug/Kg	5.0	07/10/24	07/12/24
Endrin ketone	ND	ug/Kg	5.0	07/10/24	07/12/24
4,4'-DDT	ND	ug/Kg	5.0	07/10/24	07/12/24
Methoxychlor	ND	ug/Kg	10	07/10/24	07/12/24
Toxaphene	ND	ug/Kg	100	07/10/24	07/12/24
Chlordane (Technical)	ND	ug/Kg	50	07/10/24	07/12/24
Surrogates			Limits		
TCMX	90%	%REC	23-120	07/10/24	07/12/24
Decachlorobiphenyl	78%	%REC	24-120	07/10/24	07/12/24

Type: Lab Control Sample Lab ID: QC1168235 Batch: 344770

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1168235 Analyte	Result	Spiked	Units	Recovery Qual	Limits
alpha-BHC	43.43	50.00	ug/Kg	87%	22-129
beta-BHC	45.99	50.00	ug/Kg	92%	28-125
gamma-BHC	43.86	50.00	ug/Kg	88%	22-128
delta-BHC	42.56	50.00	ug/Kg	85%	24-131
Heptachlor	40.87	50.00	ug/Kg	82%	18-124
Aldrin	42.26	50.00	ug/Kg	85%	23-120
Heptachlor epoxide	40.15	50.00	ug/Kg	80%	26-120
Endosulfan I	41.63	50.00	ug/Kg	83%	25-126
Dieldrin	42.20	50.00	ug/Kg	84%	23-124
4,4'-DDE	44.85	50.00	ug/Kg	90%	28-121
Endrin	42.11	50.00	ug/Kg	84%	25-127
Endosulfan II	43.19	50.00	ug/Kg	86%	29-121
Endosulfan sulfate	36.38	50.00	ug/Kg	73%	30-121
4,4'-DDD	42.50	50.00	ug/Kg	85%	26-120
Endrin aldehyde	35.71	50.00	ug/Kg	71%	10-120
Endrin ketone	42.01	50.00	ug/Kg	84%	28-125
4,4'-DDT	44.91	50.00	ug/Kg	90%	22-125
Methoxychlor	43.10	50.00	ug/Kg	86%	28-130
Surrogates					
TCMX	47.94	50.00	ug/Kg	96%	23-120
Decachlorobiphenyl	49.37	50.00	ug/Kg	99%	24-120

Type: Matrix Spike Lab ID: QC1168236 Batch: 344770

Matrix (Source ID): Soil (511777-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1168236 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	43.12	ND	49.50	ug/Kg	87%		46-120	0.99
beta-BHC	45.08	ND	49.50	ug/Kg	91%		41-120	0.99
gamma-BHC	44.27	ND	49.50	ug/Kg	89%		41-120	0.99
delta-BHC	42.22	ND	49.50	ug/Kg	85%		38-123	0.99
Heptachlor	40.77	ND	49.50	ug/Kg	82%		39-120	0.99
Aldrin	42.50	ND	49.50	ug/Kg	86%		34-120	0.99
Heptachlor epoxide	39.97	ND	49.50	ug/Kg	81%		43-120	0.99
Endosulfan I	41.72	ND	49.50	ug/Kg	84%		45-120	0.99
Dieldrin	43.79	ND	49.50	ug/Kg	88%		45-120	0.99
4,4'-DDE	45.16	ND	49.50	ug/Kg	91%		34-120	0.99
Endrin	43.49	ND	49.50	ug/Kg	88%		40-120	0.99
Endosulfan II	44.22	ND	49.50	ug/Kg	89%		41-120	0.99
Endosulfan sulfate	39.37	ND	49.50	ug/Kg	80%		42-120	0.99
4,4'-DDD	44.74	3.452	49.50	ug/Kg	83%		41-120	0.99
Endrin aldehyde	43.67	ND	49.50	ug/Kg	88%		30-120	0.99
Endrin ketone	43.98	ND	49.50	ug/Kg	89%		45-120	0.99
4,4'-DDT	45.00	3.410	49.50	ug/Kg	84%		35-127	0.99
Methoxychlor	43.84	ND	49.50	ug/Kg	89%		42-136	0.99
Surrogates								
TCMX	44.69		49.50	ug/Kg	90%		23-120	0.99
Decachlorobiphenyl	44.52		49.50	ug/Kg	90%		24-120	0.99

Type: Matrix Spike Duplicate Lab ID: QC1168237 Batch: 344770

Matrix (Source ID): Soil (511777-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1168237 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	41.62	ND	50.00	ug/Kg	83%		46-120	5	30	1
beta-BHC	44.54	ND	50.00	ug/Kg	89%		41-120	2	30	1
gamma-BHC	43.66	ND	50.00	ug/Kg	87%		41-120	2	30	1
delta-BHC	41.97	ND	50.00	ug/Kg	84%		38-123	2	30	1
Heptachlor	40.42	ND	50.00	ug/Kg	81%		39-120	2	30	1
Aldrin	41.10	ND	50.00	ug/Kg	82%		34-120	4	30	1
Heptachlor epoxide	38.36	ND	50.00	ug/Kg	77%		43-120	5	30	1
Endosulfan I	41.09	ND	50.00	ug/Kg	82%		45-120	3	30	1
Dieldrin	42.61	ND	50.00	ug/Kg	85%		45-120	4	30	1
4,4'-DDE	43.86	ND	50.00	ug/Kg	88%		34-120	4	30	1
Endrin	42.15	ND	50.00	ug/Kg	84%		40-120	4	30	1
Endosulfan II	42.25	ND	50.00	ug/Kg	84%		41-120	6	30	1
Endosulfan sulfate	39.57	ND	50.00	ug/Kg	79%		42-120	0	30	1
4,4'-DDD	43.23	3.452	50.00	ug/Kg	80%		41-120	4	30	1
Endrin aldehyde	42.42	ND	50.00	ug/Kg	85%		30-120	4	30	1
Endrin ketone	42.69	ND	50.00	ug/Kg	85%		45-120	4	30	1
4,4'-DDT	43.06	3.410	50.00	ug/Kg	79%		35-127	5	30	1
Methoxychlor	44.24	ND	50.00	ug/Kg	88%		42-136	0	30	1
Surrogates										
TCMX	44.86		50.00	ug/Kg	90%		23-120			1
Decachlorobiphenyl	43.51		50.00	ug/Kg	87%		24-120			1

Type: Lab Control Sample Lab ID: QC1171661 Batch: 345741

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1171661 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	33.85	50.51	ug/Kg	67%		22-129
beta-BHC	38.18	50.51	ug/Kg	76%		28-125
gamma-BHC	34.32	50.51	ug/Kg	68%		22-128
delta-BHC	36.22	50.51	ug/Kg	72%		24-131
Heptachlor	33.97	50.51	ug/Kg	67%		18-124
Aldrin	29.22	50.51	ug/Kg	58%		23-120
Heptachlor epoxide	36.22	50.51	ug/Kg	72%	#	26-120
Endosulfan I	35.75	50.51	ug/Kg	71%		25-126
Dieldrin	36.20	50.51	ug/Kg	72%		23-124
4,4'-DDE	38.05	50.51	ug/Kg	75%		28-121
Endrin	37.17	50.51	ug/Kg	74%		25-127
Endosulfan II	41.90	50.51	ug/Kg	83%		29-121
Endosulfan sulfate	40.78	50.51	ug/Kg	81%		30-121
4,4'-DDD	39.22	50.51	ug/Kg	78%	#	26-120
Endrin aldehyde	10.04	50.51	ug/Kg	20%		10-120
Endrin ketone	42.81	50.51	ug/Kg	85%		28-125
4,4'-DDT	36.46	50.51	ug/Kg	72%		22-125
Methoxychlor	37.73	50.51	ug/Kg	75%		28-130
Surrogates						
TCMX	31.49	50.51	ug/Kg	62%		23-120
Decachlorobiphenyl	36.56	50.51	ug/Kg	72%		24-120

Type: Matrix Spike Lab ID: QC1171662 Batch: 345741

Matrix (Source ID): Soil (512546-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1171662 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	45.22	ND	49.50	ug/Kg	91%		46-120	0.99
beta-BHC	51.91	ND	49.50	ug/Kg	105%		41-120	0.99
gamma-BHC	46.95	ND	49.50	ug/Kg	95%		41-120	0.99
delta-BHC	49.82	ND	49.50	ug/Kg	101%		38-123	0.99
Heptachlor	45.89	ND	49.50	ug/Kg	93%		39-120	0.99
Aldrin	44.22	ND	49.50	ug/Kg	89%		34-120	0.99
Heptachlor epoxide	49.51	ND	49.50	ug/Kg	100%	#	43-120	0.99
Endosulfan I	47.33	ND	49.50	ug/Kg	96%		45-120	0.99
Dieldrin	47.12	ND	49.50	ug/Kg	95%		45-120	0.99
4,4'-DDE	50.02	ND	49.50	ug/Kg	101%		34-120	0.99
Endrin	48.89	ND	49.50	ug/Kg	99%		40-120	0.99
Endosulfan II	48.40	ND	49.50	ug/Kg	98%		41-120	0.99
Endosulfan sulfate	40.54	ND	49.50	ug/Kg	82%		42-120	0.99
4,4'-DDD	48.53	ND	49.50	ug/Kg	98%	#	41-120	0.99
Endrin aldehyde	33.77	ND	49.50	ug/Kg	68%		30-120	0.99
Endrin ketone	48.49	ND	49.50	ug/Kg	98%		45-120	0.99
4,4'-DDT	52.72	ND	49.50	ug/Kg	106%		35-127	0.99
Methoxychlor	49.89	ND	49.50	ug/Kg	101%		42-136	0.99
Surrogates								
TCMX	40.18		49.50	ug/Kg	81%		23-120	0.99
Decachlorobiphenyl	42.06		49.50	ug/Kg	85%		24-120	0.99

Type: Matrix Spike Duplicate Lab ID: QC1171663 Batch: 345741 Matrix (Source ID): Soil (512546-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1171663 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	49.44	ND	49.50	ug/Kg	100%		46-120	9	30	0.99
beta-BHC	52.87	ND	49.50	ug/Kg	107%		41-120	2	30	0.99
gamma-BHC	49.82	ND	49.50	ug/Kg	101%		41-120	6	30	0.99
delta-BHC	50.74	ND	49.50	ug/Kg	102%		38-123	2	30	0.99
Heptachlor	48.84	ND	49.50	ug/Kg	99%		39-120	6	30	0.99
Aldrin	46.77	ND	49.50	ug/Kg	94%		34-120	6	30	0.99
Heptachlor epoxide	50.93	ND	49.50	ug/Kg	103%	#	43-120	3	30	0.99
Endosulfan I	48.65	ND	49.50	ug/Kg	98%		45-120	3	30	0.99
Dieldrin	48.18	ND	49.50	ug/Kg	97%		45-120	2	30	0.99
4,4'-DDE	51.16	ND	49.50	ug/Kg	103%		34-120	2	30	0.99
Endrin	49.93	ND	49.50	ug/Kg	101%		40-120	2	30	0.99
Endosulfan II	50.14	ND	49.50	ug/Kg	101%		41-120	4	30	0.99
Endosulfan sulfate	34.92	ND	49.50	ug/Kg	71%		42-120	15	30	0.99
4,4'-DDD	50.35	ND	49.50	ug/Kg	102%	#	41-120	4	30	0.99
Endrin aldehyde	32.72	ND	49.50	ug/Kg	66%		30-120	3	30	0.99
Endrin ketone	49.15	ND	49.50	ug/Kg	99%		45-120	1	30	0.99
4,4'-DDT	54.04	ND	49.50	ug/Kg	109%		35-127	2	30	0.99
Methoxychlor	51.28	ND	49.50	ug/Kg	104%		42-136	3	30	0.99
Surrogates										
TCMX	45.05		49.50	ug/Kg	91%		23-120			0.99
Decachlorobiphenyl	43.35		49.50	ug/Kg	88%		24-120			0.99

CCV drift outside limits; average CCV drift within limits per method

requirements

Value is outside QC limits

ND Not Detected

Sample Summary

Chuck Houser

SCS Engineers

8799 Balboa #290

San Diego, CA

92123

Lab Job #: 509012

Project No: MIDWAY RISING

Location: Sports Arena

Date Received: 05/23/24

Sample ID	Lab ID	Collected	Matrix
SB-UST-24-3-5	509012-001	05/23/24 10:15	Soil
SB-UST-24-3-6.5	509012-002	05/23/24 10:15	Soil
SB-UST-24-3-8	509012-003	05/23/24 10:22	Soil
SB-UST-24-3-9.5	509012-004	05/23/24 10:22	Soil
SB-UST-24-3-10	509012-005	05/23/24 10:30	Soil
SB-UST-24-3-12.5	509012-006	05/23/24 10:30	Soil
SB-UST-24-1-4	509012-007	05/23/24 10:50	Soil
SB-UST-24-1-5.5	509012-008	05/23/24 10:50	Soil
SB-UST-24-1-7	509012-009	05/23/24 10:55	Soil
SB-UST-24-1-8.5	509012-010	05/23/24 10:55	Soil
SB-UST-24-1-9	509012-011	05/23/24 11:00	Soil
SB-UST-24-1-11.5	509012-012	05/23/24 11:00	Soil
SB-UST-24-2-4	509012-013	05/23/24 11:15	Soil
SB-UST-24-2-5.5	509012-014	05/23/24 11:15	Soil
SB-UST-24-2-6.5	509012-015	05/23/24 11:20	Soil
SB-UST-24-2-8	509012-016	05/23/24 11:20	Soil
SB-UST-24-2-10	509012-017	05/23/24 11:25	Soil
SB-UST-24-2-11.5	509012-018	05/23/24 11:25	Soil
SB-UST-24-3-W	509012-019	05/23/24 14:50	Water
SB-UST-24-2-W	509012-020	05/23/24 15:20	Water

Case Narrative

SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Chuck Houser Lab Job 509012

Number:

Project No: MIDWAY

RISING

Location: Sports Arena

Date Received: 05/23/24

This data package contains sample and QC results for thirteen soil samples and two water samples, requested for the above referenced project on 05/23/24. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B) Water:

- High response was observed for diesel C10-C28 in the CCV analyzed 05/30/24 01:36; affected data was qualified with "b".
- · No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Soil:

- Low recoveries were observed for a number of analytes in the MSD for batch 341353; the parent sample was not a project sample, and the BS/BSD were within limits. High RPD was observed for trichloroethene in the MS/MSD for batch 341353; the RPD was acceptable in the BS/BSD, and this analyte was not detected at or above the RL in the associated samples.
- Low recoveries were observed for a number of analytes in the MSD for batch 341540; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPDs were within limits.
- SB-UST-24-1-9 (lab # 509012-011) was diluted due to high hydrocarbons.
- No other analytical problems were encountered.

COMPANY: A N A L Y T A Select a Laboratory >>> #N/A #N/A CUSTOMER INFORMATION COMPANY: SCS EVANCE		Lab No: 509012	Standard:	1 / 150	5 Day:	3 Day:
custo				- >		
CUSTO 56) = =	A L Page: of	2 Day:	1.0	1 Day:	Custom TAT:
CUSTOMER 565	ry >>>		A = Air S = Soil/Solid Drinking Wate SD = Sediment	Preservative $1 = Na2S2O3 2 = HCI$	l vs	Sample Receipt Temp:
CUSTOMER 5cs		PP = Pure Product SE. SW = Swab T = Tissue WF	SEA = Sea Water WP = Wipe O = Other	$4 = H_2SO_4$ 5 = NaOH	NaOH 6 = Other	(lab use only)
568		PROJECT INFORMATION	Analysis Request	quest	Test Instru	Test Instructions / Comments
	Name:	Midway Rising			*	
Report To: Lucic House	Number:	1213320.87			Tor 58-1	For 58-05T-24-3,
3	ers.Core	01213320.07	(please su	please run the two
Address: 8799 Ballon Ark #290	290 Address:	Sports Avena Blod.			MYKOST	Mywost TPH WIE
40,0	23		78		٢ ٢	La 106 (2,60)
59.7	Global ID:	0	ያ) -			
	Sampled By:	Tyler Exarts / Cluete	ر يد إ			•
Sample ID	Sampling Sam Date Ti	Sampling Matrix Container House.	701 H&L	JorA	6.3/2.2	8-11/0-0
58-115T-24-3-5 5	123/24	1015 Soil Actual Ice	X			
5			×	:		
58-051-24-3-8	(0)	1022	<u> </u>			
58-057-24-3-9.5	0)	1022	X			
3	0	1030	X			
58-051-24-3 -12.5		020	X			
SZ-45T-24-1-4	1/6	05:20				
58-UST-24-181-5,5	10	05:01		X	\ <u></u>	
58-UST-24-0217	(0)	1 / / / 55:01	X			
58-UST-24-11/16/5	0/	10:55		<u> </u>	\searrow	
. Wight	§ ignature	Print Name	Company ,	/ Title	D	Date / Time
Relinquished By:	 - /	(Alment Viender	3CS Fra	Engineers	5/23	Sh51 H61
Received By:	Q No	A TO	EASS O		15/23/24	1 1945
Relinquished By:	2	MUHAGI TANMANAN	CA-50		5/24/2	hz,
² Received By:	2.00.	T. WIMS	82		1-5	1-29 (627
³ Relinquished By:	7	$\sum_{i=1}^{n}$			57.75	15/ 1/27
Received By: (A). Unline	Zes-	occupied acomposing	77 주.		halbert	1152

Turn Around Time (rush by advanced notice only)	5 Day: 3 Day:	1 Day: Custom TAT:	Preservatives: Sample Receipt Temp: $1=Na_2S_2O_3 \ \ 2=HCl \ \ 3=HNO_3$ $4=H_3SO_4 \ \ 5=NaOH \ \ 6=Other$		Test Instructions / Comments						77	h w		0.3/2.0			×		X						Date / Time	5 502 24 154C	5/23/2	5/24/24	7- 5-24-24 1627	751 m-m-5	5134124 1752
	Standard:	2 2 Day:	4 4	Other	Analysis Request			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	510	7 B)	S - 7	HŁ.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X	X		×		X	X	X	X	N Y	Company / Title	SCS Engineers	FA-SO U	22 42	5 5 VOAS 18	RA	E.4.
Chain of Custody Record	Lab No: 509012	Page: 7 of	Matrix: A = Air S = Soil/Solid W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water		PROJECT INFORMATION								Matrix Container Pres.	40.44	50:11 Steere 1 Ce						,	7	1420 Amberian	> 1	Print Name	1 7 Janana	6 VOAS gar sumole	HOUTAINING	W V Clart	Nicub	1ECBER- COMPENDA
		TICAL	۷>>>		PROJE	Name:	Number:	P.O.#:	Address:		Global ID:	Sampled By:	Sampling Sampling Date Time	=	215712	مه(۱)	1115	1115	1120	0211	1125	7 1125	5/23/24 1450	4 1520		4 M	- + other	MM		7)
		ALA	<<< Select a Laboratory >>> #N/A	#N/A	CUSTOMER INFORMATION	Sec. Da 1>					\$ T			a		28-721-24-11.5	4-2-4	58-451-24-2-6.5	-24-2-6-5	6-051-24-2-8	58. UST-24 210	58-055-24-2.11.5		58-UST-24-2-W	Signature	1/40	Tak sta	John	7		T. Withour
			Ÿ		CUSTOME	Company:	Report To:	Email:	Address:		Phone:	Fax:	OI aldmeS	10 115T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 68-057	3 58-451-24-2-	4 58-051-	5 58-051	6 58-054-24-2-	7 58.05	8 56-057	150-85 6	10 58-05		¹ Relinquished By:	¹ Received By:	² Relinquished By:	² Received By:	³ Relinquished By:	³ Received By:

SAMPLE ACCEPTANCE CHECKLIST

Section 1	jra sizuizu	_		
Client: SCS Engineers	Project: Sporte Arena MDu	iay R	ISING	
		Yes	No	
Section 2				
Sample(s) received in a cooler? Yes, How many? 1	No (skip section 2)		e Temp (°C) (No Cooler)	:
Sample Temp (°C), One from each cooler: #1: $U \cdot D$ (Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptar the same day as sample receipt to have a higher temperatus Shipping Information:				collected
Shipping information.				
Section 3 Was the cooler packed with: □ lce Packs □ Paper □ None □ Cooler Temp (°C): #1: □ Log Paper □ None #2:	Bubble Wrap Styrofo Other#3:	oam #4:		
Section 4		YES	NO	N/A
Was a COC received?		✓		
Are sample IDs present?		1		
Are sampling dates & times present?		√		
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?	**	1		
Are custody seals present?			1	
If custody seals are present, were they intact?		-		✓
Are all samples sealed in plastic bags? (Recommended fo	r Microbiology samples)			1
Did all samples arrive intact? If no, indicate in Section 4 be		1		
Did all bottle labels agree with COC? (ID, dates and times)		✓		
Were the samples collected in the correct containers for t		✓		
Are the containers labeled with the correct preserve		1		
Is there headspace in the VOA vials greater than 5-6 mm i	n diameter?	/		
Was a sufficient amount of sample submitted for the requ	uested tests?	√		
Section 5 Explanations/Comments SIGNIFICANT HEADSPACE: SAMPLE -020: AU VIALS SAMPLE -019: 5 of U VIALS			44.00	
Section 6				
For discrepancies, how was the Project Manager notified?	P Verbal PM Initials: Email (email sent to/o		1 5/21	1124
Project Manager's response:				
Completed By: Quitigra	Date: MAY 2 4 202	4		
Enthalo Analytical a subsidiary of M	Iontrose Environmental Group Inc			

931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209 www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Lab Job #: 509012 Project No: MIDWAY RISING Location: Sports Arena Date Received: 05/23/24

Sample ID: SB-UST-24-3-5 La	b ID: 509012-001	Collected: 05/23/24 10:15
-----------------------------	------------------	---------------------------

Matrix: Soil

509012-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	10	1	341256	05/28/24	05/28/24	KMB
TPH (C13-C22)	ND		mg/Kg	10	1	341256	05/28/24	05/28/24	KMB
TPH (C23-C44)	95		mg/Kg	20	1	341256	05/28/24	05/28/24	KMB
Surrogates				Limits					
n-Triacontane	101%		%REC	70-130	1	341256	05/28/24	05/28/24	KMB

Sample ID: SB-UST-24-3-6.5 Lab ID: 509012-002 Collected: 05/23/24 10:15

Matrix: Soil

509012-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	10	1	341256	05/28/24	05/30/24	KMB
TPH (C13-C22)	ND		mg/Kg	10	1	341256	05/28/24	05/30/24	KMB
TPH (C23-C44)	ND		mg/Kg	20	1	341256	05/28/24	05/30/24	KMB
Surrogates				Limits					
n-Triacontane	115%		%REC	70-130	1	341256	05/28/24	05/30/24	KMB

Sample ID: SB-UST-24-3-8 Lab ID: 509012-003 Collected: 05/23/24 10:22

509012-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M									
Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	10	1	341256	05/28/24	05/28/24	KMB
TPH (C13-C22)	ND		mg/Kg	10	1	341256	05/28/24	05/28/24	KMB
TPH (C23-C44)	ND		mg/Kg	20	1	341256	05/28/24	05/28/24	KMB
Surrogates				Limits					
n-Triacontane	106%		%REC	70-130	1	341256	05/28/24	05/28/24	KMB

Sample ID: SB-UST-24-3-9.5 Lab ID: 509012-004 Collected: 05/23/24 10:22

Matrix: Soil

509012-004 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M									
Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/28/24	KMB
TPH (C13-C22)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/28/24	KMB
TPH (C23-C44)	ND		mg/Kg	20	0.99	341256	05/28/24	05/28/24	KMB
Surrogates				Limits					
n-Triacontane	101%		%REC	70-130	0.99	341256	05/28/24	05/28/24	KMB

Sample ID: SB-UST-24-3-10 Lab ID: 509012-005 Collected: 05/23/24 10:30

Matrix: Soil

509012-005 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M									
Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/28/24	KMB
TPH (C13-C22)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/28/24	KMB
TPH (C23-C44)	92		mg/Kg	20	0.99	341256	05/28/24	05/28/24	KMB
Surrogates				Limits					
n-Triacontane	105%		%REC	70-130	0.99	341256	05/28/24	05/28/24	KMB

Sample ID: SB-UST-24-3-12.5 Lab ID: 509012-006 Collected: 05/23/24 10:30

509012-006 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	10	1	341256	05/28/24	05/28/24	DIB
TPH (C13-C22)	ND		mg/Kg	10	1	341256	05/28/24	05/28/24	DIB
TPH (C23-C44)	ND		mg/Kg	20	1	341256	05/28/24	05/28/24	DIB
Surrogates				Limits					
n-Triacontane	91%		%REC	70-130	1	341256	05/28/24	05/28/24	DIB

Sample ID: SB-UST-24-1-7 Lab ID: 509012-009 Collected: 05/23/24 10:55

509012-009 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	56		mg/Kg	50	5	341256	05/28/24	05/30/24	KMB
TPH (C13-C22)	1,900		mg/Kg	50	5	341256	05/28/24	05/30/24	KMB
TPH (C23-C44)	130		mg/Kg	99	5	341256	05/28/24	05/30/24	KMB
Surrogates				Limits					
n-Triacontane	116%		%REC	70-130	5	341256	05/28/24	05/30/24	KMB
Method: EPA 8260B Prep Method: EPA 5030B									
3-Chloropropene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Freon 12	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Chloromethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Vinyl Chloride	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Bromomethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Chloroethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Trichlorofluoromethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Acetone	ND		ug/Kg	100	1	341540	05/31/24	05/31/24	TCN
Freon 113	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,1-Dichloroethene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Methylene Chloride	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
MTBE	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
trans-1,2-Dichloroethene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,1-Dichloroethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
2-Butanone	ND		ug/Kg	100	1	341540	05/31/24	05/31/24	TCN
cis-1,2-Dichloroethene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
2,2-Dichloropropane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Chloroform	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Bromochloromethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,1,1-Trichloroethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,1-Dichloropropene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Carbon Tetrachloride	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,2-Dichloroethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Benzene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Trichloroethene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,2-Dichloropropane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Bromodichloromethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Dibromomethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
4-Methyl-2-Pentanone	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Toluene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,3-Dichloropropane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Tetrachloroethene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Dibromochloromethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,2-Dibromoethane	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
Chlorobenzene	ND		ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN

		,						
509012-009 Analyte	Result	Qual Units	: RL	DF	Batch	Prepared	Analyzed	Chemist
1,1,1,2-Tetrachloroethane	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
Ethylbenzene	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
m,p-Xylenes	ND	ug/Ko	j 10	1	341540	05/31/24	05/31/24	TCN
o-Xylene	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
Styrene	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
Bromoform	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
Isopropylbenzene	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
1,1,2,2-Tetrachloroethane	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
1,2,3-Trichloropropane	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
Propylbenzene	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
Bromobenzene	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
1,3,5-Trimethylbenzene	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
2-Chlorotoluene	ND	ug/Ko	5.0	1	341540	05/31/24	05/31/24	TCN
4-Chlorotoluene	ND	ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
tert-Butylbenzene	ND	ug/Kg	5.0	1	341540	05/31/24	05/31/24	TCN
1,2,4-Trimethylbenzene	ND	ug/K	5.0	1	341540	05/31/24	05/31/24	TCN
sec-Butylbenzene	ND	ug/Kg		1	341540	05/31/24	05/31/24	TCN
para-Isopropyl Toluene	ND	ug/Kg		1	341540	05/31/24	05/31/24	TCN
1,3-Dichlorobenzene	ND	ug/Kg	-	1	341540	05/31/24	05/31/24	TCN
1,4-Dichlorobenzene	ND	ug/K	-	1	341540	05/31/24	05/31/24	TCN
n-Butylbenzene	ND	ug/K	-	1	341540	05/31/24	05/31/24	TCN
1,2-Dichlorobenzene	ND	ug/K	•	1	341540	05/31/24	05/31/24	TCN
1,2-Dibromo-3-Chloropropane	ND	ug/K	•	1	341540	05/31/24	05/31/24	TCN
1,2,4-Trichlorobenzene	ND	ug/K		1	341540	05/31/24	05/31/24	TCN
Hexachlorobutadiene	ND	ug/K	•	1	341540	05/31/24	05/31/24	TCN
Naphthalene	ND	ug/Kg	-	1	341540	05/31/24	05/31/24	TCN
1,2,3-Trichlorobenzene	ND	ug/K	-	1	341540	05/31/24	05/31/24	TCN
cis-1,4-Dichloro-2-butene	ND	ug/K		1	341540	05/31/24	05/31/24	TCN
trans-1,4-Dichloro-2-butene	ND	ug/K		1	341540	05/31/24	05/31/24	TCN
tert-Butyl Alcohol (TBA)	ND	ug/K	•	1	341540	05/31/24	05/31/24	TCN
Isopropyl Ether (DIPE)	ND	ug/K		1	341540	05/31/24	05/31/24	TCN
Ethyl tert-Butyl Ether (ETBE)	ND	ug/K		1	341540	05/31/24	05/31/24	TCN
Methyl tert-Amyl Ether (TAME)	ND	ug/K	•	1	341540	05/31/24	05/31/24	TCN
Xylene (total)	ND	ug/K	•	1	341540	05/31/24	05/31/24	TCN
urrogates		- 9/ - 3	Limits			· · · ·		
Dibromofluoromethane	95%	%RE0		1	341540	05/31/24	05/31/24	TCN
1,2-Dichloroethane-d4	96%	%REG		1	341540	05/31/24	05/31/24	TCN
Toluene-d8	102%	%REG		1	341540	05/31/24	05/31/24	TCN
Bromofluorobenzene	118%	%REG		1	341540	05/31/24	05/31/24	TCN

Sample ID: SB-UST-24-1-9 Lab ID: 509012-011 Collected: 05/23/24 11:00

509012-011 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	73		ma/Ka	10	1	341256	05/28/24	05/28/24	KMB
TPH (C13-C22)	890		mg/Kg mg/Kg	10	1	341256	05/28/24	05/28/24	KMB
TPH (C13-C22)	ND		mg/Kg	20	1	341256	05/28/24	05/28/24	KMB
Surrogates	טוו		Hig/Kg	Limits	- 1	341230	03/26/24	03/20/24	KIVID
n-Triacontane	72%		%REC	70-130	1	341256	05/28/24	05/28/24	KMB
	12/0		/61 1LO	70-130	- '	341230	03/20/24	03/20/24	IZIVID
Method: EPA 8260B Prep Method: EPA 5030B									
3-Chloropropene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Freon 12	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Chloromethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Vinyl Chloride	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Bromomethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Chloroethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Trichlorofluoromethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Acetone	ND		ug/Kg	5,000	50	341353	05/29/24	05/29/24	HMN
Freon 113	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,1-Dichloroethene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Methylene Chloride	ND		ug/Kg	400	50	341353	05/29/24	05/29/24	HMN
MTBE	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
trans-1,2-Dichloroethene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,1-Dichloroethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
2-Butanone	ND		ug/Kg	5,000	50	341353	05/29/24	05/29/24	HMN
cis-1,2-Dichloroethene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
2,2-Dichloropropane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Chloroform	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Bromochloromethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,1,1-Trichloroethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,1-Dichloropropene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Carbon Tetrachloride	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,2-Dichloroethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Benzene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Trichloroethene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,2-Dichloropropane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Bromodichloromethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Dibromomethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
4-Methyl-2-Pentanone	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
cis-1,3-Dichloropropene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Toluene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
trans-1,3-Dichloropropene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,1,2-Trichloroethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,3-Dichloropropane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Tetrachloroethene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Dibromochloromethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
1,2-Dibromoethane	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN
Chlorobenzene	ND		ug/Kg	250	50	341353	05/29/24	05/29/24	HMN

Chemist				_		-		
	Analyzed	Prepared	Batch	DF	RL	Qual Units	Result	509012-011 Analyte
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	1,1,1,2-Tetrachloroethane
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	Ethylbenzene
HMN	05/29/24	05/29/24	341353	50	500	ug/Kg	ND	m,p-Xylenes
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	o-Xylene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	Styrene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	Bromoform
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	Isopropylbenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	1,1,2,2-Tetrachloroethane
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	1,2,3-Trichloropropane
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	Propylbenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	Bromobenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	1,3,5-Trimethylbenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	2-Chlorotoluene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	4-Chlorotoluene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	tert-Butylbenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	330	1,2,4-Trimethylbenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	sec-Butylbenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	para-Isopropyl Toluene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	1,3-Dichlorobenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	1,4-Dichlorobenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	n-Butylbenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	1,2-Dichlorobenzene
HMN	05/29/24	05/29/24	341353	50	250	ug/Kg	ND	1,2-Dibromo-3-Chloropropane
HMN				50				• •
HMN				50				
HMN				50			640	
HMN	05/29/24	05/29/24	341353	50	250		ND	•
HMN				50				
HMN				50				,
HMN								
HMN								• • • • • • • • • • • • • • • • • • • •
HMN								
HMN								
HMN								• • • • • • • • • • • • • • • • • • • •
								• • • • • • • • • • • • • • • • • • • •
HMN	05/29/24	05/29/24	341353	50		%REC	87%	
HMN								
HMN								<u>, </u>
HMN								
	05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24	05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24 05/29/24	341353 341353 341353 341353 341353 341353 341353 341353 341353 341353 341353 341353 341353 341353	50 50 50	250 250 250 250 250 250 5,000 250 250 250 250 Limits 70-145 70-145 70-145	ug/Kg	ND ND 640 ND	1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene cis-1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene tert-Butyl Alcohol (TBA) Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) Xylene (total) Surrogates Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene

Sample ID: SB-UST-24-1-11.5 Lab ID: 509012-012 Collected: 05/23/24 11:00

Matrix: Soil

509012-012 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/30/24	KMB
TPH (C13-C22)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/30/24	KMB
TPH (C23-C44)	ND		mg/Kg	20	0.99	341256	05/28/24	05/30/24	KMB
Surrogates				Limits					
n-Triacontane	118%		%REC	70-130	0.99	341256	05/28/24	05/30/24	KMB

Sample ID: SB-UST-24-2-5.5 Lab ID: 509012-014 Collected: 05/23/24 11:15

509012-014 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M									
Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/30/24	KMB
TPH (C13-C22)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/30/24	KMB
TPH (C23-C44)	ND		mg/Kg	20	0.99	341256	05/28/24	05/30/24	KMB
Surrogates				Limits					
n-Triacontane	102%		%REC	70-130	0.99	341256	05/28/24	05/30/24	KMB

Sample ID: SB-UST-24-2-8 Lab ID: 509012-016 Collected: 05/23/24 11:20

509012-016 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/30/24	KMB
TPH (C13-C22)	ND		mg/Kg	9.9	0.99	341256	05/28/24	05/30/24	KMB
TPH (C23-C44)	ND		mg/Kg	20	0.99	341256	05/28/24	05/30/24	KMB
Surrogates				Limits					
n-Triacontane	103%		%REC	70-130	0.99	341256	05/28/24	05/30/24	KMB
Method: EPA 8260B Prep Method: EPA 5030B									
3-Chloropropene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Freon 12	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Chloromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Vinyl Chloride	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromomethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Chloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Trichlorofluoromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Acetone	ND		ug/Kg	100	1	341353	05/29/24	05/29/24	HMN
Freon 113	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1-Dichloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Methylene Chloride	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
MTBE	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
trans-1,2-Dichloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1-Dichloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
2-Butanone	ND		ug/Kg	100	1	341353	05/29/24	05/29/24	HMN
cis-1,2-Dichloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
2,2-Dichloropropane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Chloroform	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromochloromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1,1-Trichloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1-Dichloropropene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Carbon Tetrachloride	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dichloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Benzene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Trichloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dichloropropane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromodichloromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Dibromomethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
4-Methyl-2-Pentanone	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
cis-1,3-Dichloropropene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Toluene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
trans-1,3-Dichloropropene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1,2-Trichloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,3-Dichloropropane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Tetrachloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Dibromochloromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dibromoethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Chlorobenzene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN

		,			-			
509012-016 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Ethylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
m,p-Xylenes	ND	ug/Kg	10	1	341353	05/29/24	05/29/24	HMN
o-Xylene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Styrene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromoform	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Isopropylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2,3-Trichloropropane	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Propylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
2-Chlorotoluene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
4-Chlorotoluene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
tert-Butylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
sec-Butylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
para-Isopropyl Toluene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,3-Dichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,4-Dichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
n-Butylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Hexachlorobutadiene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Naphthalene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	1	341353	05/29/24	05/29/24	HMN
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Xylene (total)	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Surrogates			Limits					
Dibromofluoromethane	92%	%REC	70-145	1	341353	05/29/24	05/29/24	HMN
1,2-Dichloroethane-d4	93%	%REC	70-145	1	341353	05/29/24	05/29/24	HMN
Toluene-d8	102%	%REC	70-145	1	341353	05/29/24	05/29/24	HMN
Bromofluorobenzene	105%	%REC	70-145	1	341353	05/29/24	05/29/24	HMN

Sample ID: SB-UST-24-2-10 Lab ID: 509012-017 Collected: 05/23/24 11:25

509012-017 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	10	1	341256	05/28/24	05/30/24	KMB
TPH (C13-C22)	ND		mg/Kg	10	1	341256	05/28/24	05/30/24	KMB
TPH (C23-C44)	ND		mg/Kg	20	1	341256	05/28/24	05/30/24	KMB
Surrogates				Limits					
n-Triacontane	103%		%REC	70-130	1	341256	05/28/24	05/30/24	KMB
Method: EPA 8260B Prep Method: EPA 5030B									
3-Chloropropene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Freon 12	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Chloromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Vinyl Chloride	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromomethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Chloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Trichlorofluoromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Acetone	ND		ug/Kg	100	1	341353	05/29/24	05/29/24	HMN
Freon 113	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1-Dichloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Methylene Chloride	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
MTBE	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
trans-1,2-Dichloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1-Dichloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
2-Butanone	ND		ug/Kg	100	1	341353	05/29/24	05/29/24	HMN
cis-1,2-Dichloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
2,2-Dichloropropane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Chloroform	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromochloromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1,1-Trichloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1-Dichloropropene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Carbon Tetrachloride	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dichloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Benzene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Trichloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dichloropropane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromodichloromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Dibromomethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
4-Methyl-2-Pentanone	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
cis-1,3-Dichloropropene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Toluene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
trans-1,3-Dichloropropene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1,2-Trichloroethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,3-Dichloropropane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Tetrachloroethene	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Dibromochloromethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dibromoethane	ND		ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Chlorobenzene	ND		ug/Kg	5.0		341353	05/29/24	05/29/24	HMN

	, , , , ,	ary order to our to		000				
509012-017 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Ethylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
m,p-Xylenes	ND	ug/Kg	10	1	341353	05/29/24	05/29/24	HMN
o-Xylene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Styrene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromoform	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Isopropylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2,3-Trichloropropane	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Propylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Bromobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
2-Chlorotoluene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
4-Chlorotoluene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
tert-Butylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
sec-Butylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
para-Isopropyl Toluene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,3-Dichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,4-Dichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
n-Butylbenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Hexachlorobutadiene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Naphthalene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	1	341353	05/29/24	05/29/24	HMN
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Xylene (total)	ND	ug/Kg	5.0	1	341353	05/29/24	05/29/24	HMN
Surrogates			Limits					
Dibromofluoromethane	95%		70-145	1	341353	05/29/24	05/29/24	HMN
1,2-Dichloroethane-d4	93%		70-145	1	341353	05/29/24	05/29/24	HMN
Toluene-d8	98%		70-145	1	341353	05/29/24	05/29/24	HMN
Bromofluorobenzene	103%		70-145	1	341353	05/29/24	05/29/24	HMN
					= = ='			

Sample ID: SB-UST-24-2-11.5 Lab ID: 509012-018 Collected: 05/23/24 11:25

509012-018 Analyte	Result	Qual Unit	s RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/k	(g 9.9	0.99	341256	05/28/24	05/29/24	KMB
TPH (C13-C22)	ND	mg/k	(g 9.9	0.99	341256	05/28/24	05/29/24	KMB
TPH (C23-C44)	ND	mg/k	(g 20	0.99	341256	05/28/24	05/29/24	KMB
Surrogates			Limits					
n-Triacontane	74%	%RE	C 70-130	0.99	341256	05/28/24	05/29/24	KMB

Sample ID: SB-UST-24-3-W Lab ID: 509012-019 Collected: 05/23/24 14:50

Matrix: Water

509012-019 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 8015B Prep Method: EPA 3510C									
TPH (C6-C12)	ND		mg/L	0.20	2	341267	05/28/24	05/31/24	KMB
TPH (C13-C22)	1.2		mg/L	0.20	2	341267	05/28/24	05/31/24	KMB
TPH (C13-C22)	ND			0.60	2	341267	05/28/24	05/31/24	KMB
•	עוו		mg/L			341207	05/26/24	05/31/24	KIVID
Surrogates n-Triacontane	72%		%REC	35-130	2	341267	05/28/24	05/31/24	KMB
	12%		%NEU	33-130		341207	05/26/24	05/31/24	KIVID
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Chloromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Vinyl Chloride	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromomethane	ND		ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
Chloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Trichlorofluoromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Acetone	ND		ug/L	44	1	341415	05/30/24	05/30/24	HMN
Freon 113	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1-Dichloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Methylene Chloride	ND		ug/L	5.0	1	341415	05/30/24	05/30/24	HMN
MTBE	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
trans-1,2-Dichloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1-Dichloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
2-Butanone	ND		ug/L	5.0	1	341415	05/30/24	05/30/24	HMN
cis-1,2-Dichloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
2,2-Dichloropropane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Chloroform	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromochloromethane	ND		ug/L	0.5	<u>.</u> 1	341415	05/30/24	05/30/24	HMN
1,1,1-Trichloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1-Dichloropropene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Carbon Tetrachloride	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dichloroethane	ND			0.5	1	341415	05/30/24	05/30/24	HMN
<u> </u>			ug/L			341415	05/30/24		
Benzene	ND		ug/L	0.5	1			05/30/24	HMN
Trichloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dichloropropane	ND		ug/L	0.5	<u> </u>	341415	05/30/24	05/30/24	HMIN
Bromodichloromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Dibromomethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
4-Methyl-2-Pentanone	ND		ug/L	5.0	1	341415	05/30/24	05/30/24	HMN
cis-1,3-Dichloropropene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Toluene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
trans-1,3-Dichloropropene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1,2-Trichloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,3-Dichloropropane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Tetrachloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Dibromochloromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dibromoethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Chlorobenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1,1,2-Tetrachloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN

509012-019 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Ethylbenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
m,p-Xylenes	1.6	ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
o-Xylene	0.6	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Styrene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromoform	ND	ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
Propylbenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Isopropylbenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2,3-Trichloropropane	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromobenzene	ND	ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
1,3,5-Trimethylbenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
2-Chlorotoluene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
4-Chlorotoluene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
tert-Butylbenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2,4-Trimethylbenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
sec-Butylbenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
para-Isopropyl Toluene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,3-Dichlorobenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,4-Dichlorobenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
n-Butylbenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dichlorobenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dibromo-3-Chloropropane	ND	ug/L	2.0	1	341415	05/30/24	05/30/24	HMN
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Hexachlorobutadiene	ND	ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
Naphthalene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2,3-Trichlorobenzene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
cis-1,4-Dichloro-2-butene	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
trans-1,4-Dichloro-2-butene	ND	ug/L ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Isopropyl Ether (DIPE)	ND	-	0.5	1	341415	05/30/24	05/30/24	HMN
Ethyl tert-Butyl Ether (ETBE)	ND	ug/L ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
tert-Butyl Alcohol (TBA)	ND	•	10	1	341415	05/30/24	05/30/24	HMN
Methyl tert-Amyl Ether (TAME)	ND	ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
. ,	2.2	ug/L	0.5		341415	05/30/24	05/30/24	HMN
Xylene (total) Surrogates	2.2	ug/L	U.5 Limits	1	341415	05/30/24	05/30/24	HIVIIN
Dibromofluoromethane	105%	%REC	70-130	1	341415	05/30/24	05/30/24	HMN
1,2-Dichloroethane-d4	92%		70-130		341415	05/30/24	05/30/24	HMN
, , , , , , , , , , , , , , , , , , ,				1				
Toluene-d8	95%	%REC	70-130	1	341415	05/30/24	05/30/24	HMN
Bromofluorobenzene	108%	%REC	70-130	1	341415	05/30/24	05/30/24	HMN

Sample ID: SB-UST-24-2-W Lab ID: 509012-020 Collected: 05/23/24 15:20

Matrix: Water

509012-020 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015B Prep Method: EPA 3510C									
TPH (C6-C12)	0.84		mg/L	0.69	6.9	341267	05/28/24	05/31/24	KMB
TPH (C13-C22)	3.4		mg/L	0.69	6.9	341267	05/28/24	05/31/24	KMB
TPH (C23-C44)	ND		mg/L	2.1	6.9	341267	05/28/24	05/31/24	KMB
Surrogates				Limits					
n-Triacontane	75%		%REC	35-130	6.9	341267	05/28/24	05/31/24	KMB
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Chloromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Vinyl Chloride	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromomethane	ND		ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
Chloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Trichlorofluoromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Acetone	ND		ug/L	44	1	341415	05/30/24	05/30/24	HMN
Freon 113	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1-Dichloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Methylene Chloride	ND		ug/L	5.0	1	341415	05/30/24	05/30/24	HMN
MTBE	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
trans-1,2-Dichloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1-Dichloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
2-Butanone	ND		ug/L	5.0	1	341415	05/30/24	05/30/24	HMN
cis-1,2-Dichloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
2,2-Dichloropropane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Chloroform	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromochloromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1,1-Trichloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1-Dichloropropene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Carbon Tetrachloride	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dichloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Benzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Trichloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dichloropropane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromodichloromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Dibromomethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
4-Methyl-2-Pentanone	ND		ug/L	5.0	1	341415	05/30/24	05/30/24	HMN
cis-1,3-Dichloropropene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Toluene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
trans-1,3-Dichloropropene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1,2-Trichloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,3-Dichloropropane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Tetrachloroethene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Dibromochloromethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dibromoethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
	ND		ug/L	0.5	- 1	341415	05/30/24	05/30/24	HMN
Chlorobenzene				(1:)		34141:1	しつ/いい/24	03/30/24	

509012-020 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Ethylbenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
m,p-Xylenes	ND		ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
o-Xylene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Styrene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromoform	ND		ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
Propylbenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Isopropylbenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,1,2,2-Tetrachloroethane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2,3-Trichloropropane	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Bromobenzene	ND		ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
1,3,5-Trimethylbenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
2-Chlorotoluene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
4-Chlorotoluene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
tert-Butylbenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2,4-Trimethylbenzene	0.9		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
sec-Butylbenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
para-Isopropyl Toluene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,3-Dichlorobenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,4-Dichlorobenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
n-Butylbenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dichlorobenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2-Dibromo-3-Chloropropane	ND		ug/L	2.0	1	341415	05/30/24	05/30/24	HMN
1,2,4-Trichlorobenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Hexachlorobutadiene	ND		ug/L	1.0	1	341415	05/30/24	05/30/24	HMN
Naphthalene	5.4		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
1,2,3-Trichlorobenzene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
cis-1,4-Dichloro-2-butene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
trans-1,4-Dichloro-2-butene	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Isopropyl Ether (DIPE)	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Ethyl tert-Butyl Ether (ETBE)	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
tert-Butyl Alcohol (TBA)	ND		ug/L	10	1	341415	05/30/24	05/30/24	HMN
Methyl tert-Amyl Ether (TAME)	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Xylene (total)	ND		ug/L	0.5	1	341415	05/30/24	05/30/24	HMN
Surrogates				Limits					
Dibromofluoromethane	106%		%REC	70-130	1	341415	05/30/24	05/30/24	HMN
1,2-Dichloroethane-d4	93%		%REC	70-130	1	341415	05/30/24	05/30/24	HMN
Toluene-d8	99%		%REC	70-130	1	341415	05/30/24	05/30/24	HMN
Bromofluorobenzene	104%		%REC	70-130	1	341415	05/30/24	05/30/24	HMN

ND Not Detected

Type:	Blank	Lab ID:	QC1156409	Batch:	341267
Matrix:	Water	Method:	EPA 8015B	Prep Method:	EPA 3510C

QC1156409 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
TPH (C6-C12)	ND		mg/L	0.10	05/28/24	05/29/24
TPH (C13-C22)	ND		mg/L	0.10	05/28/24	05/29/24
TPH (C23-C44)	ND		mg/L	0.30	05/28/24	05/29/24
Surrogates				Limits		
n-Triacontane	90%		%REC	35-130	05/28/24	05/29/24

Type: Lab Control Sample Lab ID: QC1156410 Batch: 341267

Matrix: Water Method: EPA 8015B Prep Method: EPA 3510C

QC1156410 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Diesel C10-C28	0.8238	1.000	mg/L	82%	b	42-120
Surrogates						
n-Triacontane	0.01964	0.02000	mg/L	98%		35-130

Type: Lab Control Sample Duplicate Lab ID: QC1156411 Batch: 341267

Matrix: Water Method: EPA 8015B Prep Method: EPA 3510C

QC1156411 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
Diesel C10-C28	0.8577	1.000	mg/L	86%	b	42-120	4	36
Surrogates								
n-Triacontane	0.01975	0.02000	mg/L	99%		35-130		

Type: Blank Lab ID: QC1156370 Batch: 341256

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1156370 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
TPH (C6-C12)	ND		mg/Kg	10	05/28/24	05/28/24
TPH (C13-C22)	ND		mg/Kg	10	05/28/24	05/28/24
TPH (C23-C44)	ND		mg/Kg	20	05/28/24	05/28/24
Surrogates				Limits		
n-Triacontane	98%		%REC	70-130	05/28/24	05/28/24

Type: Lab Control Sample Lab ID: QC1156371 Batch: 341256

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1156371 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	245.3	249.6	mg/Kg	98%	76-122
Surrogates					
n-Triacontane	9.592	9.985	mg/Kg	96%	70-130

Type: Matrix Spike Lab ID: QC1156372 Batch: 341256

Matrix (Source ID): Soil (509012-006) Method: EPA 8015M Prep Method: EPA 3580M

Source Sample QC1156372 Analyte Result Result Spiked Units Recovery Qual Limits DF Diesel C10-C28 206.1 ND 247.8 mg/Kg 83% 62-126 0.99 Surrogates n-Triacontane 8.243 9.911 83% 70-130 0.99 mg/Kg

Type: Matrix Spike Duplicate Lab ID: QC1156373 Batch: 341256

Matrix (Source ID): Soil (509012-006) Method: EPA 8015M Prep Method: EPA 3580M

Source Sample **RPD** QC1156373 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** DF Lim 254.6 102% Diesel C10-C28 ND 249.1 mg/Kg 62-126 21 35 1 Surrogates n-Triacontane 9.977 9.965 mg/Kg 100% 70-130 1

 Type:
 Lab Control Sample Matrix:
 Lab ID:
 QC1156901 QC1156901
 Batch:
 341415 QC1156901

 QC1156901 Analyte
 Result
 Spiked Units
 Recovery Qual Limits

 1,1-Dichloroethene
 40.07
 50.00 ug/L
 80%
 70-135

 MTBE
 43.37
 50.00 ug/L
 87%
 70-130

1,1-Dichloroethene	40.07	50.00	ug/L	80%	/0-135
MTBE	43.37	50.00	ug/L	87%	70-130
Benzene	48.12	50.00	ug/L	96%	70-130
Trichloroethene	51.04	50.00	ug/L	102%	70-130
Toluene	49.40	50.00	ug/L	99%	70-130
Chlorobenzene	48.77	50.00	ug/L	98%	70-130
Surrogates					
Dibromofluoromethane	50.78	50.00	ug/L	102%	70-130
1,2-Dichloroethane-d4	45.39	50.00	ug/L	91%	70-130
Toluene-d8	49.57	50.00	ug/L	99%	70-130
Bromofluorobenzene	52.87	50.00	ug/L	106%	70-130

Type: Matrix Spike Lab ID: QC1156903 Batch: 341415
Matrix (Source ID): Water (508821-003) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample						
QC1156903 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	38.67	ND	50.00	ug/L	77%		70-130	1
MTBE	41.93	ND	50.00	ug/L	84%		75-130	1
Benzene	46.08	ND	50.00	ug/L	92%		70-130	1
Trichloroethene	47.35	ND	50.00	ug/L	95%		63-130	1
Toluene	44.61	ND	50.00	ug/L	89%		70-130	1
Chlorobenzene	46.38	ND	50.00	ug/L	93%		70-130	1
Surrogates								
Dibromofluoromethane	51.51		50.00	ug/L	103%		70-130	1
1,2-Dichloroethane-d4	45.68		50.00	ug/L	91%		70-130	1
Toluene-d8	48.30		50.00	ug/L	97%		70-130	1
Bromofluorobenzene	53.32		50.00	ug/L	107%		70-130	1

Type: Matrix Spike Duplicate Lab ID: QC1156904 Batch: 341415

Matrix (Source ID): Water (508821-003) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1156904 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	38.43	ND	50.00	ug/L	77%		70-130	1	30	1
MTBE	40.81	ND	50.00	ug/L	82%		75-130	3	30	1
Benzene	45.96	ND	50.00	ug/L	92%		70-130	0	30	1
Trichloroethene	49.98	ND	50.00	ug/L	100%		63-130	5	30	1
Toluene	46.96	ND	50.00	ug/L	94%		70-130	5	30	1
Chlorobenzene	47.05	ND	50.00	ug/L	94%		70-130	1	30	1
Surrogates										
Dibromofluoromethane	50.68		50.00	ug/L	101%		70-130			1
1,2-Dichloroethane-d4	44.11		50.00	ug/L	88%		70-130			1
Toluene-d8	49.51		50.00	ug/L	99%		70-130			1
Bromofluorobenzene	52.13		50.00	ug/L	104%		70-130			1

Type: Blank Lab ID: QC1156905 Batch: 341415
Matrix: Water Method: EPA 8260B Prep Method: EPA 5030B

QC1156905 Analyte	Result	Qual Units	RL	Prepared	Analyzed
reon 12	ND	ug/L	0.5	05/30/24	05/30/24
Chloromethane	ND	ug/L	0.5	05/30/24	05/30/24
/inyl Chloride	ND	ug/L	0.5	05/30/24	05/30/24
Bromomethane	ND	ug/L	1.0	05/30/24	05/30/24
Chloroethane	ND	ug/L	0.5	05/30/24	05/30/24
richlorofluoromethane	ND	ug/L	0.5	05/30/24	05/30/24
Acetone	ND	ug/L	44	05/30/24	05/30/24
reon 113	ND	ug/L	0.5	05/30/24	05/30/24
,1-Dichloroethene	ND	ug/L	0.5	05/30/24	05/30/24
Methylene Chloride	ND	ug/L	5.0	05/30/24	05/30/24
MTBE .	ND	ug/L	0.5	05/30/24	05/30/24
rans-1,2-Dichloroethene	ND	ug/L	0.5	05/30/24	05/30/24
,1-Dichloroethane	ND	ug/L	0.5	05/30/24	05/30/24
2-Butanone	ND	ug/L	5.0	05/30/24	05/30/24
sis-1,2-Dichloroethene	ND	ug/L	0.5	05/30/24	05/30/24
2,2-Dichloropropane	ND	ug/L	0.5	05/30/24	05/30/24
Chloroform	ND	ug/L	0.5	05/30/24	05/30/24
Bromochloromethane	ND	ug/L	0.5	05/30/24	05/30/24
,1,1-Trichloroethane	ND	ug/L	0.5	05/30/24	05/30/24
,1-Dichloropropene	ND	ug/L	0.5	05/30/24	05/30/24
Carbon Tetrachloride	ND	ug/L	0.5	05/30/24	05/30/24
,2-Dichloroethane	ND	ug/L	0.5	05/30/24	05/30/24
Benzene	ND	ug/L	0.5	05/30/24	05/30/24
richloroethene	ND	ug/L	0.5	05/30/24	05/30/24
,2-Dichloropropane	ND	ug/L	0.5	05/30/24	05/30/24
Bromodichloromethane	ND	ug/L	0.5	05/30/24	05/30/24
Dibromomethane	ND	ug/L	0.5	05/30/24	05/30/24
-Methyl-2-Pentanone	ND	ug/L	5.0	05/30/24	05/30/24
sis-1,3-Dichloropropene	ND	ug/L	0.5	05/30/24	05/30/24
oluene	ND	ug/L	0.5	05/30/24	05/30/24
rans-1,3-Dichloropropene	ND	ug/L	0.5	05/30/24	05/30/24
,1,2-Trichloroethane	ND	ug/L	0.5	05/30/24	05/30/24
,3-Dichloropropane	ND	ug/L	0.5	05/30/24	05/30/24
- etrachloroethene	ND	ug/L	0.5	05/30/24	05/30/24
Dibromochloromethane	ND	ug/L	0.5	05/30/24	05/30/24
,2-Dibromoethane	ND	ug/L	0.5	05/30/24	05/30/24
Chlorobenzene	ND	ug/L	0.5	05/30/24	05/30/24
,1,1,2-Tetrachloroethane	ND	ug/L	0.5	05/30/24	05/30/24
Ethylbenzene	ND	ug/L	0.5	05/30/24	05/30/24
n,p-Xylenes	ND	ug/L	1.0	05/30/24	05/30/24
o-Xylene	ND	ug/L	0.5	05/30/24	05/30/24
Styrene	ND	ug/L	0.5	05/30/24	05/30/24
Bromoform	ND ND	ug/L	1.0	05/30/24	05/30/24
Propylbenzene	ND ND	ug/L	0.5	05/30/24	05/30/24
sopropylbenzene	ND ND	ug/L	0.5	05/30/24	05/30/24
,1,2,2-Tetrachloroethane	ND ND	ug/L	0.5	05/30/24	05/30/24
	IND	1111/1	(1)		U. J. U. J. C. 4

QC1156905 Analyte	Result	Qual Units	RL	Prepared	Analyzed
Bromobenzene	ND	ug/L	1.0	05/30/24	05/30/24
1,3,5-Trimethylbenzene	ND	ug/L	0.5	05/30/24	05/30/24
2-Chlorotoluene	ND	ug/L	0.5	05/30/24	05/30/24
4-Chlorotoluene	ND	ug/L	0.5	05/30/24	05/30/24
tert-Butylbenzene	ND	ug/L	0.5	05/30/24	05/30/24
1,2,4-Trimethylbenzene	ND	ug/L	0.5	05/30/24	05/30/24
sec-Butylbenzene	ND	ug/L	0.5	05/30/24	05/30/24
para-Isopropyl Toluene	ND	ug/L	0.5	05/30/24	05/30/24
1,3-Dichlorobenzene	ND	ug/L	0.5	05/30/24	05/30/24
1,4-Dichlorobenzene	ND	ug/L	0.5	05/30/24	05/30/24
n-Butylbenzene	ND	ug/L	0.5	05/30/24	05/30/24
1,2-Dichlorobenzene	ND	ug/L	0.5	05/30/24	05/30/24
1,2-Dibromo-3-Chloropropane	ND	ug/L	2.0	05/30/24	05/30/24
1,2,4-Trichlorobenzene	ND	ug/L	0.5	05/30/24	05/30/24
Hexachlorobutadiene	ND	ug/L	1.0	05/30/24	05/30/24
Naphthalene	ND	ug/L	0.5	05/30/24	05/30/24
1,2,3-Trichlorobenzene	ND	ug/L	0.5	05/30/24	05/30/24
cis-1,4-Dichloro-2-butene	ND	ug/L	0.5	05/30/24	05/30/24
trans-1,4-Dichloro-2-butene	ND	ug/L	0.5	05/30/24	05/30/24
Isopropyl Ether (DIPE)	ND	ug/L	0.5	05/30/24	05/30/24
Ethyl tert-Butyl Ether (ETBE)	ND	ug/L	0.5	05/30/24	05/30/24
tert-Butyl Alcohol (TBA)	ND	ug/L	10	05/30/24	05/30/24
Methyl tert-Amyl Ether (TAME)	ND	ug/L	0.5	05/30/24	05/30/24
Xylene (total)	ND	ug/L	0.5	05/30/24	05/30/24
Surrogates			Limits		
Dibromofluoromethane	101%	%REC	70-130	05/30/24	05/30/24
1,2-Dichloroethane-d4	90%	%REC	70-130	05/30/24	05/30/24
Toluene-d8	101%	%REC	70-130	05/30/24	05/30/24
Bromofluorobenzene	108%	%REC	70-130	05/30/24	05/30/24

Type:	Lab Control Sample	Lab ID:	QC1156658	Batch:	341353
Matrix:	Soil	Method:	EPA 8260B	Prep Method:	EPA 5030B

QC1156658 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	48.43	50.00	ug/Kg	97%	70-131
MTBE	41.98	50.00	ug/Kg	84%	69-130
Benzene	46.86	50.00	ug/Kg	94%	70-130
Trichloroethene	44.38	50.00	ug/Kg	89%	70-130
Toluene	43.44	50.00	ug/Kg	87%	70-130
Chlorobenzene	45.11	50.00	ug/Kg	90%	70-130
Surrogates					
Dibromofluoromethane	50.53	50.00	ug/Kg	101%	70-130
1,2-Dichloroethane-d4	48.59	50.00	ug/Kg	97%	70-145
Toluene-d8	49.12	50.00	ug/Kg	98%	70-145
Bromofluorobenzene	51.01	50.00	ug/Kg	102%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC1156659 Batch: 341353

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1156659 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
1,1-Dichloroethene	47.43	50.00	ug/Kg	95%		70-131	2	33
MTBE	40.13	50.00	ug/Kg	80%		69-130	5	30
Benzene	46.00	50.00	ug/Kg	92%		70-130	2	30
Trichloroethene	42.78	50.00	ug/Kg	86%		70-130	4	30
Toluene	43.10	50.00	ug/Kg	86%		70-130	1	30
Chlorobenzene	44.06	50.00	ug/Kg	88%		70-130	2	30
Surrogates								
Dibromofluoromethane	48.94	50.00	ug/Kg	98%		70-130		
1,2-Dichloroethane-d4	49.88	50.00	ug/Kg	100%		70-145		
Toluene-d8	49.63	50.00	ug/Kg	99%		70-145		
Bromofluorobenzene	50.67	50.00	ug/Kg	101%		70-145		

Type: Blank Lab ID: QC1156662 Batch: 341353
Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

		1.10p				
QC1156662 Analyte	Result	Qual Units	RL	Prepared	Analyzed	
3-Chloropropene	ND	ug/Kg	5.0	05/29/24	05/29/24	
reon 12	ND	ug/Kg	5.0	05/29/24	05/29/24	
Chloromethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Vinyl Chloride	ND	ug/Kg	5.0	05/29/24	05/29/24	
Bromomethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Chloroethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Trichlorofluoromethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Acetone	ND	ug/Kg	100	05/29/24	05/29/24	
Freon 113	ND	ug/Kg	5.0	05/29/24	05/29/24	
I,1-Dichloroethene	ND	ug/Kg	5.0	05/29/24	05/29/24	
Methylene Chloride	ND	ug/Kg	5.0	05/29/24	05/29/24	
MTBE	ND	ug/Kg	5.0	05/29/24	05/29/24	
rans-1,2-Dichloroethene	ND	ug/Kg	5.0	05/29/24	05/29/24	
I,1-Dichloroethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
2-Butanone	ND	ug/Kg	100	05/29/24	05/29/24	
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	05/29/24	05/29/24	
2,2-Dichloropropane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Chloroform	ND	ug/Kg	5.0	05/29/24	05/29/24	
Bromochloromethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
I,1,1-Trichloroethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
1,1-Dichloropropene	ND	ug/Kg	5.0	05/29/24	05/29/24	
Carbon Tetrachloride	ND	ug/Kg	5.0	05/29/24	05/29/24	
,2-Dichloroethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Benzene	ND	ug/Kg	5.0	05/29/24	05/29/24	
Trichloroethene	ND	ug/Kg	5.0	05/29/24	05/29/24	
1,2-Dichloropropane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Bromodichloromethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Dibromomethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
4-Methyl-2-Pentanone	ND	ug/Kg	5.0	05/29/24	05/29/24	
cis-1,3-Dichloropropene	ND	ug/Kg	5.0	05/29/24	05/29/24	
Foluene	ND	ug/Kg	5.0	05/29/24	05/29/24	
rans-1,3-Dichloropropene	ND	ug/Kg	5.0	05/29/24	05/29/24	
1,1,2-Trichloroethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
1,3-Dichloropropane	ND	ug/Kg	5.0	05/29/24	05/29/24	
Tetrachloroethene	ND	ug/Kg	5.0	05/29/24	05/29/24	
Dibromochloromethane	ND ND	ug/Kg	5.0	05/29/24	05/29/24	
1,2-Dibromoethane	ND ND	ug/Kg	5.0	05/29/24	05/29/24	
	ND ND		5.0	05/29/24	05/29/24	
Chlorobenzene	ND ND	ug/Kg		05/29/24		
,1,1,2-Tetrachloroethane		ug/Kg	5.0		05/29/24	
Ethylbenzene	ND	ug/Kg	5.0	05/29/24	05/29/24	
n,p-Xylenes	ND	ug/Kg	10	05/29/24	05/29/24	
o-Xylene	ND	ug/Kg	5.0	05/29/24	05/29/24	
Styrene	ND	ug/Kg	5.0	05/29/24	05/29/24	
Bromoform	ND	ug/Kg	5.0	05/29/24	05/29/24	
sopropylbenzene	ND	ug/Kg	5.0	05/29/24	05/29/24	
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	05/29/24	05/29/24	
1,2,3-Trichloropropane	ND	ug/Kg	5.0	05/29/24	05/29/24	

Daton & C									
QC1156662 Analyte	Result	Qual Units	RL	Prepared	Analyzed				
Propylbenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
Bromobenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
2-Chlorotoluene	ND	ug/Kg	5.0	05/29/24	05/29/24				
4-Chlorotoluene	ND	ug/Kg	5.0	05/29/24	05/29/24				
tert-Butylbenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
sec-Butylbenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
para-Isopropyl Toluene	ND	ug/Kg	5.0	05/29/24	05/29/24				
1,3-Dichlorobenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
1,4-Dichlorobenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
n-Butylbenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
1,2-Dichlorobenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	05/29/24	05/29/24				
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
Hexachlorobutadiene	ND	ug/Kg	5.0	05/29/24	05/29/24				
Naphthalene	ND	ug/Kg	5.0	05/29/24	05/29/24				
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	05/29/24	05/29/24				
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	05/29/24	05/29/24				
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	05/29/24	05/29/24				
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	05/29/24	05/29/24				
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	05/29/24	05/29/24				
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	05/29/24	05/29/24				
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	05/29/24	05/29/24				
Xylene (total)	ND	ug/Kg	5.0	05/29/24	05/29/24				
Surrogates			Limits						
Dibromofluoromethane	92%	%REC	70-130	05/29/24	05/29/24				
1,2-Dichloroethane-d4	92%	%REC	70-145	05/29/24	05/29/24				
Toluene-d8	97%	%REC	70-145	05/29/24	05/29/24				
Bromofluorobenzene	102%	%REC	70-145	05/29/24	05/29/24				

Type: Blank Lab ID: QC1156663 Batch: 341353
Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

		110p moundar 217100002				
QC1156663 Analyte	Result	Qual Units	RL	Prepared	Analyzed	
3-Chloropropene	ND	ug/Kg	250	05/29/24	05/29/24	
reon 12	ND	ug/Kg	250	05/29/24	05/29/24	
Chloromethane	ND	ug/Kg	250	05/29/24	05/29/24	
Vinyl Chloride	ND	ug/Kg	250	05/29/24	05/29/24	
Bromomethane	ND	ug/Kg	250	05/29/24	05/29/24	
Chloroethane	ND	ug/Kg	250	05/29/24	05/29/24	
Trichlorofluoromethane	ND	ug/Kg	250	05/29/24	05/29/24	
Acetone	ND	ug/Kg	5,000	05/29/24	05/29/24	
Freon 113	ND	ug/Kg	250	05/29/24	05/29/24	
I,1-Dichloroethene	ND	ug/Kg	250	05/29/24	05/29/24	
Methylene Chloride	ND	ug/Kg	400	05/29/24	05/29/24	
MTBE	ND	ug/Kg	250	05/29/24	05/29/24	
rans-1,2-Dichloroethene	ND	ug/Kg	250	05/29/24	05/29/24	
I,1-Dichloroethane	ND	ug/Kg	250	05/29/24	05/29/24	
2-Butanone	ND	ug/Kg	5,000	05/29/24	05/29/24	
cis-1,2-Dichloroethene	ND	ug/Kg	250	05/29/24	05/29/24	
2,2-Dichloropropane	ND	ug/Kg	250	05/29/24	05/29/24	
Chloroform	ND	ug/Kg	250	05/29/24	05/29/24	
Bromochloromethane	ND	ug/Kg	250	05/29/24	05/29/24	
I,1,1-Trichloroethane	ND	ug/Kg	250	05/29/24	05/29/24	
I,1-Dichloropropene	ND	ug/Kg	250	05/29/24	05/29/24	
Carbon Tetrachloride	ND	ug/Kg	250	05/29/24	05/29/24	
,2-Dichloroethane	ND	ug/Kg	250	05/29/24	05/29/24	
Benzene	ND	ug/Kg	250	05/29/24	05/29/24	
Trichloroethene	ND	ug/Kg	250	05/29/24	05/29/24	
1,2-Dichloropropane	ND	ug/Kg	250	05/29/24	05/29/24	
Bromodichloromethane	ND	ug/Kg	250	05/29/24	05/29/24	
Dibromomethane	ND	ug/Kg	250	05/29/24	05/29/24	
1-Methyl-2-Pentanone	ND	ug/Kg	250	05/29/24	05/29/24	
cis-1,3-Dichloropropene	ND	ug/Kg	250	05/29/24	05/29/24	
Foluene	ND	ug/Kg	250	05/29/24	05/29/24	
rans-1,3-Dichloropropene	ND	ug/Kg	250	05/29/24	05/29/24	
1,1,2-Trichloroethane	ND ND		250	05/29/24	05/29/24	
1,3-Dichloropropane	ND ND	ug/Kg	250	05/29/24	05/29/24	
Fetrachloroethene	ND ND	ug/Kg	250	05/29/24	05/29/24	
Dibromochloromethane	ND ND	ug/Kg	250	05/29/24		
1,2-Dibromoethane		ug/Kg	250		05/29/24 05/29/24	
•	ND	ug/Kg		05/29/24		
Chlorobenzene	ND	ug/Kg	250	05/29/24	05/29/24	
,1,1,2-Tetrachloroethane	ND	ug/Kg	250	05/29/24	05/29/24	
Ethylbenzene	ND	ug/Kg	250	05/29/24	05/29/24	
m,p-Xylenes	ND	ug/Kg	500	05/29/24	05/29/24	
o-Xylene	ND	ug/Kg	250	05/29/24	05/29/24	
Styrene	ND	ug/Kg	250	05/29/24	05/29/24	
Bromoform	ND	ug/Kg	250	05/29/24	05/29/24	
sopropylbenzene	ND	ug/Kg	250	05/29/24	05/29/24	
1,1,2,2-Tetrachloroethane	ND	ug/Kg	250	05/29/24	05/29/24	
1,2,3-Trichloropropane	ND	ug/Kg	250	05/29/24	05/29/24	

QC1156663 Analyte	Result	Qual Units	RL	Prepared	Analyzed
Propylbenzene	ND	ug/Kg	250	05/29/24	05/29/24
Bromobenzene	ND	ug/Kg	250	05/29/24	05/29/24
1,3,5-Trimethylbenzene	ND	ug/Kg	250	05/29/24	05/29/24
2-Chlorotoluene	ND	ug/Kg	250	05/29/24	05/29/24
4-Chlorotoluene	ND	ug/Kg	250	05/29/24	05/29/24
tert-Butylbenzene	ND	ug/Kg	250	05/29/24	05/29/24
1,2,4-Trimethylbenzene	ND	ug/Kg	250	05/29/24	05/29/24
sec-Butylbenzene	ND	ug/Kg	250	05/29/24	05/29/24
para-Isopropyl Toluene	ND	ug/Kg	250	05/29/24	05/29/24
1,3-Dichlorobenzene	ND	ug/Kg	250	05/29/24	05/29/24
1,4-Dichlorobenzene	ND	ug/Kg	250	05/29/24	05/29/24
n-Butylbenzene	ND	ug/Kg	250	05/29/24	05/29/24
1,2-Dichlorobenzene	ND	ug/Kg	250	05/29/24	05/29/24
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	250	05/29/24	05/29/24
1,2,4-Trichlorobenzene	ND	ug/Kg	250	05/29/24	05/29/24
Hexachlorobutadiene	ND	ug/Kg	250	05/29/24	05/29/24
Naphthalene	ND	ug/Kg	250	05/29/24	05/29/24
1,2,3-Trichlorobenzene	ND	ug/Kg	250	05/29/24	05/29/24
cis-1,4-Dichloro-2-butene	ND	ug/Kg	250	05/29/24	05/29/24
trans-1,4-Dichloro-2-butene	ND	ug/Kg	250	05/29/24	05/29/24
tert-Butyl Alcohol (TBA)	ND	ug/Kg	5,000	05/29/24	05/29/24
Isopropyl Ether (DIPE)	ND	ug/Kg	250	05/29/24	05/29/24
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	250	05/29/24	05/29/24
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	250	05/29/24	05/29/24
Xylene (total)	ND	ug/Kg	250	05/29/24	05/29/24
Surrogates			Limits		
Dibromofluoromethane	88%	%REC	70-130	05/29/24	05/29/24
1,2-Dichloroethane-d4	91%	%REC	70-145	05/29/24	05/29/24
Toluene-d8	98%	%REC	70-145	05/29/24	05/29/24
Bromofluorobenzene	102%	%REC	70-145	05/29/24	05/29/24

Type: Matrix Spike Lab ID: QC1156674 Batch: 341353

Matrix (Source ID): Soil (509200-001) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample						
QC1156674 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	45.39	ND	50.00	ug/Kg	91%		70-141	1
MTBE	37.85	ND	50.00	ug/Kg	76%		59-130	1
Benzene	43.12	ND	50.00	ug/Kg	86%		70-130	1
Trichloroethene	39.56	ND	50.00	ug/Kg	79%		69-130	1
Toluene	40.98	ND	50.00	ug/Kg	82%		70-130	1
Chlorobenzene	41.11	ND	50.00	ug/Kg	82%		70-130	1
Surrogates								
Dibromofluoromethane	49.44		50.00	ug/Kg	99%		70-145	1
1,2-Dichloroethane-d4	46.89		50.00	ug/Kg	94%		70-145	1
Toluene-d8	50.64		50.00	ug/Kg	101%		70-145	1
Bromofluorobenzene	52.64		50.00	ug/Kg	105%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1156675 Batch: 341353

Matrix (Source ID): Soil (509200-001) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1156675 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	36.25	ND	50.00	ug/Kg	73%		70-141	22	43	1
MTBE	29.04	ND	50.00	ug/Kg	58%	*	59-130	26	30	1
Benzene	33.83	ND	50.00	ug/Kg	68%	*	70-130	24	30	1
Trichloroethene	29.04	ND	50.00	ug/Kg	58%	*	69-130	31*	30	1
Toluene	31.34	ND	50.00	ug/Kg	63%	*	70-130	27	30	1
Chlorobenzene	30.85	ND	50.00	ug/Kg	62%	*	70-130	29	30	1
Surrogates										
Dibromofluoromethane	49.93		50.00	ug/Kg	100%		70-145			1
1,2-Dichloroethane-d4	46.59		50.00	ug/Kg	93%		70-145			1
Toluene-d8	49.80		50.00	ug/Kg	100%		70-145			1
Bromofluorobenzene	51.55		50.00	ug/Kg	103%		70-145			1

Type: Lab Control Sample Lab ID: QC1157247 Batch: 341540

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1157247 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	51.19	50.00	ug/Kg	102%	70-131
MTBE	44.39	50.00	ug/Kg	89%	69-130
Benzene	51.35	50.00	ug/Kg	103%	70-130
Trichloroethene	48.62	50.00	ug/Kg	97%	70-130
Toluene	49.00	50.00	ug/Kg	98%	70-130
Chlorobenzene	50.07	50.00	ug/Kg	100%	70-130
Surrogates					
Dibromofluoromethane	49.55	50.00	ug/Kg	99%	70-130
1,2-Dichloroethane-d4	49.39	50.00	ug/Kg	99%	70-145
Toluene-d8	50.06	50.00	ug/Kg	100%	70-145
Bromofluorobenzene	52.39	50.00	ug/Kg	105%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC1157248 Batch: 341540

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1157248 Analyte	Result	Spiked	Units	Recovery Qual	Limits	RPD	RPD Lim
1,1-Dichloroethene	48.06	50.00	ug/Kg	96%	70-131	6	33
MTBE	41.66	50.00	ug/Kg	83%	69-130	6	30
Benzene	47.29	50.00	ug/Kg	95%	70-130	8	30
Trichloroethene	45.69	50.00	ug/Kg	91%	70-130	6	30
Toluene	44.63	50.00	ug/Kg	89%	70-130	9	30
Chlorobenzene	45.83	50.00	ug/Kg	92%	70-130	9	30
Surrogates							
Dibromofluoromethane	49.72	50.00	ug/Kg	99%	70-130		
1,2-Dichloroethane-d4	48.59	50.00	ug/Kg	97%	70-145		
Toluene-d8	49.29	50.00	ug/Kg	99%	70-145		
Bromofluorobenzene	51.51	50.00	ug/Kg	103%	70-145		

Type: Blank Lab ID: QC1157251 Batch: 341540

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1157251 Analyte	Result	Qual Units	RL	Prepared	Analyze
3-Chloropropene	ND	ug/Kg	250	05/31/24	05/31/24
Freon 12	ND	ug/Kg	250	05/31/24	05/31/24
Chloromethane	ND	ug/Kg	250	05/31/24	05/31/24
Vinyl Chloride	ND	ug/Kg	250	05/31/24	05/31/24
Bromomethane	ND	ug/Kg	250	05/31/24	05/31/24
Chloroethane	ND	ug/Kg	250	05/31/24	05/31/24
Trichlorofluoromethane	ND	ug/Kg	250	05/31/24	05/31/24
Acetone	ND	ug/Kg	5,000	05/31/24	05/31/24
Freon 113	ND	ug/Kg	250	05/31/24	05/31/24
1,1-Dichloroethene	ND	ug/Kg	250	05/31/24	05/31/24
Methylene Chloride	ND	ug/Kg	400	05/31/24	05/31/24
MTBE	ND	ug/Kg	250	05/31/24	05/31/24
rans-1,2-Dichloroethene	ND	ug/Kg	250	05/31/24	05/31/24
1,1-Dichloroethane	ND	ug/Kg	250	05/31/24	05/31/24
2-Butanone	ND	ug/Kg	5,000	05/31/24	05/31/24
cis-1,2-Dichloroethene	ND	ug/Kg	250	05/31/24	05/31/24
2,2-Dichloropropane	ND	ug/Kg	250	05/31/24	05/31/24
Chloroform	ND	ug/Kg	250	05/31/24	05/31/24
Bromochloromethane	ND	ug/Kg	250	05/31/24	05/31/24
1,1,1-Trichloroethane	ND	ug/Kg	250	05/31/24	05/31/24
1,1-Dichloropropene	ND	ug/Kg	250	05/31/24	05/31/24
Carbon Tetrachloride	ND	ug/Kg	250	05/31/24	05/31/24
1,2-Dichloroethane	ND	ug/Kg	250	05/31/24	05/31/24
Benzene	ND	ug/Kg	250	05/31/24	05/31/24
Trichloroethene	ND	ug/Kg	250	05/31/24	05/31/24
1,2-Dichloropropane	ND	ug/Kg	250	05/31/24	05/31/24
Bromodichloromethane	ND	ug/Kg	250	05/31/24	05/31/24
Dibromomethane	ND	ug/Kg	250	05/31/24	05/31/24
4-Methyl-2-Pentanone	ND	ug/Kg	250	05/31/24	05/31/24
cis-1,3-Dichloropropene	ND	ug/Kg	250	05/31/24	05/31/24
Toluene	ND	ug/Kg	250	05/31/24	05/31/24
rans-1,3-Dichloropropene	ND	ug/Kg	250	05/31/24	05/31/24
1,1,2-Trichloroethane	ND	ug/Kg	250	05/31/24	05/31/24
1,3-Dichloropropane	ND	ug/Kg	250	05/31/24	05/31/24
Tetrachloroethene	ND	ug/Kg	250	05/31/24	05/31/24
Dibromochloromethane	ND	ug/Kg	250	05/31/24	05/31/24
1,2-Dibromoethane	ND	ug/Kg	250	05/31/24	05/31/24
Chlorobenzene	ND	ug/Kg	250	05/31/24	05/31/24
1,1,1,2-Tetrachloroethane	ND	ug/Kg	250	05/31/24	05/31/24
Ethylbenzene	ND	ug/Kg	250	05/31/24	05/31/24
n,p-Xylenes	ND	ug/Kg	500	05/31/24	05/31/24
o-Xylene	ND	ug/Kg	250	05/31/24	05/31/24
Styrene	ND	ug/Kg	250	05/31/24	05/31/24
Bromoform	ND	ug/Kg	250	05/31/24	05/31/24
sopropylbenzene	ND	ug/Kg	250	05/31/24	05/31/24
	ND	ug/Kg	250	05/31/24	05/31/24
1,1,2,2-Tetrachloroethane	INII	[](1/15(1	Z:1U	U3/31/24	(1:3/.31/24

QC1157251 Analyte	Result	Qual Units	RL	Prepared	Analyzed
Propylbenzene	ND	ug/Kg	250	05/31/24	05/31/24
Bromobenzene	ND	ug/Kg	250	05/31/24	05/31/24
1,3,5-Trimethylbenzene	ND	ug/Kg	250	05/31/24	05/31/24
2-Chlorotoluene	ND	ug/Kg	250	05/31/24	05/31/24
4-Chlorotoluene	ND	ug/Kg	250	05/31/24	05/31/24
tert-Butylbenzene	ND	ug/Kg	250	05/31/24	05/31/24
1,2,4-Trimethylbenzene	ND	ug/Kg	250	05/31/24	05/31/24
sec-Butylbenzene	ND	ug/Kg	250	05/31/24	05/31/24
para-Isopropyl Toluene	ND	ug/Kg	250	05/31/24	05/31/24
1,3-Dichlorobenzene	ND	ug/Kg	250	05/31/24	05/31/24
1,4-Dichlorobenzene	ND	ug/Kg	250	05/31/24	05/31/24
n-Butylbenzene	ND	ug/Kg	250	05/31/24	05/31/24
1,2-Dichlorobenzene	ND	ug/Kg	250	05/31/24	05/31/24
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	250	05/31/24	05/31/24
1,2,4-Trichlorobenzene	ND	ug/Kg	250	05/31/24	05/31/24
Hexachlorobutadiene	ND	ug/Kg	250	05/31/24	05/31/24
Naphthalene	ND	ug/Kg	250	05/31/24	05/31/24
1,2,3-Trichlorobenzene	ND	ug/Kg	250	05/31/24	05/31/24
cis-1,4-Dichloro-2-butene	ND	ug/Kg	250	05/31/24	05/31/24
trans-1,4-Dichloro-2-butene	ND	ug/Kg	250	05/31/24	05/31/24
tert-Butyl Alcohol (TBA)	ND	ug/Kg	5,000	05/31/24	05/31/24
Isopropyl Ether (DIPE)	ND	ug/Kg	250	05/31/24	05/31/24
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	250	05/31/24	05/31/24
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	250	05/31/24	05/31/24
Xylene (total)	ND	ug/Kg	250	05/31/24	05/31/24
Surrogates			Limits		
Dibromofluoromethane	91%	%REC	70-130	05/31/24	05/31/24
1,2-Dichloroethane-d4	98%	%REC	70-145	05/31/24	05/31/24
Toluene-d8	98%	%REC	70-145	05/31/24	05/31/24
Bromofluorobenzene	102%	%REC	70-145	05/31/24	05/31/24

Type: Blank Lab ID: QC1157252 Batch: 341540

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

		Trop motilod: El A 0000B			
QC1157252 Analyte	Result	Qual Units	RL	Prepared	Analyzed
3-Chloropropene	ND	ug/Kg	5.0	05/31/24	05/31/24
reon 12	ND	ug/Kg	5.0	05/31/24	05/31/24
Chloromethane	ND	ug/Kg	5.0	05/31/24	05/31/24
Vinyl Chloride	ND	ug/Kg	5.0	05/31/24	05/31/24
Bromomethane	ND	ug/Kg	5.0	05/31/24	05/31/24
Chloroethane	ND	ug/Kg	5.0	05/31/24	05/31/24
Trichlorofluoromethane	ND	ug/Kg	5.0	05/31/24	05/31/24
Acetone	ND	ug/Kg	100	05/31/24	05/31/24
Freon 113	ND	ug/Kg	5.0	05/31/24	05/31/24
1,1-Dichloroethene	ND	ug/Kg	5.0	05/31/24	05/31/24
Methylene Chloride	ND	ug/Kg	5.0	05/31/24	05/31/24
MTBE	ND	ug/Kg	5.0	05/31/24	05/31/24
rans-1,2-Dichloroethene	ND	ug/Kg	5.0	05/31/24	05/31/24
I,1-Dichloroethane	ND	ug/Kg	5.0	05/31/24	05/31/24
2-Butanone	ND	ug/Kg	100	05/31/24	05/31/24
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	05/31/24	05/31/24
2,2-Dichloropropane	ND	ug/Kg	5.0	05/31/24	05/31/24
Chloroform	ND	ug/Kg	5.0	05/31/24	05/31/24
Bromochloromethane	ND	ug/Kg	5.0	05/31/24	05/31/24
1,1,1-Trichloroethane	ND	ug/Kg	5.0	05/31/24	05/31/24
I,1-Dichloropropene	ND	ug/Kg	5.0	05/31/24	05/31/24
Carbon Tetrachloride	ND	ug/Kg	5.0	05/31/24	05/31/24
,2-Dichloroethane	ND	ug/Kg	5.0	05/31/24	05/31/24
Benzene	ND	ug/Kg	5.0	05/31/24	05/31/24
Frichloroethene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,2-Dichloropropane	ND	ug/Kg	5.0	05/31/24	05/31/24
Bromodichloromethane	ND	ug/Kg	5.0	05/31/24	05/31/24
Dibromomethane	ND	ug/Kg	5.0	05/31/24	05/31/24
1-Methyl-2-Pentanone	ND	ug/Kg	5.0	05/31/24	05/31/24
cis-1,3-Dichloropropene	ND	ug/Kg	5.0	05/31/24	05/31/24
Foluene	ND	ug/Kg	5.0	05/31/24	05/31/24
rans-1,3-Dichloropropene	ND	ug/Kg	5.0	05/31/24	05/31/24
I,1,2-Trichloroethane	ND	ug/Kg	5.0	05/31/24	05/31/24
I,3-Dichloropropane	ND	ug/Kg	5.0	05/31/24	05/31/24
Tetrachloroethene	ND	ug/Kg	5.0	05/31/24	05/31/24
Dibromochloromethane	ND	ug/Kg	5.0	05/31/24	05/31/24
1,2-Dibromoethane	ND	ug/Kg	5.0	05/31/24	05/31/24
Chlorobenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	05/31/24	05/31/24
Ethylbenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
n,p-Xylenes	ND	ug/Kg	10	05/31/24	05/31/24
o-Xylene	ND	ug/Kg	5.0	05/31/24	05/31/24
Styrene	ND ND	ug/Kg	5.0	05/31/24	05/31/24
Bromoform	ND ND	ug/Kg	5.0	05/31/24	05/31/24
sopropylbenzene	ND ND	ug/Kg	5.0	05/31/24	05/31/24
1,1,2,2-Tetrachloroethane	ND ND	ug/Kg	5.0	05/31/24	05/31/24

QC1157252 Analyte	Result	Qual Units	RL	Prepared	Analyzed
Propylbenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
Bromobenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
2-Chlorotoluene	ND	ug/Kg	5.0	05/31/24	05/31/24
4-Chlorotoluene	ND	ug/Kg	5.0	05/31/24	05/31/24
tert-Butylbenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
sec-Butylbenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
para-Isopropyl Toluene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,3-Dichlorobenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,4-Dichlorobenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
n-Butylbenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,2-Dichlorobenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	05/31/24	05/31/24
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
Hexachlorobutadiene	ND	ug/Kg	5.0	05/31/24	05/31/24
Naphthalene	ND	ug/Kg	5.0	05/31/24	05/31/24
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	05/31/24	05/31/24
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	05/31/24	05/31/24
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	05/31/24	05/31/24
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	05/31/24	05/31/24
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	05/31/24	05/31/24
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	05/31/24	05/31/24
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	05/31/24	05/31/24
Xylene (total)	ND	ug/Kg	5.0	05/31/24	05/31/24
Surrogates			Limits		
Dibromofluoromethane	95%	%REC	70-130	05/31/24	05/31/24
1,2-Dichloroethane-d4	95%	%REC	70-145	05/31/24	05/31/24
Toluene-d8	98%	%REC	70-145	05/31/24	05/31/24
Bromofluorobenzene	103%	%REC	70-145	05/31/24	05/31/24

Type: Matrix Spike Lab ID: QC1157359 Batch: 341540
Matrix (Source ID): Soil (509285-021) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample						
QC1157359 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	47.61	ND	50.00	ug/Kg	95%		70-141	1
MTBE	39.57	ND	50.00	ug/Kg	79%		59-130	1
Benzene	45.37	ND	50.00	ug/Kg	91%		70-130	1
Trichloroethene	39.73	ND	50.00	ug/Kg	79%		69-130	1
Toluene	41.47	ND	50.00	ug/Kg	83%		70-130	1
Chlorobenzene	43.04	ND	50.00	ug/Kg	86%		70-130	1
Surrogates								
Dibromofluoromethane	50.90		50.00	ug/Kg	102%		70-145	1
1,2-Dichloroethane-d4	48.70		50.00	ug/Kg	97%		70-145	1
Toluene-d8	48.63		50.00	ug/Kg	97%		70-145	1
Bromofluorobenzene	51.61		50.00	ug/Kg	103%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1157360 Batch: 341540

Matrix (Source ID): Soil (509285-021) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1157360 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	36.47	ND	50.00	ug/Kg	73%		70-141	27	43	1
MTBE	30.63	ND	50.00	ug/Kg	61%		59-130	25	30	1
Benzene	34.36	ND	50.00	ug/Kg	69%	*	70-130	28	30	1
Trichloroethene	30.54	ND	50.00	ug/Kg	61%	*	69-130	26	30	1
Toluene	31.91	ND	50.00	ug/Kg	64%	*	70-130	26	30	1
Chlorobenzene	32.68	ND	50.00	ug/Kg	65%	*	70-130	27	30	1
Surrogates										
Dibromofluoromethane	50.13		50.00	ug/Kg	100%		70-145			1
1,2-Dichloroethane-d4	47.70		50.00	ug/Kg	95%		70-145			1
Toluene-d8	49.11		50.00	ug/Kg	98%		70-145			1
Bromofluorobenzene	51.76		50.00	ug/Kg	104%		70-145			1

^{*} Value is outside QC limits

ND Not Detected

b See narrative

05 June 2024

Chuck Houser
SCS Engineers - San Diego
8799 Balboa Avenue, Suite 290
San Diego, CA 92123

H&P Project: SCS052424-10
Client Project: Midway Rising

Dear Chuck Houser:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 5/21/2024 -5/23/2024 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- · Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290Project Number: Midway RisingReported:San Diego, CA 92123Project Manager: Chuck Houser05-Jun-24 12:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-24-001-5	E405080-01	Vapor	21-May-24	21-May-24
SV-24-002-5	E405080-02	Vapor	21-May-24	21-May-24
SV-24-003-5	E405080-03	Vapor	21-May-24	21-May-24
SV-24-004-5	E405080-04	Vapor	21-May-24	21-May-24
SV-24-021-5	E405080-05	Vapor	21-May-24	21-May-24
SV-24-021-5 Dup	E405080-06	Vapor	21-May-24	21-May-24
SV-24-017-5	E405080-07	Vapor	21-May-24	21-May-24
SV-24-005-5	E405081-01	Vapor	22-May-24	22-May-24
SV-24-008-5	E405081-02	Vapor	22-May-24	22-May-24
SV-24-009-5	E405081-03	Vapor	22-May-24	22-May-24
SV-24-010-5	E405081-04	Vapor	22-May-24	22-May-24
SV-24-007-5	E405081-05	Vapor	22-May-24	22-May-24
SV-24-023-5	E405081-06	Vapor	22-May-24	22-May-24
SV-24-022-5	E405081-07	Vapor	22-May-24	22-May-24
SV-24-014-5	E405081-08	Vapor	22-May-24	22-May-24
SV-24-012-5	E405081-09	Vapor	22-May-24	22-May-24
SV-24-023-5 Dup	E405081-10	Vapor	22-May-24	22-May-24
SV-24-011-5	E405081-11	Vapor	22-May-24	22-May-24
SV-24-006-5	E405082-01	Vapor	23-May-24	23-May-24
SV-24-013-5	E405082-02	Vapor	23-May-24	23-May-24
SV-24-015-5	E405082-03	Vapor	23-May-24	23-May-24
SV-24-016-5	E405082-04	Vapor	23-May-24	23-May-24
SV-24-019-5	E405082-05	Vapor	23-May-24	23-May-24
SV-24-018-5	E405082-06	Vapor	23-May-24	23-May-24
SV-24-020-2.5	E405082-07	Vapor	23-May-24	23-May-24
SV-24-024-5	E405082-08	Vapor	23-May-24	23-May-24
SV-24-024-5 Rep	E405082-09	Vapor	23-May-24	23-May-24

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Due to elevated levels of non-target analytes, the following samples were analyzed by H&P 8260SV rather than EPA Method TO-15:

SV-24-021-5

SV-24-021-5 Dup

SV-24-023-5

SV-24-023-5 Dup

SV-24-022-5

The following EPA Method TO-15 analytes are not reported by H&P 8260SV:

Dichlorotetrafluoroethane

4-Ethyltoluene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

ı	SCS Engineers - San Diego	Project: SCS052424-10	
ı	8799 Balboa Avenue, Suite 290	Project Number: Midway Rising	Reported:
ı	San Diego, CA 92123	Project Manager: Chuck Houser	05-Jun-24 12:20

DETECTIONS SUMMARY

Sample ID: SV-24-001-5	Laboratory ID:	E405080-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	5.3	5.0	ug/m3	EPA TO-15	
Carbon disulfide	13	6.3	ug/m3	EPA TO-15	
2-Butanone (MEK)	48	30	ug/m3	EPA TO-15	
Benzene	19	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	43	8.3	ug/m3	EPA TO-15	
Toluene	33	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	79	6.9	ug/m3	EPA TO-15	
Chlorobenzene	8.2	4.7	ug/m3	EPA TO-15	
Ethylbenzene	7.6	4.4	ug/m3	EPA TO-15	
m,p-Xylene	19	8.8	ug/m3	EPA TO-15	
o-Xylene	11	4.4	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	7.9	5.0	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	7.3	5.0	ug/m3	EPA TO-15	
ample ID: SV-24-002-5	Laboratory ID:	E405080-02			
Analyte	Result	Limit	Units	Method	Notes
Benzene	4.4	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	17	8.3	ug/m3	EPA TO-15	
Toluene	13	3.8	ug/m3	EPA TO-15	
Chlorobenzene	6.3	4.7	ug/m3	EPA TO-15	
m,p-Xylene	13	8.8	ug/m3	EPA TO-15	
o-Xylene	5.5	4.4	ug/m3	EPA TO-15	
Sample ID: SV-24-003-5	Laboratory ID: I	E405080-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
2-Butanone (MEK)	30	30	ug/m3	EPA TO-15	
Benzene	5.7	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	23	8.3	ug/m3	EPA TO-15	
Toluene	11	3.8	ug/m3	EPA TO-15	
2-Hexanone (MBK)	13	8.3	ug/m3	EPA TO-15	
Sample ID: SV-24-004-5	Laboratory ID: I	E405080-04			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes

SCS Engineers - San Diego		CS052424-10			
8799 Balboa Avenue, Suite 290	Project Number: M	Reported: 05-Jun-24 12:20			
San Diego, CA 92123	Project Manager: Ch				
Sample ID: SV-24-004-5	Laboratory ID:	E405080-04			
		Reporting			
Analyte	Result		Units	Method	Notes
Dichlorodifluoromethane (F12)	5.2		ug/m3	EPA TO-15	
Carbon disulfide	15		ug/m3	EPA TO-15	
Benzene	9.8		ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	23		ug/m3	EPA TO-15	
Toluene	23	3.8	ug/m3	EPA TO-15	
2-Hexanone (MBK)	11	8.3	ug/m3	EPA TO-15	
Ethylbenzene	4.5	4.4	ug/m3	EPA TO-15	
m,p-Xylene	14		ug/m3	EPA TO-15	
o-Xylene	6.0	4.4	ug/m3	EPA TO-15	
Sample ID: SV-24-021-5	Laboratory ID:	E405080-05			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	14000	1000	ug/m3	H&P 8260SV	
Sample ID: SV-24-021-5 Dup	Laboratory ID:	E405080-06			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	14000	1000	ug/m3	H&P 8260SV	
Sample ID: SV-24-017-5	Laboratory ID:	E405080-07			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1-Difluoroethane (LCC)	87	5.5	ug/m3	EPA TO-15	
Chloroform	7.2	4.9	ug/m3	EPA TO-15	
Benzene	9.4	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	41	8.3	ug/m3	EPA TO-15	
Toluene	10	3.8	ug/m3	EPA TO-15	
m,p-Xylene	13	8.8	ug/m3	EPA TO-15	
o-Xylene	5.1	4.4	ug/m3	EPA TO-15	
Sample ID: SV-24-005-5	Laboratory ID:	E405081-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Carbon disulfide	24	6.3	ug/m3	EPA TO-15	
2-Butanone (MEK)	38	30	ug/m3	EPA TO-15	
Benzene	88	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	34	8.3	ug/m3	EPA TO-15	
Toluene	130	3.8	ug/m3	EPA TO-15	

SCS Engineers - San Diego						
8799 Balboa Avenue, Suite 290	Project Number: M			Reported:		
San Diego, CA 92123	Project Manager: Cl	05-Jun-24 12:20				
Sample ID: SV-24-005-5	Laboratory ID:	E405081-01				
Analyte	Result		Units	Method	Notes	
Chlorobenzene	6.8	4.7	ug/m3	EPA TO-15		
Ethylbenzene	21	4.4	ug/m3	EPA TO-15		
m,p-Xylene	45	8.8	ug/m3	EPA TO-15		
Styrene	7.5	4.3	ug/m3	EPA TO-15		
o-Xylene	19	4.4	ug/m3	EPA TO-15		
4-Ethyltoluene	5.0	5.0	ug/m3	EPA TO-15		
1,2,4-Trimethylbenzene	11	5.0	ug/m3	EPA TO-15		
Sample ID: SV-24-008-5	Laboratory ID:	E405081-02				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Carbon disulfide	7.3	6.3	ug/m3	EPA TO-15		
Benzene	9.9	3.2	ug/m3	EPA TO-15		
4-Methyl-2-pentanone (MIBK)	21	8.3	ug/m3	EPA TO-15		
Toluene	16	3.8	ug/m3	EPA TO-15		
Chlorobenzene	4.9	4.7	ug/m3	EPA TO-15		
m,p-Xylene	10	8.8	ug/m3	EPA TO-15		
o-Xylene	4.6	4.4	ug/m3	EPA TO-15		
Sample ID: SV-24-009-5	Laboratory ID:	E405081-03				
		Reporting				
Analyte	Result		Units	Method	Notes	
Benzene	6.9	3.2	ug/m3	EPA TO-15		
4-Methyl-2-pentanone (MIBK)	22	8.3	ug/m3	EPA TO-15		
Toluene	11	3.8	ug/m3	EPA TO-15		
m,p-Xylene	9.2	8.8	ug/m3	EPA TO-15		
Sample ID: SV-24-010-5	Laboratory ID:	E405081-04				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Benzene	4.3	3.2	ug/m3	EPA TO-15		
4-Methyl-2-pentanone (MIBK)	12	8.3	ug/m3	EPA TO-15		
Toluene	9.8	3.8	ug/m3	EPA TO-15		
m,p-Xylene	9.1	8.8	ug/m3	EPA TO-15		
Sample ID: SV-24-007-5	Laboratory ID:	E405081-05				
		Reporting				
Analyte	Result		Units	Method	Notes	
Carbon disulfide	6.6		ug/m3	EPA TO-15		

SCS Engineers - San Diego	Project: SC	CS052424-10			
8799 Balboa Avenue, Suite 290	Project Number: Mi			Re	ported:
San Diego, CA 92123	Project Manager: Ch	uck Houser		05	-Jun-24 12:20
Sample ID: SV-24-007-5	Laboratory ID:	E405081-05			
		Reporting			
Analyte	Result		Units	Method	Notes
Benzene	11	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	18	8.3	ug/m3	EPA TO-15	
Toluene	17	3.8	ug/m3	EPA TO-15	
2-Hexanone (MBK)	12	8.3	ug/m3	EPA TO-15	
Ethylbenzene	5.0	4.4	ug/m3	EPA TO-15	
m,p-Xylene	11	8.8	ug/m3	EPA TO-15	
o-Xylene	5.6	4.4	ug/m3	EPA TO-15	
Sample ID: SV-24-023-5	Laboratory ID:	E405081-06			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	38000	1000	ug/m3	H&P 8260SV	
m,p-Xylene	9100	5000	ug/m3	H&P 8260SV	
Sample ID: SV-24-022-5	Laboratory ID:	E405081-07			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	2400	200	ug/m3	H&P 8260SV	
Sample ID: SV-24-014-5	Laboratory ID:	E405081-08			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	4.5	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	10	8.3	ug/m3	EPA TO-15	
Toluene	7.6	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	45	6.9	ug/m3	EPA TO-15	
m,p-Xylene	10	8.8	ug/m3	EPA TO-15	
o-Xylene	5.3	4.4	ug/m3	EPA TO-15	
Sample ID: SV-24-012-5	Laboratory ID:	E405081-09			
		Reporting			
Analyte	Result		Units	Method	Notes
Benzene	4.9	3.2	ug/m3	EPA TO-15	
Toluene	9.6	3.8	ug/m3	EPA TO-15	
Sample ID: SV-24-023-5 Dup	Laboratory ID:	E405081-10			
		Reporting			
Analyte	Result		Units	Method	Notes
Benzene	34000	1000	ug/m3	H&P 8260SV	

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290 San Diego, CA 92123	Project: SC Project Number: Mi Project Manager: Ch	Reported: 05-Jun-24 12:20			
Sample ID: SV-24-023-5 Dup	Laboratory ID:	E405081-10			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
m,p-Xylene	8000	5000	ug/m3	H&P 8260SV	
Sample ID: SV-24-011-5	Laboratory ID:	E405081-11			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
2-Butanone (MEK)	48	30	ug/m3	EPA TO-15	
Benzene	57	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	28	8.3	ug/m3	EPA TO-15	
Toluene	88	3.8	ug/m3	EPA TO-15	
Ethylbenzene	14	4.4	ug/m3	EPA TO-15	
m,p-Xylene	30	8.8	ug/m3	EPA TO-15	
o-Xylene	14	4.4	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	5.2	5.0	ug/m3	EPA TO-15	
Sample ID: SV-24-006-5	Laboratory ID:	E405082-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
2-Butanone (MEK)	45	30	ug/m3	EPA TO-15	
Benzene	38	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	61	8.3	ug/m3	EPA TO-15	
Toluene	59	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	7.3	6.9	ug/m3	EPA TO-15	
Ethylbenzene	14	4.4	ug/m3	EPA TO-15	
m,p-Xylene	37	8.8	ug/m3	EPA TO-15	
o-Xylene	17	4.4	ug/m3	EPA TO-15	
4-Ethyltoluene	12	5.0	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	15	5.0	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	44	5.0	ug/m3	EPA TO-15	
Sample ID: SV-24-013-5	Laboratory ID:	E405082-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloroform	8.4	4.9	ug/m3	EPA TO-15	
Benzene	6.0	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	32	8.3	ug/m3	EPA TO-15	
Toluene	13	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	10	6.9	ug/m3	EPA TO-15	
Ethylbenzene	4.7	4.4	ug/m3	EPA TO-15	
m,p-Xylene	15	8.8	ug/m3	EPA TO-15	

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290 San Diego, CA 92123	Project Number: M	Project: SCS052424-10 Project Number: Midway Rising Project Manager: Chuck Houser					
Sample ID: SV-24-013-5	Laboratory ID:	E405082-02					
		Reporting					
Analyte	Result		Units	Method	Notes		
o-Xylene	8.5		ug/m3	EPA TO-15			
4-Ethyltoluene	11		ug/m3	EPA TO-15			
1,3,5-Trimethylbenzene	16		ug/m3	EPA TO-15			
1,2,4-Trimethylbenzene	48	5.0	ug/m3	EPA TO-15			
Sample ID: SV-24-015-5	Laboratory ID:	E405082-03					
		Reporting					
Analyte	Result	Limit	Units	Method	Notes		
Dichlorodifluoromethane (F12)	5.5	5.0	ug/m3	EPA TO-15			
4-Methyl-2-pentanone (MIBK)	34	8.3	ug/m3	EPA TO-15			
Toluene	5.3	3.8	ug/m3	EPA TO-15			
Tetrachloroethene	11	6.9	ug/m3	EPA TO-15			
o-Xylene	5.0	4.4	ug/m3	EPA TO-15			
4-Ethyltoluene	11	5.0	ug/m3	EPA TO-15			
1,3,5-Trimethylbenzene	18	5.0	ug/m3	EPA TO-15			
1,2,4-Trimethylbenzene	53	5.0	ug/m3	EPA TO-15			
Sample ID: SV-24-016-5	Laboratory ID:	E405082-04					
		Reporting					
Analyte	Result	Limit	Units	Method	Notes		
Benzene	6.1	3.2	ug/m3	EPA TO-15			
4-Methyl-2-pentanone (MIBK)	20	8.3	ug/m3	EPA TO-15			
Toluene	9.2	3.8	ug/m3	EPA TO-15			
Tetrachloroethene	7.4	6.9	ug/m3	EPA TO-15			
m,p-Xylene	11	8.8	ug/m3	EPA TO-15			
o-Xylene	6.6	4.4	ug/m3	EPA TO-15			
4-Ethyltoluene	6.0	5.0	ug/m3	EPA TO-15			
1,3,5-Trimethylbenzene	8.1	5.0	ug/m3	EPA TO-15			
1,2,4-Trimethylbenzene	23	5.0	ug/m3	EPA TO-15			
Sample ID: SV-24-019-5	Laboratory ID:	E405082-05					
		Reporting					
Analyte	Result	Limit	Units	Method	Notes		
Benzene	4.0	3.2	ug/m3	EPA TO-15			
4-Methyl-2-pentanone (MIBK)	18	8.3	ug/m3	EPA TO-15			
Toluene	7.7	3.8	ug/m3	EPA TO-15			
Tetrachloroethene	20	6.9	ug/m3	EPA TO-15			
m,p-Xylene	12	8.8	ug/m3	EPA TO-15			
				EPA TO-15			

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290	Project: SC Project Number: M		Reported:		
San Diego, CA 92123	Project Manager: Ch	uck Houser			05-Jun-24 12:20
Sample ID: SV-24-019-5	Laboratory ID:	E405082-05			
		Reporting			
Analyte	Result		Units	Method	Notes
4-Ethyltoluene	5.3	5.0	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	7.6		ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	23	5.0	ug/m3	EPA TO-15	
Sample ID: SV-24-018-5	Laboratory ID:	E405082-06			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	280	3.2	ug/m3	EPA TO-15	
Toluene	18	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	20	6.9	ug/m3	EPA TO-15	
Ethylbenzene	26	4.4	ug/m3	EPA TO-15	
m,p-Xylene	150	8.8	ug/m3	EPA TO-15	
o-Xylene	74	4.4	ug/m3	EPA TO-15	
4-Ethyltoluene	8.3	5.0	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	17	5.0	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	33	5.0	ug/m3	EPA TO-15	
Sample ID: SV-24-020-2.5	Laboratory ID:	E405082-07			
		Reporting			
Analyte	Result		Units	Method	Notes
Carbon disulfide	13	6.3	ug/m3	EPA TO-15	
2-Butanone (MEK)	84	30	ug/m3	EPA TO-15	
Benzene	56	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	57	8.3	ug/m3	EPA TO-15	
Toluene	100	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	21	6.9	ug/m3	EPA TO-15	
Ethylbenzene	36	4.4	ug/m3	EPA TO-15	
m,p-Xylene	74	8.8	ug/m3	EPA TO-15	
				EDA TO 15	
Styrene	17	4.3	ug/m3	EPA TO-15	
Styrene o-Xylene	17 39	4.3 4.4	ug/m3 ug/m3	EPA TO-15	
o-Xylene			ug/m3		
o-Xylene 4-Ethyltoluene	39 26	4.4 5.0	ug/m3 ug/m3	EPA TO-15	
o-Xylene	39	4.4	ug/m3	EPA TO-15 EPA TO-15	
o-Xylene 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	39 26 31 82	4.4 5.0 5.0 5.0	ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15	
o-Xylene 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	39 26 31	4.4 5.0 5.0 5.0 5.0	ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15	
o-Xylene 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Sample ID: SV-24-024-5	39 26 31 82 Laboratory ID:	4.4 5.0 5.0 5.0 5.0 E405082-08	ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	Notes
o-Xylene 4-Ethyltoluene 1,3,5-Trimethylbenzene	39 26 31 82	4.4 5.0 5.0 5.0 5.0 E405082-08	ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15	Notes

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10
8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

ple ID: SV-24-024-5	Laboratory ID:	E405082-08			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
4-Methyl-2-pentanone (MIBK)	41	8.3	ug/m3	EPA TO-15	
Toluene	12	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	41	6.9	ug/m3	EPA TO-15	
m,p-Xylene	11	8.8	ug/m3	EPA TO-15	
o-Xylene	5.8	4.4	ug/m3	EPA TO-15	
4-Ethyltoluene	8.3	5.0	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	12	5.0	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	33	5.0	ug/m3	EPA TO-15	
nple ID: SV-24-024-5 Rep	Laboratory ID:	E405082-09			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	2.1	2.1	ug/m3	EPA TO-15	
2-Butanone (MEK)	41	30	ug/m3	EPA TO-15	
Benzene	8.4	3.2	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	41	8.3	ug/m3	EPA TO-15	
Toluene	14	3.8	ug/m3	EPA TO-15	
2-Hexanone (MBK)	13	8.3	ug/m3	EPA TO-15	
Tetrachloroethene	39	6.9	ug/m3	EPA TO-15	
m,p-Xylene	11	8.8	ug/m3	EPA TO-15	
o-Xylene	6.3	4.4	ug/m3	EPA TO-15	
4-Ethyltoluene	9.9	5.0	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	13	5.0	ug/m3	EPA TO-15	
,-,-					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Anglyte	Result	Reporting Limit	I I.u.:4-	Dilution	Date!	Duon J	A mol J	Moth - J	Notes
Analyte			Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-001-5 (E405080-01) Vapor Sampled: 21	1-May-24 Recei	•	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
Dichlorodifluoromethane (F12)	5.3	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	13	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	48	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	19	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	43	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	33	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	79	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	8.2	4.7	"	"	"	"	"	"	
Ethylbenzene	7.6	4.4	"	"	"	"	"	"	
m,p-Xylene	19	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
-	-	-							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

	110	Reporting	ic Geoch	Dilution	,				
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-001-5 (E405080-01) Vapor	Sampled: 21-May-24 Receiv	ed: 21-May	-24						
o-Xylene	11	4.4	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	7.9	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	7.3	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Suggesta: 1.2 Diablamath and 44		96.3 %	76-1	121	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8		96.3 % 98.7 %	76-1 78-1		,,	,,	,,	"	
=					"	"	,,	"	
Surrogate: 4-Bromofluorobenzene		96.8 %	77-1	27					
SV-24-002-5 (E405080-02) Vapor	Sampled: 21-May-24 Receiv		-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichlorometha	ne) ND	3.5	"	"	"	••	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	4.4	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
511 vevidemonide	IAD	0.4							

San Diego, CA 92123

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

Project Number: Midway Rising
Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-002-5 (E405080-02) Vapor	Sampled: 21-May-24 Recei	ved: 21-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	17	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	13	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	6.3	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	13	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	5.5	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.3 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		102 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.1 %		127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

	D14	Reporting		Dilution	5			25.1	NI-4
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-003-5 (E405080-03) Vapor Sampled: 2	1-May-24 Receiv	ved: 21-May-	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	30	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	5.7	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	23	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	11	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"		"	
2-Hexanone (MBK)	13	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"		"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
-									

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

		Reporting	ic Geoch	Dilution	,				
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-003-5 (E405080-03) Vapor	Sampled: 21-May-24 Receiv	ed: 21-May	-24						
o-Xylene	ND	4.4	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	**	
Surrogate: 1,2-Dichloroethane-d4		92.4 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	77-1		"	"	"	"	
	C 1 1 21 M 24 D 1			. 2 /					
SV-24-004-5 (E405080-04) Vapor	Sampled: 21-May-24 Receiv			1	EE42102	21 M 24	21 M 24	EDA TO 15	
1,1-Difluoroethane (LCC)	6.6	5.5	ug/m3	1 "	EE43102	31-May-24	31-May-24	EPA TO-15	
Dichlorodifluoromethane (F12) Chloromethane	5.2 ND	5.0	,,	"	,,	,,	,,	,,	
	ND	2.1	"	"	,,	,,	,,	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	,,	,,	,,	,	,,		
Vinyl chloride	ND	2.6	,,	,,	,,	,	,,		
Bromomethane	ND	16	,,	,,	,,	,	,,		
Chloroethane	ND	8.0	,,	,,	,,		,,		
Trichlorofluoromethane (F11)	ND	5.6	"	,,	,,	,	,,		
1,1-Dichloroethene	ND	4.0		,,	,,	,	,,		
1,1,2-Trichlorotrifluoroethane (F113	,	7.7	,,	,,	,,	,			
Methylene chloride (Dichlorometha	<i>'</i>	3.5	,,	,,	,,	,	,,		
Carbon disulfide	15	6.3	,,	,,	,,	,	,,		
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	,,	"	"	,	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"		"		,,		
Chloroform	ND	4.9	"	"	"	,	"	"	
1,1,1-Trichloroethane	ND	5.5						"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	9.8	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project: SCS052424-10
Project Number: Midway Rising
Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-004-5 (E405080-04) Vapor	Sampled: 21-May-24 Recei	ved: 21-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	23	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	23	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	11	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	4.5	4.4	"	"	"	"	"	"	
m,p-Xylene	14	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	6.0	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.8 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		102 %		.125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.4 %		.127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-017-5 (E405080-07) Vapor Sampled: 2	21-May-24 Recei	ved: 21-May	-24						
1,1-Difluoroethane (LCC)	87	5.5	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	7.2	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	9.4	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	41	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	10	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	13	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-017-5 (E405080-07) Vapor Sample	ed: 21-May-24 Recei	ved: 21-May	-24						
o-Xylene	5.1	4.4	ug/m3	1	EE43102	31-May-24	31-May-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.1 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.0 %	77-1		"	"	"	"	
SV-24-005-5 (E405081-01) Vapor Sample	ed: 22-May-24 Recei	ved: 22-May	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
2 iomere amazieme (i 12)	שוו	5.0							
Chloromethane	ND ND	5.0 2.1	"	"	"	"	"	"	
· · · · · · · · · · · · · · · · · · ·			"	"	"	"	"	"	
Chloromethane	ND	2.1							
Chloromethane Dichlorotetrafluoroethane (F114)	ND ND	2.1 7.1	"	"	"	"	"		
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND ND	2.1 7.1 2.6	"	"	"	"	"		
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	ND ND ND ND	2.1 7.1 2.6 16	" "	" "	"	" "	"	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	ND ND ND ND ND	2.1 7.1 2.6 16 8.0	" "	" "	" "	" " "	" " " " " " " " " " " " " " " " " " " "	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	11 11 11 11	" " " "	" " " " " " "	" " " " " "	" " " " " " " " " " " " " " " " " " " "	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	n n n n	" " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " "	" " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1			" " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego

Project: SCS052424-10

Reported: 05-Jun-24 12:20

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Project Manager: Chuck Houser San Diego, CA 92123

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-005-5 (E405081-01) Vapor	Sampled: 22-May-24 Recei	ved: 22-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	34	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	130	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	6.8	4.7	"	"	"	"	"	"	
Ethylbenzene	21	4.4	"	"	"	"	"	"	
m,p-Xylene	45	8.8	"	"	"	"	"	"	
Styrene	7.5	4.3	"	"	"	"	"	"	
o-Xylene	19	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	5.0	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	11	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Common et al. 2 Disklam ed 14		95.8 %	7/	.134	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.8 % 95.5 %		·134 ·125	,,	"	"	"	
Surrogate: Toluene-d8					,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.7 %	//-	-127					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Inv. 24 Page		Units	Factor	Batch	Prepared	Analyzed	Method	Notes
lay-24 Nece	ived: 22-May-	-24				· · · · · · · · · · · · · · · · · · ·		
ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
ND		"	"	"	"	"	"	
ND	2.1	"	"	"	"	"	"	
ND	7.1	"	"	"	"	"	"	
ND	2.6	"	"	"	"	"	"	
ND	16	"	"	"	"	"	"	
ND	8.0	"	"	"	"	"	"	
ND		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
ND	6.8	"	"	"	"	"	"	
		"	"	"	"	"	"	
21		"	"	"	"	"	"	
ND	4.6	"	"	"	"	"	"	
16		"	"	"	"	"	"	
		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
ND	7.8	"	"	"	"	"	"	
ND	7.0	"	"	"	"	"	"	
4.9	4.7	"	"	"	"	"	"	
ND	4.4	"	"	"	"	"	"	
10		"	"	"	"	"	"	
		"	"	"	"	"	"	
	ND N	ND 5.0 ND 2.1 ND 7.1 ND 2.6 ND 16 ND 8.0 ND 5.6 ND 4.0 ND 7.7 ND 3.5 7.3 6.3 ND 8.0 ND 4.1 ND 30 ND 4.1 ND 30 ND 4.1 ND 30 ND 4.9 ND 5.5 ND 4.1 9.9 3.2 ND 6.4 ND 5.5 ND 4.1 9.9 3.2 ND 6.4 ND 5.5 ND 4.1 9.9 3.2 ND 6.8 ND 4.6 21 8.3 ND 4.6 21 8.3 ND 4.6 21 8.3 ND 4.6 21 8.3 ND 4.6 0.8 ND 4.6 0.8 ND 5.5 ND 9.4 ND 6.8 ND 7.0 0.8 ND 7.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	ND 5.0 " ND 2.1 " ND 7.1 " ND 2.6 " ND 16 " ND 8.0 " ND 5.6 " ND 4.0 " ND 7.7 " ND 3.5 " 7.3 6.3 " ND 8.0 " ND 4.1 " ND 30 " ND 4.1 " ND 30 " ND 4.1 " ND 4.9 " ND 4.1 " 9.9 3.2 " ND 4.1 " 9.9 3.2 " ND 6.4 " ND 5.5 " ND 4.1 " 9.9 3.2 " ND 6.4 " ND 5.5 " ND 4.6 " 21 8.3 " ND 7.0 " 4.9 " ND 7.8 " ND 7.0 " 4.9 4.7 " ND 4.4 " 10 8.8 "	ND 5.0 " " " ND 2.1 " " ND 7.1 " " ND 2.6 " " " ND 16 " " ND 8.0 " " ND 4.0 " " ND 3.5 " " ND 8.0 " " ND 8.0 " " ND 4.1 " " ND 30 " " ND 4.1 " " ND 4.9 " ND 4.1 " " 9.9 3.2 " ND 4.1 " " 9.9 3.2 " ND 6.4 " ND 5.5 " " ND 9.4 " " ND 5.5 " " ND 9.4 " " ND 6.8 " " ND 9.4 " " ND 6.8 " " ND 4.6 " " 16 3.8 " " ND 4.6 " " 16 3.8 " " ND 4.6 " " 16 3.8 " " ND 8.6 " " ND 8.3 " " ND 8.6 " " ND 8.6 " " ND 8.3 " " ND 8.6 " " ND 7.0 " " 4.9 4.7 " ND 4.4 " " " " " " " " ND 4.4 " " " " " " " " ND 4.4 " " " " " " " " " " " " " " " " " "	ND 5.0 " " " " " ND 2.1 " " ND 7.1 " " " ND 2.6 " " " " " ND 16 " " " " ND 8.0 " " " " ND 4.0 " " ND 3.5 " " " ND 8.0 " " " ND 4.1 " " " ND 30 " " " ND 4.1 " " " ND 4.9 " " ND 4.1 " " 9.9 3.2 " " ND 4.1 " " 9.9 3.2 " " ND 6.4 " " " ND 5.5 " " ND 9.4 " " " ND 6.8 " " " ND 4.6 " " " ND 8.3 " " " ND 8.6 " " ND 8.8 " " " ND 8.6 " " ND 7.0 " " 4.9 4.7 " " ND 4.4 " " " " ND 4.4 " " " " ND 7.0 " " 4.9 4.7 " " ND 4.4 " " " " " ND 4.4 " " " " ND 4.4 " " " " " " ND 4.4 " " " " " ND 4.4 " " " " " " " ND 4.4 " " " " " " " ND 4.4 " " " " " " " ND 4.4 " " " " " " " ND 4.4 " " " " " " " ND 4.4 " " " " " " " " ND 4.4 " " " " " " " " ND 4.4 " " " " " " " " " " " " " ND 4.4 " " " " " " " " " " " " " " " " " "	ND 5.0 " " " " " " " ND 2.1 " " " " " " " " " " " " " " " " " " "	ND 5.0 " " " " " " " " " " " ND 2.1 " " " " " " " " " " " " " " " " " " "	ND 5.0 " " " " " " " " " " " " " " " " " " "

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-008-5 (E405081-02) Vapor Sampled	l: 22-May-24 Receiv	ved: 22-May	-24						
o-Xylene	4.6	4.4	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.6 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8		98.7 %	78-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.4 %	77-1		"	"	"	"	
SV-24-009-5 (E405081-03) Vapor Sampled	l: 22-May-24 Receiv	ved: 22-May	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Chloromethane Dichlorotetrafluoroethane (F114)	ND ND	2.1 7.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND	7.1 2.6	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	ND ND ND	7.1 2.6 16	"	" "	"	"	"	" " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	ND ND ND ND	7.1 2.6 16 8.0	" " "	" "	" "	" " "	" " " " " " " " " " " " " " " " " " " "	" " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND ND ND	7.1 2.6 16 8.0 5.6	" " " "	" " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	" " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND ND ND ND ND ND	7.1 2.6 16 8.0 5.6 4.0	" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	" " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND ND ND	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	" " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " "	" " " " " " " " " " " " " " " " " " " "	" " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND ND ND ND ND ND	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	n n n n n n n n n n n n n n n n n n n	" " " " " " " " "	" " " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND ND ND ND ND	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	" " " " " " " " " " " " " " " " " " " "		" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1			" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND ND ND	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0			" " " " " " " " " " " "		"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND ND	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND N	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND N	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND N	7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

Project: SCS052424-10 Project Number: Midway Rising

Reported: 05-Jun-24 12:20

Project Manager: Chuck Houser San Diego, CA 92123

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-009-5 (E405081-03) Vapor	Sampled: 22-May-24 Recei	ved: 22-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	22	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	11	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.2	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.4 %	76.	-134	"	,,	"	"	
Surrogate: Toluene-d8		94.6%		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.3 %		-127	"	"	"	"	
- •									

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-010-5 (E405081-04) Vapor Sampled: 2	2-May-24 Recei	ived: 22-May-	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"		"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"		"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	4.3	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	12	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	9.8	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.1	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
29,1000	140	₹.0							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego
Project: SCS052424-10
8799 Balboa Avenue, Suite 290
Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-010-5 (E405081-04) Vapor Sampled:	22-May-24 Receiv	ed: 22-May	-24						
o-Xylene	ND	4.4	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.4 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.0 %	77-1		"	"	"	"	
SV-24-007-5 (E405081-05) Vapor Sampled:	22-May-24 Receiv	ed: 22-May	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12)	ND ND	5.5 5.0	ug/m3	1	EF40309	03-Jun-24 "	03-Jun-24 "	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane	ND ND	5.0 2.1	"	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114)	ND ND ND	5.0 2.1 7.1	"	" "	" "	" "	"	" "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND ND ND	5.0 2.1 7.1 2.6	"	" "	" "	" "	"	" "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	ND ND ND ND ND	5.0 2.1 7.1 2.6 16	" " " " " " " " " " " " " " " " " " " "	" "	" " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0	" " " " " " " " " " " " " " " " " " " "	" "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6	" " " " " " " " " " " " " " " " " " " "	" "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0	" " " " " " " " " " " " " " " " " " " "	" "	0 0 10 10 10 10	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7		" "	0 0 0 0 0	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5		" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " "	" " " " " " " " "	"		
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3	"" "" "" "" "" "" "" "" "" "" "" "" ""	"""""""""""""""""""""""""""""""""""""""		"""""""""""""""""""""""""""""""""""""""	"		
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0		"""""""""""""""""""""""""""""""""""""""		"""""""""""""""""""""""""""""""""""""""	"		
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1		"""""""""""""""""""""""""""""""""""""""			"		
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project: SCS052424-10

Project Number: Midway Rising Project Manager: Chuck Houser Reported: 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-007-5 (E405081-05) Vapor Sampled	: 22-May-24 Receiv	ed: 22-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	18	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	17	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	12	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	5.0	4.4	"	"	"	"	"	"	
m,p-Xylene	11	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	5.6	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.1 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		86.4 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-014-5 (E405081-08) Vapor Sampled: 22-	May-24 Rece	ived: 22-May-	-24				-		
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"		"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"		"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	4.5	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	10	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	7.6	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	45	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	10	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
~,	ND	₹.0							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-014-5 (E405081-08) Vapor Sample	d: 22-May-24 Receiv	ed: 22-May	-24						
o-Xylene	5.3	4.4	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.0 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-1		"	"	"	"	
SV-24-012-5 (E405081-09) Vapor Sample	d: 22-May-24 Receiv	ed: 22-May	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND		"	"	"	"	"	"	
Dichiorodiffuoromethane (F12)	ND	5.0						"	
Chloromethane	ND ND	5.0 2.1	"	"	"	"	"	"	
						"			
Chloromethane	ND	2.1	"	"	"		"	"	
Chloromethane Dichlorotetrafluoroethane (F114)	ND ND	2.1 7.1	"	"	"	"	"	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND ND	2.1 7.1 2.6	"	"	"	"	"	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	ND ND ND ND	2.1 7.1 2.6 16	" "	" "	" " "	"	" " "	11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	ND ND ND ND ND	2.1 7.1 2.6 16 8.0	" " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6	" " " " " " " " " " " " " " " " " " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0	" " " " " " " " " " " " " " " " " " " "	" " " " "	11 11 11 11	11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	n n n n	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	" " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7	" " " " " " " " " " " " " " " " " " " "		11 11 11 11 11 11 11 11 11 11 11 11 11	n n n n n n n n n n n n n n n n n n n	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3			11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11	" " " " " " " " " " "	" " " " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1				11 11 11 11 11	" " " " " " " " " " "	" " " " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1					" " " " " " " " " " "	" " " " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project Number: Midway Rising Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-012-5 (E405081-09) Vapor	Sampled: 22-May-24 Recei	ived: 22-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	9.6	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.8 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		106 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %		127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego
Project: SCS052424-10
8799 Balboa Avenue, Suite 290
Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
				ractor	Dateii	ricpared	Allalyzed	Method	110103
SV-24-011-5 (E405081-11) Vapor Sampled: 22	-May-24 Recei	ved: 22-May-							
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	48	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	57	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	28	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	88	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	14	4.4	"	"	"	"	"	"	
m,p-Xylene	30	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
	.,,,	1.5							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

		Reporting		Dilution					
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-011-5 (E405081-11) Vapor Sampled: 2	22-May-24 Receive	ed: 22-May-	-24						
o-Xylene	14	4.4	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	5.2	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.9 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8		97.9 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.1 %	77-1		"	"	"	"	
SV-24-006-5 (E405082-01) Vapor Sampled: 2	23-May-24 Receiv	ed: 23-May	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
` /	ND	5.0							
Chloromethane	ND ND	2.1	"	"	"	"	"	"	
			"	"	"	"	"	"	
Chloromethane	ND ND	2.1 7.1							
Chloromethane Dichlorotetrafluoroethane (F114)	ND	2.1	"	"	"	"			
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND ND ND	2.1 7.1 2.6 16	"	"	"	"	"	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	ND ND ND	2.1 7.1 2.6	"	"	" "	"	" "	" "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	ND ND ND ND ND	2.1 7.1 2.6 16 8.0	" "	" "	" "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0	" " " "	" "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7	" " " " " " " " " " " " " " " " " " " "	" "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	" " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3	n n n	" " " " " " " "	11 11 11 11 11	" " " " " " " "	" " " " " " " " "	" " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5		" " " " " " " "	11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " "	" " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1			11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " "			
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1				"" "" "" "" "" "" "" "" "" "" "" "" ""			
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project Number: Midway Rising Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-006-5 (E405082-01) Vapor Sampled	: 23-May-24 Receiv	ved: 23-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	61	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	59	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	7.3	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	14	4.4	"	"	"	"	"	"	
m,p-Xylene	37	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	17	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	12	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	15	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	44	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.8 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	77-		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-013-5 (E405082-02) Vapor Sampled:	23-May-24 Rece	ived: 23-May-	-24				-		
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	•	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	8.4	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	6.0	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	32	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	13	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	10	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	4.7	4.4	"	"	"	"	"	"	
m,p-Xylene	15	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
•	110	1.0							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

				Dilai	,				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-013-5 (E405082-02) Vapor Sampled:	23-May-24 Receiv	ed: 23-May	-24						
o-Xylene	8.5	4.4	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	11	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	16	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	48	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.1 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	77-1		"	"	"	"	
SV-24-015-5 (E405082-03) Vapor Sampled:	23-May-24 Receiv	ed: 23-May	-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	5.5	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	,,	,,	,,	,,	,,	,,	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project Number: Midway Rising Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-015-5 (E405082-03) Vapor	Sampled: 23-May-24 Recei	ived: 23-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	34	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	5.3	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	11	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	5.0	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	11	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	18	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	53	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.4 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		104 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-016-5 (E405082-04) Vapor Sampled: 23	3-May-24 Recei	ived: 23-May-	-24				<u> </u>		
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	6.1	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	20	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	9.2	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	7.4	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	11	8.8	"	"	,,	"	"	"	
Styrene	ND	4.3	"	"	,,	"	"	"	
y	ND	+.∪							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

D. I	Reporting		Dilution					NI .
Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
23-May-24 Receiv	ed: 23-May	-24						
6.6	4.4	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
ND	10	"	"	"	"	"	"	
ND	7.0	"	"	"	"	"	"	
6.0	5.0	"	"	"	"	"	"	
8.1	5.0	"	"	"	"	"	"	
23	5.0	"	"	"	"	"	"	
ND	12	"	"	"	"	"	"	
ND	12	"	"	"	"	"	"	
ND		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
ND	54	"	"	"	"	"	"	
	94.7 %			"	"	"	"	
	90.6 %	78-1	25	"	"	"	"	
	106 %	77-1	27	"	"	"	"	
23-May-24 Receiv	ed: 23-May	-24						
ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
ND	5.0	"	"	"	"	"	"	
ND	2.1	"	"	"	"	"	"	
ND	7.1	"	"	"	"	"	"	
ND	2.6	,,			"	"		
			"	"				
ND	16	"	"	"	"	"	"	
	16		"		"	"	"	
ND ND ND		"	"	"			" "	
ND	16 8.0	"	"	"	"	"		
ND ND ND	16 8.0 5.6	"	"	" "	"	"	"	
ND ND	16 8.0 5.6 4.0 7.7	" " "	"	" "	"	"	"	
ND ND ND ND	16 8.0 5.6 4.0 7.7 3.5	" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " "	"	"	
ND ND ND ND ND	16 8.0 5.6 4.0 7.7 3.5 6.3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
ND ND ND ND ND	16 8.0 5.6 4.0 7.7 3.5	" " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
ND ND ND ND ND ND ND	16 8.0 5.6 4.0 7.7 3.5 6.3 8.0	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "		" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND ND ND ND	16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30	" " " " " " " " " " " " " " " " " " "		0 0 0 0	" " " " " " " " " " " " " " " " " " " "	"	" " " " " " " "	
ND ND ND ND ND ND ND ND	16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0	11 11 11 11 11		11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " "	
ND ND ND ND ND ND ND ND ND	16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9	0		" " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " "	
ND N	16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	0			" " " " " " " " " " " " " "		" " " " " " " " "	
ND ND ND ND ND ND ND ND ND	16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9						" " " " " " " " "	
	6.6 ND ND 6.0 8.1 23 ND ND ND ND ND ND ND ND	Result Limit 23-May-24 Received: 23-May 6.6 4.4 ND 10 ND 7.0 6.0 5.0 8.1 5.0 23 5.0 ND 12 ND 12 ND 12 ND 12 ND 38 ND 54 94.7 % 90.6 % 106 % 23-May-24 Received: 23-May ND 5.5 ND 5.0 ND 5.1 ND 5.5 ND 5.0 ND 7.1	Result Limit Units 23-May-24 Received: 23-May-24 6.6 4.4 ug/m3 ND 10 " ND 7.0 " 6.0 5.0 " 8.1 5.0 " ND 12 " ND 12 " ND 38 " ND 38 " ND 54 " 23-May-24 Received: 23-May-24 ND 5.5 ug/m3 ND 5.0 " ND 2.1 " ND 7.1 "	Result Limit Units Factor 23-May-24 Received: 23-May-24	Result Limit Units Factor Batch 23-May-24 Received: 23-May-24 6.6 4.4 ug/m3 1 EF40309 ND 10 " " " ND 7.0 " " " 6.0 5.0 " " " 8.1 5.0 " " " ND 12 " " " ND 12 " " " ND 38 " " " ND 38 " " " 90.6 % 78-125 " " 106 % 77-127 " " 23-May-24 Received: 23-May-24 EF40309 " " ND 5.5 ug/m3 1 EF40309 ND 5.0 " " " ND 2.1 " " " ND 7.1 <td>Result Limit Units Factor Batch Prepared 23-May-24 Received: 23-May-24 6.6 4.4 ug/m3 1 EF40309 03-Jun-24 ND 10 " " " " ND 7.0 " " " " 6.0 5.0 " " " " 8.1 5.0 " " " " ND 12 " " " " ND 12 " " " " ND 38 " " " " ND 38 " " " " 90.6 % 78-125 " " " 23-May-24 Received: 23-May-24 EF40309 03-Jun-24 ND 5.5 ug/m3 1 EF40309 03-Jun-24 ND 5.0 " " " "</td> <td> Result</td> <td> Result</td>	Result Limit Units Factor Batch Prepared 23-May-24 Received: 23-May-24 6.6 4.4 ug/m3 1 EF40309 03-Jun-24 ND 10 " " " " ND 7.0 " " " " 6.0 5.0 " " " " 8.1 5.0 " " " " ND 12 " " " " ND 12 " " " " ND 38 " " " " ND 38 " " " " 90.6 % 78-125 " " " 23-May-24 Received: 23-May-24 EF40309 03-Jun-24 ND 5.5 ug/m3 1 EF40309 03-Jun-24 ND 5.0 " " " "	Result	Result

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project Number: Midway Rising Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-019-5 (E405082-05) Vapor	Sampled: 23-May-24 Recei	ived: 23-May	-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	18	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	7.7	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	20	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	12	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	6.1	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	5.3	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	7.6	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	23	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.1 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		104 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-018-5 (E405082-06) Vapor Sampled: 23-May-24 Received: 23-May-24									
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	04-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"		"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	280	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	18	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	20	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	26	4.4	"	"	"	"	"	"	
m,p-Xylene	150	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
y	110	1.0							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-018-5 (E405082-06) Vapor Sampled:	23-May-24 Receiv	ved: 23-May	-24						
o-Xylene	74	4.4	ug/m3	1	EF40309	03-Jun-24	04-Jun-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	8.3	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	17	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	33	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		100 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		99.7 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	77-1		"	"	"	"	
SV-24-020-2.5 (E405082-07) Vapor Sampled	l: 23-May-24 Rec	eived: 23-Ma	y-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
		0.0							
Chloromethane	ND	2.1	"	"	"	"	"	"	
Chloromethane Dichlorotetrafluoroethane (F114)			"	"	"	"	"	" "	
	ND	2.1							
Dichlorotetrafluoroethane (F114)	ND ND	2.1 7.1	"	"	"	"	"		
Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND ND	2.1 7.1 2.6	"	"	"	"	"		
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	ND ND ND ND	2.1 7.1 2.6 16	" "	" "	" "	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	ND ND ND ND ND	2.1 7.1 2.6 16 8.0	" " "	" "	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	11 11 11 11	" " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	n n n n n n n n n n n n n n n n n n n	" " " " " " " " "	" " " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	n n n n n n n n n n n n n n n n n n n	11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1			" " " " " " " " " " " " " " " "		"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND ND	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project: SCS052424-10 Project Number: Midway Rising

Project Number: Midway Rising Reported:
Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-020-2.5 (E405082-07) Vapor	Sampled: 23-May-24 R	eceived: 23-Ma	y-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	57	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	100	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	21	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	36	4.4	"	"	"	"	"	"	
m,p-Xylene	74	8.8	"	"	"	"	"	"	
Styrene	17	4.3	"	"	"	"	"	"	
o-Xylene	39	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	26	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	31	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	82	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		93.7 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		86.2 %		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	77-	-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

SV-24-024-5 (E405082-08) Vapor Sampled: 23		Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
	B-May-24 Receiv	ved: 23-May	-24						
1,1-Difluoroethane (LCC)	23	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	7.9	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	41	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	12	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	41	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	11	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-024-5 (E405082-08) Vapor Sampled:	23-May-24 Receiv	ed: 23-May	-24						
o-Xylene	5.8	4.4	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	8.3	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	12	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	33	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		91.6 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-1		"	"	"	"	
SV-24-024-5 Rep (E405082-09) Vapor Samp	led: 23-May-24 R	eceived: 23-	Mav-24						
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
	ND ND		-	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,1-Difluoroethane (LCC)		5.5	ug/m3						
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12)	ND	5.5 5.0	ug/m3	"	"	"	"	"	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane	ND 2.1	5.5 5.0 2.1	ug/m3	"	"	"	"	"	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114)	ND 2.1 ND	5.5 5.0 2.1 7.1	ug/m3	" "	"	" "	"	" "	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	ND 2.1 ND ND	5.5 5.0 2.1 7.1 2.6	ug/m3	" "	" "	" "	"	" "	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	ND 2.1 ND ND ND	5.5 5.0 2.1 7.1 2.6 16	ug/m3	" "	" " " " " " " " " " " " " " " " " " " "	" " " "	"	11 11 11	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	ND 2.1 ND ND ND ND	5.5 5.0 2.1 7.1 2.6 16 8.0	ug/m3	" "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	11 11 11	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND 2.1 ND ND ND ND ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6	ug/m3	" "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	11 11 11	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND 2.1 ND ND ND ND ND ND ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0	ug/m3	" "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	11 11 11	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7	ug/m3	" "	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"	11 11 11	
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5	ug/m3		"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " "			
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3	ug/m3		" " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""			
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0	ug/m3			"" "" "" "" "" "" "" "" "" "" "" "" ""			
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1	ug/m3						
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1	ug/m3						
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0	ug/m3						
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9	ug/m3						
1,1-Difluoroethane (LCC) Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND 2.1 ND	5.5 5.0 2.1 7.1 2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	ug/m3						

San Diego, CA 92123

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

Project Number: Midway Rising Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15

		Reporting		Dilution	, me.				
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-024-5 Rep (E405082-09) Vapor	Sampled: 23-May-24	Received: 23-	May-24						
Trichloroethene	ND	5.5	ug/m3	1	EF40309	03-Jun-24	03-Jun-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	41	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	14	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	13	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	39	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	11	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	6.3	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	9.9	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	13	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	38	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	H .	
Surrogate: 1,2-Dichloroethane-d4		96.3 %	76	5-134	"	"	"	"	
Surrogate: Toluene-d8		103 %		R-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %		7-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-021-5 (E405080-05) Vapor Sampled:	21-May-24 Rece	ived: 21-May	-24						R-05
1,1-Difluoroethane (LCC)	ND	5000	ug/m3	0.5	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	
2-Butanone (MEK)	ND	25000	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	25000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	25000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	5000	"	"	"	"	"	"	
Chloromethane	ND	5000	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
Bromomethane	ND	5000	"	"	"	"	"	"	
Chloroethane	ND	5000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	5000	"	"	"	"	"	"	
Carbon disulfide	ND	5000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	5000	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
Chloroform	ND	1000	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5000	"	"	"	"	"	"	
Carbon tetrachloride	ND	1000	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1000	"	"	"	"	"	"	
Benzene	14000	1000	"	"	"	"	"	"	
Trichloroethene	ND	1000	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5000	"	"	"	"	"	"	
Bromodichloromethane	ND	5000	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
Toluene	ND	10000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5000	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5000	"	"	"	"	"	"	
Tetrachloroethene	ND	1000	"	"	"	"	"	"	
Dibromochloromethane	ND	5000	"	"	"	"	"	"	
Chlorobenzene	ND	1000	"	"	"	"	"	"	
Ethylbenzene	ND	5000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
m,p-Xylene	ND	5000	"	"	"	"	"	"	
o-Xylene	ND	5000	"	"	"	"	"	"	
Styrene	ND	5000	"	"	"	"	"	"	
29,200	140	5550							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego
Project: SCS052424-10
8799 Balboa Avenue, Suite 290
Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-021-5 (E405080-05) Vapor Sample	d: 21-May-24 Received	ved: 21-May	-24						R-05
Bromoform	ND	5000	ug/m3	0.5	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	
1,1,2,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5000	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		115 %	75-	125	"	"	"	"	
Surrogate: Toluene-d8		114 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.0 %	75-	125	"	"	"	"	
SV-24-021-5 Dup (E405080-06) Vapor Sa	mpled: 21-May-24 I	Received: 21-	May-24						R-05
1,1-Difluoroethane (LCC)	ND	5000	ug/m3	0.5	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	
2-Butanone (MEK)	ND	25000	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	25000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	25000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	5000	"	"	"	"	"	"	
Chloromethane	ND	5000	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
Bromomethane	ND	5000	"	"	"	"	"	"	
Chloroethane	ND	5000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	5000	"	"	"	"	"	"	
Carbon disulfide	ND	5000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	5000	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
Chloroform	ND	1000	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5000	"	"	"	"	"	"	
Carbon tetrachloride	ND	1000	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1000	"	"	"	"	"	"	
Benzene	14000	1000	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project: SCS052424-10
Project Number: Midway Rising
Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-021-5 Dup (E405080-06) Vapor				1 40101	Dateii		- 111417 204	Monod	R-05
Trichloroethene	ND	1000	ug/m3	0.5	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	1.703
1,2-Dichloropropane	ND ND	5000	ug/III3	"	"	"	"	" "	
Bromodichloromethane	ND ND	5000		,,	"	"	,,	"	
cis-1,3-Dichloropropene	ND ND	5000		,,	"	"	,,	"	
Toluene	ND ND	10000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND ND	5000		"	"	"	"	"	
1,1,2-Trichloroethane	ND ND	5000		"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND ND	5000		"	"	"	"	"	
Tetrachloroethene	ND	1000		"	"	"	"	"	
Dibromochloromethane	ND	5000		"	"	"	"	"	
Chlorobenzene	ND	1000		"	"	"	"	"	
Ethylbenzene	ND	5000		"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
m,p-Xylene	ND	5000	"	"	"	"	"	"	
o-Xylene	ND	5000	"	"	"	"	"	"	
Styrene	ND	5000		"	"	"	"	"	
Bromoform	ND	5000		"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5000		"	"	"	"	"	
1,3-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5000	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %		5-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		116 %		5-125	"	"	"	"	
Surrogate: Toluene-d8		114 %		5-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.2 %	7	5-125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-023-5 (E405081-06) Vapor Sampled:	22-May-24 Rece	ived: 22-May	-24						R-05
1,1-Difluoroethane (LCC)	ND	5000	ug/m3	0.5	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	
2-Butanone (MEK)	ND	25000	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	25000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	25000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	5000	"	"	"	"	"	"	
Chloromethane	ND	5000	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
Bromomethane	ND	5000	"	"	"	"	"	"	
Chloroethane	ND	5000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	5000	"	"	"	"	"	"	
Carbon disulfide	ND	5000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	5000	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
Chloroform	ND	1000	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5000	"	"	"	"	"	"	
Carbon tetrachloride	ND	1000	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1000	"	"	"	"	"	"	
Benzene	38000	1000	"	"	"	"	"	"	
Trichloroethene	ND	1000	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5000	"	"	"	"	"	"	
Bromodichloromethane	ND	5000	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
Toluene	ND	10000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5000	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5000	"	"	"	"	"	"	
Tetrachloroethene	ND	1000	"	"	"	"	"	"	
Dibromochloromethane	ND	5000	"	"	"	"	"	"	
Chlorobenzene	ND	1000	"	"	"	"	"	"	
Ethylbenzene	ND	5000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
m,p-Xylene	9100	5000	"	"	"	"	"	"	
o-Xylene	ND	5000	"	"	"	"	"	"	
Styrene	ND	5000	"	"	"	"	"	"	
	ND	3000							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV

Analyte SV-24-023-5 (E405081-06) Vapor Sa Bromoform	ampled: 22 May 24 Passi	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
Bromoform		vod. 22_Mov		1 40101	Zaten	Taparea			R-05
	ND	5000	ug/m3	0.5	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	13-03
1,1,2,2-Tetrachloroethane	ND ND	5000	ug/m3	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND ND	5000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND ND	5000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND ND	5000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND ND	5000	"	"	"	"	,,	"	
1,2-Dichlorobenzene	ND ND	5000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5000	"	"	"	"	,,	"	
Hexachlorobutadiene	ND	5000	"	"	"	"	"	**	
Surrogate: Dibromofluoromethane		95.2 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		114 %	75-		"	"	"	"	
Surrogate: Toluene-d8		118 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.1 %	75-		"	"	"	"	
SV-24-022-5 (E405081-07) Vapor Sa	ampled: 22-May-24 Recei	ved: 22-May-	-24						R-05
1,1-Difluoroethane (LCC)	ND	1000	ug/m3	0.1	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	
2-Butanone (MEK)	ND	5000	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	5000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	5000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	1000	"	"	"	"	"	"	
Chloromethane	ND	1000	"	"	"	"	"	"	
Vinyl chloride	ND	100	"	"	"	"	"	"	
Bromomethane	ND	1000	"	"	"	"	"	"	
Chloroethane	ND	1000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	1000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	1000	"	"	"	"	"	"	
Carbon disulfide	ND	1000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)) ND	1000	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	1000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1000	"	"	"	"	"	"	
Chloroform	ND	200	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1000	"	"	"	"	"	"	
Carbon tetrachloride	ND	200	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	200	"	"	"	"	"	"	
Benzene	2400	200	"	"	"	"	"	**	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project: SCS052424-10

Project Number: Midway Rising Project Manager: Chuck Houser Reported: 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-022-5 (E405081-07) Vapor	Sampled: 22-May-24 Rece	ived: 22-May	-24						R-05
Trichloroethene	ND	200	ug/m3	0.1	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	
1,2-Dichloropropane	ND	1000	"	"	"	"	"	"	
Bromodichloromethane	ND	1000	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1000	"	"	"	"	"	"	
Toluene	ND	2000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1000	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1000	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1000	"	"	"	"	"	"	
Tetrachloroethene	ND	200	"	"	"	"	"	"	
Dibromochloromethane	ND	1000	"	"	"	"	"	"	
Chlorobenzene	ND	200	"	"	"	"	"	"	
Ethylbenzene	ND	1000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1000	"	"	"	"	"	"	
m,p-Xylene	ND	1000	"	"	"	"	"	"	
o-Xylene	ND	1000	"	"	"	"	"	"	
Styrene	ND	1000	"	"	"	"	"	"	
Bromoform	ND	1000	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1000	"	"	"	"	"	"	
Commenter Dilamondania		95.1 %	75-	125	"	"	"	"	
Surrogate: Dibromofluoromethane		93.1 % 113 %			,,	"	,,	,,	
Surrogate: 1,2-Dichloroethane-d4			75-		,,	"	"	"	
Surrogate: Toluene-d8		113 %	75-		,,	"	,,	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	75-	123				 	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-023-5 Dup (E405081-10) Vapor	Sampled: 22-May-24	Received: 22-	May-24						R-05
1,1-Difluoroethane (LCC)	ND	5000	ug/m3	0.5	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	
2-Butanone (MEK)	ND	25000	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	25000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	25000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	5000	"	"	"	"	"	"	
Chloromethane	ND	5000	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
Bromomethane	ND	5000	"	"	"	"	"	"	
Chloroethane	ND	5000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	5000	"	"	"	"	"	"	
Carbon disulfide	ND	5000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	5000	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
Chloroform	ND	1000	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5000	"	"	"	"	"	"	
Carbon tetrachloride	ND	1000	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1000	"	"	"	"	"	"	
Benzene	34000	1000	"	"	"	"	"	"	
Trichloroethene	ND	1000	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5000		"	"	"	"	"	
Bromodichloromethane	ND	5000	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
Toluene	ND	10000		"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5000	"	"	,,	"	"	"	
1,2-Dibromoethane (EDB)	ND	5000	"	"	,,	"	"	"	
Tetrachloroethene	ND	1000	"	"	,,	"	"	"	
Dibromochloromethane	ND	5000	"	"	,,	"	"	"	
Chlorobenzene	ND	1000	"	"	,,	"	"	"	
Ethylbenzene	ND	5000	"	"	,,	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5000		"		"	"	"	
m,p-Xylene	8000	5000		"		"	"	"	
o-Xylene	ND	5000	"	"	,,	,,	"	"	
Styrene	ND	5000	,,	"	"	"	"	"	
	ND	3000							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290 Project: SCS052424-10

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising San Diego, CA 92123 Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-24-023-5 Dup (E405081-10) Vapor	Sampled: 22-May-24	Received: 22-	May-24						R-05
Bromoform	ND	5000	ug/m3	0.5	EF40511	04-Jun-24	04-Jun-24	H&P 8260SV	
1,1,2,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5000	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		92.9 %	75-1	25	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		114 %	75-1	25	"	"	"	"	
Surrogate: Toluene-d8		115 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.4 %	75-1	25	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EE43102-BLK1)			
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3
Dichlorodifluoromethane (F12)	ND	5.0	"
Chloromethane	ND	2.1	"
Dichlorotetrafluoroethane (F114)	ND	7.1	"
Vinyl chloride	ND	2.6	"
Bromomethane	ND	16	"
Chloroethane	ND	8.0	"
Trichlorofluoromethane (F11)	ND	5.6	"
1,1-Dichloroethene	ND	4.0	"
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"
Methylene chloride (Dichloromethane)	ND	3.5	"
Carbon disulfide	ND	6.3	"
trans-1,2-Dichloroethene	ND	8.0	"
1,1-Dichloroethane	ND	4.1	"
2-Butanone (MEK)	ND	30	"
cis-1,2-Dichloroethene	ND	4.0	"
Chloroform	ND	4.9	"
1,1,1-Trichloroethane	ND	5.5	"
1,2-Dichloroethane (EDC)	ND	4.1	"
Benzene	ND	3.2	"
Carbon tetrachloride	ND	6.4	"
Trichloroethene	ND	5.5	"
1,2-Dichloropropane	ND	9.4	"
Bromodichloromethane	ND	6.8	"
cis-1,3-Dichloropropene	ND	4.6	"
4-Methyl-2-pentanone (MIBK)	ND	8.3	"
trans-1,3-Dichloropropene	ND	4.6	"
Toluene	ND	3.8	"
1,1,2-Trichloroethane	ND	5.5	"
2-Hexanone (MBK)	ND	8.3	"
Dibromochloromethane	ND	8.6	"
Tetrachloroethene	ND	6.9	"
1,2-Dibromoethane (EDB)	ND	7.8	"
1,1,1,2-Tetrachloroethane	ND	7.0	"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE43102 - TO-15										
Blank (EE43102-BLK1)				Prepared &	Analyzed:	31-May-24	ļ			
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	208		"	214		97.2	76-134			
Surrogate: Toluene-d8	221		"	208		106	78-125			
Surrogate: 4-Bromofluorobenzene	388		"	363		107	77-127			
LCS (EE43102-BS1)				Prepared &	z Analyzed:	31-May-24	L			
Dichlorodifluoromethane (F12)	83	5.0	ug/m3	101	• 1 111a1 j 2.• a1	82.2	59-128			
Vinyl chloride	44	2.6	ug/m3	52.0		85.4	64-127			
Chloroethane	56	8.0		53.6		104	63-127			
Trichlorofluoromethane (F11)	110	5.6		113		93.4	62-126			
1,1-Dichloroethene	77	4.0	,,	80.8		95.3	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	,,	155		112	66-126			
Methylene chloride (Dichloromethane)	67	3.5	,,	70.8		95.2	62-115			
trans-1,2-Dichloroethene	77	8.0	"	80.8		94.9	67-124			
1,1-Dichloroethane	79	4.1	,,	82.4		96.1	68-126			
cis-1,2-Dichloroethene	75 75	4.0	"	80.0		94.2	70-121			
Chloroform	93	4.9	"	99.2		93.6	68-123			
1,1,1-Trichloroethane	100	5.5	,,	111		90.3	68-125			
1,2-Dichloroethane (EDC)	76	4.1		82.4		91.8	65-128			
1,2-Dichioroethane (EDC)	70	4.1		8∠.4		91.8	03-128			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego
Project: SCS052424-10
8799 Balboa Avenue, Suite 290
Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE43102 - TO-15										
LCS (EE43102-BS1)				Prepared &	Analyzed:	31-May-24	1			
Benzene	59	3.2	ug/m3	64.8		90.7	69-119			
Carbon tetrachloride	130	6.4	"	128		102	68-132			
Trichloroethene	100	5.5	"	110		94.0	71-123			
Toluene	73	3.8	"	76.8		95.2	66-119			
1,1,2-Trichloroethane	110	5.5	"	111		95.5	73-119			
Tetrachloroethene	130	6.9	"	138		91.4	66-124			
1,1,1,2-Tetrachloroethane	150	7.0	"	140		109	67-129			
Ethylbenzene	90	4.4	"	88.4		102	70-124			
m,p-Xylene	110	8.8	"	88.4		121	61-134			
o-Xylene	85	4.4	"	88.4		96.1	67-125			
1,1,2,2-Tetrachloroethane	150	7.0	"	140		108	65-127			
Surrogate: 1,2-Dichloroethane-d4	214		"	214		100	76-134			
Surrogate: Toluene-d8	198		"	208		95.1	78-125			
Surrogate: 4-Bromofluorobenzene	394		"	363		109	77-127			
	22.			305						
Batch EF40309 - TO-15										
Blank (EF40309-BLK1)				Prepared &	z Analyzed:	03-Jun-24				
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	-	<u> </u>					
Dichlorodifluoromethane (F12)	ND	5.0	"							
Chloromethane	ND	2.1	"							
Dichlorotetrafluoroethane (F114)	ND	7.1	"							
Vinyl chloride	ND	2.6	"							
Bromomethane	ND	16	"							
Chloroethane	ND	8.0	"							
Trichlorofluoromethane (F11)	ND	5.6	"							
1,1-Dichloroethene	ND	4.0	"							
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"							
Methylene chloride (Dichloromethane)	ND	3.5	"							
Carbon disulfide	ND	6.3	"							
trans-1,2-Dichloroethene	ND	8.0	"							
1,1-Dichloroethane	ND	4.1	"							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego
Project: SCS052424-10
8799 Balboa Avenue, Suite 290
Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF40309 - TO-15				
Blank (EF40309-BLK1)				Prepared & Analyzed: 03-Jun-2
cis-1,2-Dichloroethene	ND	4.0	ug/m3	
Chloroform	ND	4.9	"	
1,1,1-Trichloroethane	ND	5.5	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	
Benzene	ND	3.2	"	
Carbon tetrachloride	ND	6.4	"	
Trichloroethene	ND	5.5	"	
1,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
cis-1,3-Dichloropropene	ND	4.6	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	
trans-1,3-Dichloropropene	ND	4.6	"	
Toluene	ND	3.8	"	
1,1,2-Trichloroethane	ND	5.5	"	
2-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Tetrachloroethene	ND	6.9	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	
Chlorobenzene	ND	4.7	"	
Ethylbenzene	ND	4.4	"	
m,p-Xylene	ND	8.8	"	
Styrene	ND	4.3	"	
o-Xylene	ND	4.4	"	
Bromoform	ND	10	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	
4-Ethyltoluene	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	12	"	
1,4-Dichlorobenzene	ND	12	"	
1,2-Dichlorobenzene	ND	12	"	
1,2,4-Trichlorobenzene	ND	38	"	
Hexachlorobutadiene	ND	54	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10
8799 Balboa Avenue, Suite 290 Project Number: Midway Rising
San Diego, CA 92123 Project Manager: Chuck Houser

Project Number: Midway Rising Reported:
Project Manager: Chuck Houser 05-Jun-24 12:20

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF40309 - TO-15										
Blank (EF40309-BLK1)				Prepared &	Analyzed:	03-Jun-24				
Surrogate: 1,2-Dichloroethane-d4	210		ug/m3	214		98.1	76-134			
Surrogate: Toluene-d8	223		"	208		108	78-125			
Surrogate: 4-Bromofluorobenzene	382		"	363		105	77-127			
LCS (EF40309-BS1)				Prepared &	z Analyzed:	03-Jun-24				
Dichlorodifluoromethane (F12)	80	5.0	ug/m3	101		79.1	59-128			
Vinyl chloride	44	2.6	"	52.0		85.4	64-127			
Chloroethane	55	8.0	"	53.6		103	63-127			
Trichlorofluoromethane (F11)	100	5.6	"	113		89.3	62-126			
1,1-Dichloroethene	64	4.0	"	80.8		78.6	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	120	7.7	"	155		75.8	66-126			
Methylene chloride (Dichloromethane)	68	3.5	"	70.8		96.5	62-115			
trans-1,2-Dichloroethene	71	8.0	"	80.8		88.4	67-124			
1,1-Dichloroethane	76	4.1	"	82.4		92.0	68-126			
cis-1,2-Dichloroethene	75	4.0	"	80.0		93.8	70-121			
Chloroform	88	4.9	"	99.2		89.0	68-123			
1,1,1-Trichloroethane	98	5.5	"	111		88.1	68-125			
1,2-Dichloroethane (EDC)	73	4.1	"	82.4		89.1	65-128			
Benzene	57	3.2	"	64.8		87.6	69-119			
Carbon tetrachloride	120	6.4	"	128		96.3	68-132			
Trichloroethene	98	5.5	"	110		89.2	71-123			
Toluene	70	3.8	"	76.8		90.9	66-119			
1,1,2-Trichloroethane	100	5.5	"	111		90.8	73-119			
Tetrachloroethene	120	6.9	"	138		87.6	66-124			
1,1,1,2-Tetrachloroethane	150	7.0	"	140		105	67-129			
Ethylbenzene	84	4.4	"	88.4		95.3	70-124			
m,p-Xylene	95	8.8	"	88.4		108	61-134			
o-Xylene	76	4.4	"	88.4		86.3	67-125			
1,1,2,2-Tetrachloroethane	140	7.0	"	140		99.6	65-127			
Surrogate: 1,2-Dichloroethane-d4	217		"	214		102	76-134			
Surrogate: Toluene-d8	203		"	208		97.8	78-125			
Surrogate: 4-Bromofluorobenzene	382		"	363		105	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Volatile Organic Compounds by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF40309 - TO-15

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10 8799 Balboa Avenue, Suite 290 Project Number: Midway Rising

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF40511 - EPA 5030				
Blank (EF40511-BLK1)				Prepared & Analyzed: 04-Jun-24
1,1-Difluoroethane (LCC)	ND	400	ug/m3	
2-Butanone (MEK)	ND	2000	"	
2-Hexanone (MBK)	ND	2000	"	
4-Methyl-2-pentanone (MIBK)	ND	2000	"	
Dichlorodifluoromethane (F12)	ND	400	"	
Chloromethane	ND	400	"	
Vinyl chloride	ND	40	"	
Bromomethane	ND	400	"	
Chloroethane	ND	400	"	
Trichlorofluoromethane (F11)	ND	400	"	
1,1-Dichloroethene	ND	400	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	400	"	
Carbon disulfide	ND	400	"	
Methylene chloride (Dichloromethane)	ND	400	"	
trans-1,2-Dichloroethene	ND	400	"	
1,1-Dichloroethane	ND	400	"	
cis-1,2-Dichloroethene	ND	400	"	
Chloroform	ND	80	"	
1,1,1-Trichloroethane	ND	400	"	
Carbon tetrachloride	ND	80	"	
1,2-Dichloroethane (EDC)	ND	80	"	
Benzene	ND	80	"	
Trichloroethene	ND	80	"	
1,2-Dichloropropane	ND	400	"	
Bromodichloromethane	ND	400	"	
cis-1,3-Dichloropropene	ND	400	"	
Toluene	ND	800	"	
trans-1,3-Dichloropropene	ND	400	"	
1,1,2-Trichloroethane	ND	400	"	
1,2-Dibromoethane (EDB)	ND	400	"	
Tetrachloroethene	ND	80	"	
Dibromochloromethane	ND	400	"	
Chlorobenzene	ND	80	"	
Ethylbenzene	ND	400	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

Project: SCS052424-10 Project Number: Midway Rising

Project Manager: Chuck Houser

Reported: 05-Jun-24 12:20

RPD

%REC

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF40511 - EPA 5030										
Blank (EF40511-BLK1)				Prepared &	Analyzed:	04-Jun-24				
1,1,1,2-Tetrachloroethane	ND	400	ug/m3							
m,p-Xylene	ND	400	"							
o-Xylene	ND	400	"							
Styrene	ND	400	"							
Bromoform	ND	400	"							
1,1,2,2-Tetrachloroethane	ND	400	"							
1,3,5-Trimethylbenzene	ND	400	"							
1,2,4-Trimethylbenzene	ND	400	"							
1,3-Dichlorobenzene	ND	400	"							
1,4-Dichlorobenzene	ND	400	"							
1,2-Dichlorobenzene	ND	400	"							
1,2,4-Trichlorobenzene	ND	400	"							
Hexachlorobutadiene	ND	400	"							
Surrogate: Dibromofluoromethane	2020		"	2000		101	75-125			
Surrogate: 1,2-Dichloroethane-d4	2140		"	2000		107	75-125			
Surrogate: Toluene-d8	2170		"	2000		108	75-125			
Surrogate: 4-Bromofluorobenzene	1870		"	2000		93.4	75-125			
LCS (EF40511-BS1)				Prepared &	z Analyzed:	04-Jun-24				
Dichlorodifluoromethane (F12)	1600	400	ug/m3	4000	- 1 111a1 j 25 a 1	40.7	70-130			QL-1I
Vinyl chloride	3300	400 40	ug/III3	4000		81.9	70-130			QL-11
Chloroethane	3900		,,	4000		97.3	70-130			
Trichlorofluoromethane (F11)	3800	400 400	,,	4000		95.9	70-130			
1,1-Dichloroethene	4000	400	,,	4000		101	70-130			
1,1,2 Trichlorotrifluoroethane (F113)	3900	400	,,	4000		98.5	70-130			
Methylene chloride (Dichloromethane)	3700	400	,,	4000		91.4	70-130			
trans-1,2-Dichloroethene			,,	4000		103	70-130			
1,1-Dichloroethane	4100	400	,,	4000		103	70-130			
•	4300	400	,,							
cis-1,2-Dichloroethene Chloroform	4200	400	,,	4000		106	70-130			
	4400	80	,,	4000		110	70-130			
1,1,1-Trichloroethane	4300	400	,,	4000		108	70-130			
Carbon tetrachloride	4100	80	,,	4000		104	70-130			
1,2-Dichloroethane (EDC)	4700	80	"	4000		116	70-130			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290

San Diego, CA 92123

 ${\it Surrogate: 4-Bromofluor obenzene}$

Project: SCS052424-10

Project Number: Midway Rising Project Manager: Chuck Houser Reported: 05-Jun-24 12:20

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF40511 - EPA 5030										
LCS (EF40511-BS1)				Prepared &	Analyzed:	04-Jun-24				
Benzene	4200	80	ug/m3	4000		106	70-130			
Trichloroethene	4400	80	"	4000		111	70-130			
Toluene	4300	800	"	4000		109	70-130			
1,1,2-Trichloroethane	4100	400	"	4000		102	70-130			
Tetrachloroethene	3700	80	"	4000		93.6	70-130			
Ethylbenzene	3700	400	"	4000		93.7	70-130			
1,1,1,2-Tetrachloroethane	3700	400	"	4000		91.6	70-130			
m,p-Xylene	7500	400	"	8000		94.3	70-130			
o-Xylene	3800	400	"	4000		93.9	70-130			
1,1,2,2-Tetrachloroethane	3500	400	"	4000		88.1	70-130			
Surrogate: Dibromofluoromethane	2030		"	2000		101	75-125			
Surrogate: 1,2-Dichloroethane-d4	2040		"	2000		102	75-125			
Surrogate: Toluene-d8	2180		"	2000		109	75-125			

2000

93.1

75-125

1860

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego Project: SCS052424-10

8799 Balboa Avenue, Suite 290 Project Number: Midway Rising Reported:
San Diego, CA 92123 Project Manager: Chuck Houser 05-Jun-24 12:20

Notes and Definitions

R-05 The sample was diluted due to the presence of high level(s) of non-target analyte(s) resulting in elevated reporting limits.

QL-1L The LCS and/or LCSD recoveries fell below the established control specifications for this analyte. Any result for this compound is

qualified and should be considered biased low.

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15 and H&P 8260SV.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

Mobile Geochemistry, Inc.

2470 Impala Drive, Carisbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 5/2/ /24
Page / of /

	La	Client an	d Project	Lab Client and Project Information								Sam	nle Rec	I de I) tuis	Sample Receipt (Lah Hea Only)	
Lab Client/Consultant: SCS Fun	Englineers			Project Name / #: N		0>1			Т		Date F	Date Rec'd:	211/21	Control #:		T
Lab Client Project Manager:	Hancon			Project Location:	V I	200	-		T		H&P P	H&P Project #	1016		270784.03	
	2				Sports Area	is in	3					S	CSOL	01-47/124050	-ال۵	
Lab Olient Oddress. P. 199 Bull	DOA AN	1290		Report E-Mail(s):	chouseorth scsengineers.com	B SCSe	negine	C. 73. 4	ž		Lab W	Lab Work Order#		E40508	180	
Lab Cilett City, State, Zip. Sam Diene	Cot	92123					>				Sample	Sample Intact: X	Yes	No O	See Notes Below	
Phone Number: 001211815	10 hors	21332	0.07								Receip	Receipt Gauge ID: 607.06	4021	90	Temp: KT	1
Reporting Requirements	ents	T	Turnaround Time	d Time	San	Sampler Information	rmation				Outside Lab:	Lab:				1
Standard Report Level III	☐ Level IV	☑ Stand	ard (7 days	Standard (7 days for preliminary	Sampler(s): 1/	6	3		Τ		Receip	Receipt Notes/Tracking #:	cking #:			T
Excel EDD Other EDD:		report	, 10 days fo	report, 10 days for final report)	Signature:	1000			Τ							
CA Geotracker Global ID:	1	□ Rush	☐ Rush (specify):		Date: \$ 12.	5/21/24			T						Lab PM Initials: 5m	
Additional Instructions to Laboratory: A Ana Ward by the	atory: (38) Am	awased	E A	v 20008 y s	SU JERUSIES	2124			┰							1
* Preferred VOC units (nlasso choose one)	·[auo asoo)													_
□ µg/L □ µg/m³ □ ppbv	Domey. □ ppmv							91-01	91-OT	21-0T	dr-OT	161-OT	015m	O MT8 SN □		
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	ЯЗИІАТИО ООИТАІИЕК	Lab use only: Receipt Vac	VOCs Standard F 82605V VOCs Short List /	Oxygenates	Vaphthalene	PHv as Gas mV20028	eak Check Com	Aql 🔲 Aqd 🔀	A vd Gases by A CO2 00 00		
SV-24-001-5		5121 121	1340	>>	400 M (SUMA	H)3	7		T							_
3-200- 42-15		-	1358			463	-	×					X			Т
51-24-003-5			الزائط			153	1	X				X				1
34.24-004-5			170			285	7	X				, ×				T -
7			1509			485	-	×				<i></i>	- \			T
S Dung			1512			46(-	×				×				
54-24-017-5		>	(523)	>	>	481	7	X				7				
																ï
			×													Т
Approved Relinquisher Lay	The second	Company	Company:	Dode Control	Time:	Received by:	7	- 1	$- \setminus$		Company:	-	Date		Time	
		Company:		-	Time:	Received by:	<u></u>	2			Company:		. Date:	62/17	Time	Т
Approved/Relinquished by:		Company:		Date:	Time:	Received by:					Company:		Dale:		Time:	_
Approval constitutes as authorization to proceed with analysis and acceptance of conditions on back	lysis and acceptance of con	ditions on back												Annendix 6A1. F	Amondiy 641 Roy 1900119 Fffe-Twe 1031001	7.

Mobile Geochemistry, Inc.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com Einfo@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 5/24/24 l of 2 Page 60

Sample Receipt (Lab Use Only)	Date Rec'd: 5 24/24 Control #: 240294.0	H&P Project # SCS 157474-10	Lab Work Order# E 40508	Sample Intact: Tytes No See Notes Below	Receipt Gaugé ID: 60206 Temp: RT		Receipt Notes/Tracking #:	A CONTRACTOR OF THE PARTY OF TH	Lab PM Initials: S P		gu Je Je Je Je Je Je Je Je Je Je Je Je Je	ic Frst nooq 1	as o as vHqT mV 20628 mV 20628	X) <u>X</u> .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×		e ×	23
Į.										,	ect Lis	r-OT	VOCs Short List	×	×	×	مر	ير	x	>
	di di	Aven Bled	8			Sampler Information	Las			hels			ID (###) CONTAINER CONTAINER	1- 684	1- 88A	1- 284	701	548 -1	538 -1	0 /05
	Midwes Prin		1) me(1)		Sample	Sampler(s): /C.	Signature:	Date: 5/22/24	TON SER NS			SIZE & TYPE 400mL/1L6L Summa, Tedlar, Tube, etc.	List of Svans		7	7	4	8	
Lab Client and Project Information	Project Name / #:	Project Location:	Report E-Mail(s):	Charles		I Time	Standard (7 days for preliminary	report, 10 days for final report)		12 8040			SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Substab (SS), Soil Vapor (SV)	25						
d Project						Turnaround Time	ard (7 days	, 10 days for	(specify):	3)		TIME 24hr clock	1871	1221	1240	1257	1313	1335	10.1
Client and			037	92123		1	Standa	report	Rush (specify):	alyzed			DATE mm/dd/yy	Sheley	-					
Lab	Englaces	Huse	Am, 5k 250	CA	120.00	nts	☐ Level IV			tory: (4)	ose one):	☐ ppmv	FIELD POINT NAME (if applicable)							
	Lab Client/Consultant: SCS EA	anager: Chu	Lab Client Address: 8199 De Usa Ave.	Lab Client City, State, Zip: Skn Diese	Phone Number: 01213320.07	Reporting Requirements	Standard Report Level III	Excel EDD Other EDD:	CA Geotracker Global ID:	Additional Instructions to Laboratory: (4) Arrahyged (2) HEP 80008V	* Preferred VOC units (please choose one):	Пµg/L Ми́дg/m³ Пррbv	SAMPLE NAME	50-24-005.5	S-800-12-18	81-24-009-5	N-24-010-5	N-24-007-5 F	N-24-122.5	A COM BOOK

Approval constitutes as authorization to proceed with analysis and acceptance of conditions on back

Approved/Relinquished by:

Appendix 6A1, Rev 1/9/2019, Effective 1/21/201

300

5/22/24 Date: Date:

Company

534

45

1426

1339

今-24-043-5-20-6年

50-24-014-5 51-24-012-5 N with shert

710

764 957

Received by: Received by:

5/23/24

SES Explused

Time:

Date:

Company:

Сотрапу: Сотрапу:

Time:

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 5/22/27 Page 2 of 2

	Lac	Client and	d Projec	Lab Client and Project Information								Sarr	Sample Receipt (Lab Use Only)	eipt (L	b Use	Only)	
Sos	Ergmens			Project Name / #:	Milus 6	Grap.					Date R	3c,q: 2	Date Rec'd: 5 24 24		Control #: 7 av. 1	00	
anager: Chuck	Louse				ĮŞ	17/8			Т		H&P Project#		CCS067474-10		1-10		
8799	Bdbon And	St 280		Report E-Mail(s):							Lab Wo	Lab Work Order #		Ë40	E40504		
Lab Client City, State, Zip: Skn Diego	ye, CA	92123		Chocs	Chouse of sestagines of con	MARIE	Con				Sample	Sample Intact: X	Kes	□ % □	See Not	See Notes Below	
Phone Number: 012/3320 on	120.07								_		Receip	Gauge II	Receipt Gauge ID: 40206	90		Temp: KT	
Reporting Requirements	ents	_	Turnaround Time	d Time	Sam	Sampler Information	rmation				Outside Lab:	Lab:					
Standard Report	☐ Level IV	Stand	ard (7 days	Standard (7 days for preliminary	Sampler(s): K	8.00	N				Receipt	Receipt Notes/Tracking #:	acking #:				
Excel EDD Other EDD:		report	, 10 days fe	report, 10 days for final report)	Signature:	2	1		Т								
CA Geotracker Global ID:		☐ Rush (specify):	(specify):		Date: 5/22/24	7			_						Lab PN	Lab PM Initials: Sm	5
Additional Instructions to Laboratory:	atory:							╟	1			╟	╟	I	╟		
* Brokenson (V)														976			
referred VOC units (prease choose one): □ μg/L \(\begin{array}{cccccccccccccccccccccccccccccccccccc	oose one):							21-01	21-OT	31-OT	ngr-OT	mgl-OT	әН 🗌	IO MTS		_	
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	OCs Standard F 82605V	NS0908 System Steps	aphthalene	PHv as Gas	romatic/Aliphati		ixed Gases by A			
5-110-42-15		5 heer	テエ	SV	תכול אנישר	107	0				T				t	+	
									4			-	\dashv				
									-			+	_		+		
									-			+	_				
												Н					
									\perp			+					
													_				
Approved Relinquished 17. Male American Relinquished Rus	N ATO	Sompany:	Sighters	333	0151	Received by:	150	1			Company.	0	Tes	2/24	Time	1750	
Cuproved Nethinghashed by	>	Сомрапу:)	Date	Time:	Received by:	`				Company:		Date:		Time	iú.	
Approved/Neimquished by		Company:		Date:	Тіте:	Received by:					Сотрапу		Date:		Time	Φ.	
*Approval constitutes as authorization to proceed with analysis and acceptance of conditions on back	rsis and acceptance of cond	tions on back												Appendix 6	41, Rev 1/9/2	Appendix 6A1, Rev 1/9/2019, Effective 1/21/2019	1/21/2019

Mobile Geochemistry, Inc.

VAPOR / AIR Chain of Custody 2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

DATE: 5/23/27 Page of (

Sample Bearing II at 11st C-14	3	100 Partie 5/24 24 CONTROL 240284, 03	nor right #SCS052424-10	Lab Work Order# E 40 5092	Sample Intact X Yes No See Notes Below	Recaipt Gauge ID: 60206 Temp: RT	Outside Lab:	Receipt Notes/Tracking #:		As DM Initials.	ייינים ווווממויי:		ng, -J He mg,	T [_] T stic	PHV as Gas Nomatic/Aliph RS60SVm RS60SVm RR Check Co RR Check Co RR Check Co RR Check Co	7 7 7 7 1										Company, fre Sales Tries 75		Company. Date	Appendix 641 Rev 192019, Effective 1/21/2019
THE STREET							ion		1			1	91-0	T tsi	VOCs Standar VOCs Short Li									7	,	1			
2			alw	200			Sampler Information	Schilde	\						Lab use only: Receipt Vac	1- 129	1- 700	628 -1	1-1201	26 7	1- 020	1-1-039	1- 259	1- 180		Received by,	Received by:	Received by:	
			John Branc	Mail(s): hay yr @ (C((2 (ine (1) Cong			Sample	Sampler(s): K	1 6	Date: 5/23/23					SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc CONTAINER	HOUN (WANN C		C2	7	7	9	9	2 /	7		1510	Repe	Time Recei	
Lab Client and Project Information	Project Name / #.	Project Location:		Report E-Mail(s):			d Time	X Standard (7 days for preliminary	report, 10 days for final report)						SAMPLE TYPE Indoor Air (IA). Ambient Air (AA). Subslab (SS), Soil Vapor (SV)	15	ec.							>		Lary 5/23/24	Date	Date	
d Projec							Turnaround Time	lard (7 days	t, 10 days fo	☐ Rush (specify):					TIME 24hr dock	1253	1256	1310	1325	1347	1356	1915	137	1437		S Burt)		
Client an				0	92123	10.0		X Stand	repor	☐ Rush					DATE mm/dd/yy	5(13/27	-		_		1			~		Company of the second	Company	Company:	bas on back
Lab	ı	1 1L	TOU SE	Ar S	45 CA	01213320.07	nts	☐ Level IV			torv.	. ()	ose one):		FIELD POINT NAME (if applicable)											更入を			s and acceptance of conditi
	Lab Client/Consultant: Pr 9 6.	Lab Client Project Manager:	1 ah Client Address:	8759 Ballo	Se. W.		Reporting Requirements	Standard Report Level III	Excel EDD Other EDD:	CA Geotracker Global ID:	Additional Instructions to Laboratory		* Preferred VOC units (please choose one):		SAMPLE NAME	5.300-42-25	SV24-013-5	510-12-05	31-24-016-5	N-21-019-5	5-24.018.5	50-24-620- 2.5	S-ACO-MOS	54-24-024-5Ry	Anormodi Solimusished hat	J w or year	Announced College of the London	иргамасиманально ру.	*Approval conditions as authorization to proceed with analysis and acceptance of conditions on back

Revised: 1/15/16 FMS005 Revision: 3 Effective: 1/25/16 Page 1 of 1

Geochemistry Inc.	moling wit	S. C.	R Revised Effective
H&P Project #: 5CSO52124. 5F9	Date:	Date: 5 21 (2γ	
Site Address: 35Ec Sports Area Blow) SD	Page:	/ of /	
Consultant: 500 S	H&P Rep(s): (C.	16. Schuler	Reviewed:
Consultant Rep(s): Char L 14			Scanned: M

機		The second secon	>
Equipment Info	Purge Volume Information	Leak Check Compound	₩1,1-DFA
Inline Gauge ID#: -	PV Amount: 3 PV Includes: Trubing	A cloth saturated with LCC is placed around tubing	□ 1,1,1,2-T
Pump ID#:	CySand 40%	connections and probe seal. This is done for all samples	
	Grony Bent 50%	unless otherwise noted.	□ Other:
Sample and S	Sample and Summa Information Probe Specs	s Purge & Collection Information	ormation

	~d.,,	,	- I	5	Sample and Summa mormation					NO L	rione specs	S				P.	rge &	Collect	Purge & Collection Information	rmation	
	Point ID	Summa ID#	Summa Sample ID# Kit ID#	Start Time	Initial Vac (" Hg)	End / Sample Time	End Vac (" Hg)	Probe Depth (ft)	Tubing Length (ft)	Tubing OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (<)	Leak Check (<)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	ProbeVac □ Hg 【【 H ₂ O
	5V-24.001.5	493	398	(336)	(336 -285)	1346	0.0	5	٦	3/	12	1.5	2	5-)	1	1	CBS	200	3:29	387	20
v)	54-24-002-5	463		1355	411 1355 -27.5	1356	0.0	5	7	-180	9000	1.3	C	1.8	2	1	697	35	3:29	32	90
-	34.24-003 -5 USG	usq	170 1425 -27.0	1425	-27.0	1434	.1.	5	6	700	9	1.5	J	با	1	1	633	35	57:5	320	40
	54-24-604-5	तक	200	1450	006 1450 - 28-0	(483	0.0	5	2	_(10	7)	1.5	J	5	7	7	691	200	3:63	200	-15
	5-120-67-15	485		INE	- 280	1103	0.0	10	1	-/w	12	si.	e	84.	7	1	189	3,		200	-12
5	54-24- 021-5 Dung	461	300	1509	-280	2121	0.0	125	F	A A	71	sr.	e	M.	7	7	553	Zee.	1	26	-12
	54-24-077-5	481	349 1548 -290	1548	062-	(553	0.0	5	7	1/s	7)	1.8	9	(.y	7	7	697	380	3:29	320	113
													0.55.30								
											di										
														-an		0	The state of				

FMS005 Revision: 3 Revised: 1/15/16 Effective: 1/25/16 Page 1 of 1

Log Sheet: Soil Vapor Sampling with Summa Mobile Geochemistry Inc.

Reviewed: EC Scanned: M of K. Siland Per 5/10/24 H&P Rep(s): Date: Page: 3580 Sportstan Blod, H&P Project #: SCS 0572124-8P9 305 Consultant Rep(s): Site Address: Consultant:

□ 1,1,1,2-TFA 11-DFA □ Other: □ IPA connections and probe seal. This is done for all samples A cloth saturated with LCC is placed around tubing Leak Check Compound unless otherwise noted. A-Dry Bent 50% **W** Sand 40% PV Includes: Tubing Purge Volume Information PV Amount: 32 **Equipment Info** Pump ID#: 03 G Inline Gauge ID#:

		The second				of shade or	- 10 () () () () ()	The second second		100000000000000000000000000000000000000											
	Sample and Summa Information	and S	umma	Infor	matio	u	7.43			Probe Specs	Spe	cs				Pur	ge & C	Sollecti	Purge & Collection Information	mation	
3.5	Point ID	Summa ID #	Summa Sample Start ID# Kit ID# Time	Start	Initial Vac (" Hg)	End / Sample Time	End Vac (" Hg)	Probe Depth (ft)	Tubing Length (ft)	Tubing OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (<)	Leak Check (<)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	ProbeVac □ Hg ☑ H₂O
-	SV-24-005-5 488 344 (158 -285	489	375	1158	-285	1621	00	5	7	7	21	1.5	2	5.1	7	1	469	200	31.29	24	h-
2	57-24-008-5	નંદક	393	1230	1200-27.0	1224	0.0	2	4	1/2	2)	1.5	ی	(.5	7	1	697	30	3:29	200	٠, ٢
3	5/-24:009:5 4EG	रहे र		(237	360 (237-26.5	1240	00	N	7	-10	12	1.5	2	3.	1	>	Co.	36	3:25	100	٧-
4	54-010-5	467	7	1257	344 1257 275 1257	1257	0.0	2	7	-60	(2)	1.5	9	(.5	7	7	697	200	32:58		6) 14
2	54-24-007-5 548 202 1310-28-5 1313	548	202	1310	-28.5		0.0	S	١	- Ja	15	5-1	9	1.5	7	7	697	200	3:29	200	7-
9	54-24-02.5	35 %	427	1332	427 1332 -20.0 1335	(335	00	N	c	22	12	75.	0	75	7	7	181	200	0:57	200) -
7	N. 4-023-50 493	493	427 1735		יצני) פיניי	21-11-11-5	0 0	7	١	-100	12	38	0	313	>	7	835	200	1	rec	1 -
8	\$4-24.622.5	496	82)	1344	-25.0	496 (BB 1344 -25.0 1747	5.0	V	7	-100	14,	<i>کد</i> '	9	36	1	7	189	200	5:57	200	1 .
6	54-24-014-5	म्ब १		7607	255 1407-27.0 1410	1716	9.0	2	r	1/20	12	, A.	C	1.5	7	7	163	200	3129	Zen	2,
10	5v.24-02.5	495	388	१स१३	5'17-	1423 -27,5 1426	0.0	S	7	-100	15	1.5	9	1.5	1	1	697	256	3:29	280	\$ *
7	N-24-0015	201	494 091 1476-27.0 1441	1478	0.17-		0.1-	5	٢	R	17	1.5	9	po	1	7	697	255	3129	33	4
12																					

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

9

FMS005 Revision: 3 Revised: 1/15/16 Effective: 1/25/16 Page 1 of 1

Mobile Geochemistry Inc.	mistry Inc. Log Sheet: Soil Vapor Sampling with Summa	Sampling wit	h Summa	Rev
H&P Project #:	H&P Project #: SCS OS2124 - SP9	Date:	5 k3 (2)	
Site Address:	35Es Sport Avena 1712	Page:	/ of /	
Consultant:	Scs	H&P Rep(s):	H&P Rep(s): K. Sclaine)L	Reviewed:
Consultant Rep(s):	Church (4			Scanned:

Jul acitaella 9 com a		Prop Chore	and Information	Cample and Cumma Information	
wise noted.	unless otherwise noted.	്രീവു Bent 50%			
connections and probe seal. This is done for all samples	connections	Sand 40%		Pump ID#: 05c	
A cloth saturated with LCC is placed around tubing	A cloth satur	PV Amount: 3 ~ PV Includes: Tubing	PV Amount: 3 6	Inline Gauge ID#:	

Purge Volume Information

Equipment Info

□ 1,1,1,2-TFA ATT-DFA

Leak Check Compound

□ IPA

74									Chory !	ChDry Bent 50%	%	2	nless o	therwis	unless otherwise noted.					□ Other:	
	Sample and Summa Information	and S	umma	Infor	matio	u				Probe Specs	Spe	SS				Pur	ge & C	ollectiv	Purge & Collection Information	mation	
The Clark Control	Point ID	Summa ID#	Summa Sample Start ID# Kit ID# Time	Start	Initial Vac (" Hg)	End / Sample Time	End Vac (" Hg)	Probe Depth (ft)	Tubing Length (ft)	Tubing OD (in.)	Sand Ht (in.)	Sand E Dia (in.)	Dry Bent. E Ht (in.)	Dry Sent. Dia (in.)	Shut In Test 60 sec (<)	Leak Check (<)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	ProbeVac ☐ Hg 【☐ H₂O
-	129 5.300-42-03		209 1240	1240	-29.0	-29.0 1243	0.0	2	1	791	71	1.5	9	1.6	7	1	643	la	3,28	200	0.0
2	50-24-017-5 604	604	781	(253)	186 1259 -18.0 1255	1255	GiO	N	1	700	7	1.5	S	1.3	7	7	697	250	3:58	200	5-
8	50-24-015-5 628 198 1306-29-0 (310	329	198	1306	-29.0	(316)	0.0	4	2	-60	17	1.5	0	1.3	>	7	697	87	3128	200	2-
4	SV-24-016-5 629 205 1921 -27.5 1325	622	205	1321	5.12-	1325	0.0	'\ <u>\</u>	7	-yo	12	1.1	C	1.6	7	1	G97	200	3:28	10	7-
5	50-24-019-5 626	626	323	1338	157 1338 -28-0 1344	1341	00	7	6	_W	12	1.5	6	1.5	7	7	697	200	3129	200	- 7
9	SV-24-018-5 630	630	396	1353	396 1353 -25.0 1956	2561	0.0	N	7	-40	21	1.3	6 1	1.8	7	7	697	200	3:29	32	1
7	24-24-078 25 627 283 1412 -29.0 1415	627	283	11/12	0.62-	ग्रमा	6.0	2.5	7	^k	9	1.5	7	1.8	7	7	3,00	200	5/41	200	2
8	55-24-524-5 636 Luo	636	140	1432	1432 2330 1434	ズブ	60	7	١	, - /00	(9)	1.5	6 1	1.5	7	7	180	200	31.28	con?	5 - 3
9	50 22 524 5 Pag (69)	631	1.10	1434	197 - 28w (477	[4]	0.0	۲	١	Nu	7	50	9	1.5	7	1	1001	200	1	300	23
10																					£ 8
-																		*			
12																					
ĺ																					

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 507888

Report Level : II

Report Date : 05/14/2024

Analytical Report prepared for:

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Project: MIDWAY RISING - Sports Arena

Authorized for release by:

Taylor Nasu, Project Manager Taylor.Nasu@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chuck Houser

SCS Engineers

8799 Balboa #290

San Diego, CA

92123

Lab Job #: 507888

Project No: MIDWAY RISING

Location: Sports Arena

Date Received: 05/07/24

Sample ID	Lab ID	Collected	Matrix
T33-2	507888-001	05/07/24 08:00	Soil
T33-4	507888-002	05/07/24 08:02	Soil
T33-5	507888-003	05/07/24 08:10	Soil
T33-7	507888-004	05/07/24 08:13	Soil
T34-2	507888-005	05/07/24 08:19	Soil
T34-4	507888-006	05/07/24 08:22	Soil
T34-5	507888-007	05/07/24 08:24	Soil
T34-6	507888-008	05/07/24 08:27	Soil
T35-0.5	507888-009	05/07/24 10:27	Soil
T35-2.5	507888-010	05/07/24 08:50	Soil
T35-5	507888-011	05/07/24 08:56	Soil
T36-2	507888-012	05/07/24 09:22	Soil
T36-4	507888-013	05/07/24 09:25	Soil
T37-2.5	507888-014	05/07/24 09:35	Soil
T37-4	507888-015	05/07/24 09:40	Soil
T37-5	507888-016	05/07/24 09:42	Soil
T37-6	507888-017	05/07/24 09:47	Soil
T38-1	507888-018	05/07/24 10:36	Soil
T38-2	507888-019	05/07/24 10:40	Soil
T38-3.5	507888-020	05/07/24 10:45	Soil
T39-1	507888-021	05/07/24 11:18	Soil
T39-2	507888-022	05/07/24 11:33	Soil
T39-4	507888-023	05/07/24 11:23	Soil
T39-5	507888-024	05/07/24 11:26	Soil

Case Narrative

SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Chuck Houser Lab Job 507888

Number:

Project No: MIDWAY

RISING

Location: Sports Arena

Date Received: 05/07/24

This data package contains sample and QC results for twenty two soil samples, requested for the above referenced project on 05/07/24. The samples were received cold and intact.

Pesticides (EPA 8081A):

- High recovery was observed for methoxychlor in the LCS for batch 340015; this analyte was not detected at or above the RL in the associated samples.
- · No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

- Low recoveries were observed for antimony in the MS/MSD for batch 339743; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits. High recoveries were observed for barium and zinc; the LCS was within limits, and the associated RPDs were within limits.
- Low recoveries were observed for antimony in the MS/MSD of T38-1 (lab # 507888-018); the LCS was within limits, the associated RPD was within limits, and these low recoveries were not associated with any reported results.
- No other analytical problems were encountered.

Natrice 1	The second second second
## Press	במט
Froduct SEA = Soil/Soilid V = Drinking Wate SD = Sediment V = Drinking Wate SD = Sediment Froduct SEA = Sea Water = Tissue WP = Wipe O = Other Tissue WP = Wipe O = Other None None	rage.
Analysis Request None None None None None None None None	
Analysis Request None	
Container Pres. Pres. Container Pres.	\vdash 1
None None None None None None None None	~
None None None None None None None None	Sports Arena
None None None None None None None None	1213320.07
None None None None None None None None	
None None None None None None None None	
None None None None None None None None	
None None None None None None None None	C. Houser
None	Matrix
None None None None None None None None	
None	
None	
None	
None None None None None SCS Engineers SCS E	
None	
None x x x None Archive None x x x X None Company / Title Date / SCS Engineers Engineers SCS Engineers SCS Engineers	
None	
None x Date / Company / Title Date / SCS Engineers ST 700 4	1
SCS Engineers Sh 2024 And EM-Sh SF 124 SCH 20	
SCS Engineers Ships of the School Sch	
27	
Merica CH-SO SH24	2
CIND FOR	ام ، ا
711.11	
57-13	1
un (3)	

Enthalpy Analytical - Orange Sample Page: 2 of 3 2 Day			V II.	INV		Chain of Custody Record	ody Rec	ord			Turn /	round	ime (ru	Turn Around Time (rush by advanced notice only)	ced notice	only)
Enthalpy Analytical - Orange			ALL	LFI	Lab No:	SPAS	388			Stand	ard:	×	5 Day:		3 Dау:	
State December D		ANA	LYTI	CAI	Page:	2	of	3		2 Day			1 Day:		Custom TAT:	
1931 W. Barkkey Avenue, Orange, CA 92868 We where DW = Drinking Water DW = Sediment Phone 714-771-6900 SW = Swab T = Trissue WP = Wipe O = Other A = H ₂ SO ₁ , 2 = NO		Enthalpy Analytica	al - Orange				S	= Soil/S	olid				reservati	ves:	Sample Re	ceipt Temp:
Standard		931 W. Barkley Avenue, Or	range, CA 92868		*	: Water DW = D PP = Pure Pro	rinking W	/ate S	D = Se Wate	dimen	<u>+</u>	$1 = Na_2S_2$ $4 = H_2SO_4$	O_3 2 = H($5 = NaO$)	9	n	
Standard Name: Manner:		Phone 714-771-	0069		SW	= Swab T = Tis	53	= Wipe		: Othe					sn del)	e only)
Sample Date Date Date Date District Date District Date Date District Date)	JSTOMER INFORMATION		PROJ	ECT INFO	RMATION				Analy	sis Requ	est		Test Instru	uctions / Com	ments
Sample Date	Company:	SCS Engineers	Na		dway Rising	200										
Sample Date Container Co	Report To:	Chuck Houser	N		orts Arena											
Sample ID Sampling Sampling Sampling Sampling Sampling Sample Br.	Email:	chouser@scsengineers.			13320.07				A18							
Sample Date Sampling Sampling Sample Date	Address:	8799 Balboa Ave., Suite 290	Ad	dress:				_								
Sample B Sample		San Diego, CA 92123														
Sample D Sampling Sampling Sampling Sampling Date Time Time Date Time Date Time Date Time Date Time Date Date Time Date Date Time Date D	Phone:	858-805-5523	Glo	bal ID:												
Sampling Sampling Sampling Matrix Container Pres. A	Fax:		Sar	npled By:							OTOO					
05/07/24 8:56 AM 5 8 oz jar None X X X X X X X X X		Sample ID	Sampling Date	Sampling Time	Matrix	Container No. / Size	Pres.				A43 D591					
05/07/24 9:25 AM 5 8 oz jar None X X X X X X X X X			05/07/24	8:56 AM	s	8 oz jar	None	\vdash								
05/07/24 9:25 AM 5 8 oz jar None			05/07/24	9:22 AM	S	8 oz jar	None		×		×					
05/07/24 9:35 AM S 8 oz jar None X X X X X X X X X			05/07/24	9:25 AM	S	8 oz jar	None				×					
05/07/24 9:40 AM S 8 oz jar None X X X X X X X X X			05/07/24	9:35 AM	s	8 oz jar	None				×					
05/07/24 9:47 AM S 8 oz jar None			05/07/24	9:40 AM	s	8 oz jar	None	-	SECONDARY.	×						
05/07/24 9:47 AM S 8 oz jar None X X X X X X X X X			05/07/24	9:42 AM	S	8 oz jar	None	-			×					
OS/07/24 10:36 AM S 8 oz jar None X X X	7 T37-6		05/07/24	9:47 AM	S	8 oz jar	None				×					
05/07/24 10:40 AM S 8 oz jar None X X X X			05/07/24	10:36 AM	S	8 oz jar	None		×		×					
By: X None X None X None Date / By: X Y			05/07/24	10:40 AM	S	8 oz jar	None			2.5	×					
By: Signature Print Name Company / Title Date / Jacob Bate / Jacob Bat	10 T38-3.5		05/07/24	10:45 AM	S	8 oz jar	None	×	150000		×					
By: Monton By: Manyloge T By: Monton By: Monton Manyloge Many			Signature		Prii	nt Name				omp	_	itle		Di Di	_	
By: My M. My M.	¹ Relinquishe	JBy:	Kert	1	Jennif	fer Morton				SCS E	ngine	ers		5112	nci	S1:17
Received By: Re	¹ Received By	(18)			Mus	Monto	3		-	7	5			17/2	7/ //	81
Received By: Received By: Received By: Received By:	² Relinquishe	IBY: The M	1		Mrs I	Monthol	d		12V	*	A		V	护机	7)	SE
Received By:	² Received By		1)	W.	i the			4	1/K				7-15	1, 12	633
Received By:	Relinquisher	d By:	7		,	Nan	9			R	4			5-1-	12	807
	Received By		1		L	Ź				F	5,			NCI	1	4

	4	7					3	C					-			
			777		i i	Lab No:	X D	X		Š	Standard:	×	5 Day:	ay:	3 Day:	
		Z Z	X	I C A	L P;	Page:	3	of	3		2 Day:		1 Day:	ay:	Custom TAT	
	Š	<<< Select a Laboratory >>> #N/A	atory >>>			W = W	Matrix: A = Air S = Soil/Solid W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water	A = Air S Drinking W oduct SE/	S = Soil/Solid g Wate SD = Sed SEA = Sea Water	olid) = Sedi Water	ment	$1 = Na_2$ $4 = H_2SC$	Preservative $1 = Na_2S_2O_3 2 = HCI$ $4 = H_2SO_4 5 = NaOH$	Preservatives: ${}_{2}O_{3}$ 2 = HCl 3 = HNO ₃ ${}_{4}$ 5 = NaOH 6 = Other		Sample Receipt Temp:
ľ		#N/A			\forall	SW =	SW = Swab T = Tissue		WP = Wipe	. 0 = Other	ther				(lab us	(lab use only)
	CUSTOME	CUSTOMER INFORMATION		В	PROJECT IN	INFOR	FORMATION			A	Analysis Request	quest		Test Insti	Test Instructions / Comments	ıments
Company:	SCS Engineers	ieers		Name:	Midwa	Midway Rising										
Report To:	Chuck Houser	user		Number:	Sports Arena	Arena										
Email:	chouser	chouser@scsengineers.com		P.O. #:	1213320.07	20.07				A18						
Address:	8799 Balk	8799 Balboa Ave., Suite 290		Address:												
	San Diego	San Diego, CA 92123														
Phone:	858-805-5523	5523		Global ID:					0.000000	səd ə						
				Sampled By:					360 030	llorin						
	Sample ID	QI	Sampling Date	Sampling		Matrix	Container No. / Size	Pres.	V SS elfiT Stx9-H9T	Organoch	VOCs EPA					
T39-1			05/07/24	11:18 AM	M	S	8 oz jar	None		×	×					
T39-2			05/07/24	11:33 AM	M	S	8 oz jar	None			×					
T39-4			05/07/24	11:23 AM	M	S	8 oz jar	None			×					
T39-5			05/07/24	11:26 AM	M	S	8 oz jar	None						Archive		
		S	Signature			Prin	Print Name			ပိ	Company / Title	Title		1	Date / Time	
Relinquished By:	d By:	MALLES	Mo	4		Jennife	Jennifer Morton			Š	SCS Engineers	eers		5/1/2	hoon	SI: FN
¹ Received By:	۷:	(CA)			0	MISC	Montre	8		4	X-X			CAPT	7	MC
Relinquished By:	d By:	Ylle "y	177		/ Minic	Mo	McFry A	Ş		D	J-18			SH121	11	333
² Received By:	.;		1		_	1/1	160			W	T			57	h = h	633
Relinquished By:	d By:		1	\	,	Z	1, cut			17	S. P.			-23	24 1	607
Received By:			1	1		5/	7			,	1			100	>\	5

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: SCS Engineers 507888	Project: Sports Arena			
Date Received: 5/7/24	Sampler's Name Present:	Yes	√No	
Section 2				
Sample(s) received in a cooler? Yes, How many? 1	No (skip section 2)		e Temp (°C) (No Cooler)	
Sample(s) received in a cooler? Yes, How many? 1 Sample Temp (°C), One from each cooler: #1:	- #2: ^{2 5A} #3:	_#4:	2	
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accept	tance range is $< 10^{\circ}$ C but not frozen). It			s collected
the same day as sample receipt to have a higher tempera Shipping Information:	ture as long as there is evidence that co	oling has beg	un.)	
Shipping information.				
Section 3				
Was the cooler packed with: ✓ Ice ☐ Ice Packs	Bubble Wrap Styro	foam		
PaperNone	Other			
Cooler Temp (°C): #1: 0 8 + 42:	#3:	_#4:		
Section 4		YES	NO	N/A
Was a COC received?		✓		
Are sample IDs present?		✓		
Are sampling dates & times present?		✓		
Is a relinquished signature present?		✓		
Are the tests required clearly indicated on the COC?		✓		
Are custody seals present?			✓	
If custody seals are present, were they intact?				✓
Are all samples sealed in plastic bags? (Recommended to	for Microbiology samples)	✓		
Did all samples arrive intact? If no, indicate in Section 4	below.	✓		
Did all bottle labels agree with COC? (ID, dates and time		✓		
Were the samples collected in the correct containers for		✓		
Are the containers labeled with the correct preser	vatives?			✓
Is there headspace in the VOA vials greater than 5-6 mm				✓
Was a sufficient amount of sample submitted for the re-	quested tests?	✓		
Section 5 Explanations/Comments				
Section 5 Explanations/ Comments				
Section 6		Water Day of States		
For discrepancies, how was the Project Manager notified	d?Verbal PM Initials: Email (email sent to/			
Project Manager's response:	THE STREET CONTRACTOR OF THE STREET, THE S	-11-17		
Completed By:	Date: 3/7/14			

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist – Rev 4, 8/8/2017

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: SCS Engineers	Project: Midway Rising			
Date Received: 05/07/2024	Sampler's Name Present:	✓Yes	No	
Section 2	1			
Sample(s) received in a cooler? Yes, How many? 424	No (skip section 2)		e Temp (°C) (No Cooler)	
Sample Temp (°C), One from each cooler: #1: 8.4	#2:#3:	#4:		
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accept	ance range is < 10°C but not frozen). I	t is acceptable	for sample.	s collected
the same day as sample receipt to have a higher temperal Shipping Information:	ture as long as there is evidence that co	ooling has begi	un.)	
Shipping information				
Section 3				
Was the cooler packed with: ✓ Ice ☐ Ice Packs☐ Paper ☐ None	Bubble Wrap Styre	ofoam 		
Cooler Temp (°C): #1: <u>11.9</u> #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		~		,
Are sample IDs present?	8	~		
Are sampling dates & times present?		~		
Is a relinquished signature present?		V		
Are the tests required clearly indicated on the COC?		~		
Are custody seals present?			~	
If custody seals are present, were they intact?			9	~
Are all samples sealed in plastic bags? (Recommended f	for Microbiology samples)	~		
Did all samples arrive intact? If no, indicate in Section 4	below.	~		
Did all bottle labels agree with COC? (ID, dates and time		~		
Were the samples collected in the correct containers for		V		
Are the containers labeled with the correct preserv				V
Is there headspace in the VOA vials greater than 5-6 mm				~
Was a sufficient amount of sample submitted for the rec	quested tests?			
Section 5 Explanations/Comments			. 1	
Section 6				
For discrepancies, how was the Project Manager notifie	d? Verbal PM Initials: Email (email sent to	Date/Time o/on):	·	
Project Manager's response:				
	Deter			
Completed By:	Date:			

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Lab Job #: 507888 Project No: MIDWAY RISING Location: Sports Arena Date Received: 05/07/24

Sample ID: T33-2 Lab ID: 507888-001 Collected: 05/07/24 08:00

Matrix: Soil

507888-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Lead	2.2	mg/Kg	0.96	0.96	339743	05/08/24	05/08/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
beta-BHC	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
delta-BHC	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Heptachlor	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Aldrin	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Dieldrin	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endrin	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Methoxychlor	ND	ug/Kg	10	1	340015	05/11/24	05/13/24	MES
Toxaphene	ND	ug/Kg	100	1	340015	05/11/24	05/13/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	340015	05/11/24	05/13/24	MES
Surrogates			Limits					
TCMX	78%	%REC	23-120	1	340015	05/11/24	05/13/24	MES
Decachlorobiphenyl	99%	%REC	24-120	1	340015	05/11/24	05/13/24	MES

Sample ID: T33-4 Lab ID: 507888-002 Collected: 05/07/24 08:02

507888-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	2.6		mg/Kg	0.95	0.95	339743	05/08/24	05/08/24	SBW

Sample ID: T33-5 Lab ID: 507888-003 Collected: 05/07/24 08:10

Matrix: Soil

507888-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Lead	3.0		mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW

Sample ID: T34-2 Lab ID: 507888-005 Collected: 05/07/24 08:19

Matrix: Soil

Method: EPA 6010B Prep Method: EPA 3050B Lead Method: EPA 8081A Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC	ND ND ND ND	mg/Kg ug/Kg ug/Kg ug/Kg ug/Kg	0.99 5.0 5.0 5.0	0.99	339743 340015	05/08/24	05/08/24	SBW
Lead Method: EPA 8081A Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC	ND ND ND	ug/Kg ug/Kg ug/Kg	5.0 5.0	0.99	340015			
Method: EPA 8081A Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC	ND ND ND	ug/Kg ug/Kg ug/Kg	5.0 5.0	0.99	340015			
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC	ND ND ND	ug/Kg ug/Kg	5.0			05/11/24	05/13/24	MEC
beta-BHC gamma-BHC	ND ND ND	ug/Kg ug/Kg	5.0			05/11/24	05/13/24	MEC
gamma-BHC	ND ND	ug/Kg		0.99	0.400.4=			IVIES
	ND		5.0		340015	05/11/24	05/13/24	MES
delta-BHC		ua/Ka	5.0	0.99	340015	05/11/24	05/13/24	MES
	ND	ug/Ng	5.0	0.99	340015	05/11/24	05/13/24	MES
Heptachlor		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDT	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	340015	05/11/24	05/13/24	MES
Toxaphene	ND	ug/Kg	99	0.99	340015	05/11/24	05/13/24	MES
Chlordane (Technical)	ND	ug/Kg	50	0.99	340015	05/11/24	05/13/24	MES
Surrogates			Limits					
TCMX	72%	%REC	23-120	0.99	340015	05/11/24	05/13/24	MES
Decachlorobiphenyl	91%	%REC	24-120	0.99	340015	05/11/24	05/13/24	MES

Sample ID: T34-4 Lab ID: 507888-006 Collected: 05/07/24 08:22

507888-006 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	21		mg/Kg	0.99	0.99	339743	05/08/24	05/08/24	SBW

Sample ID: T34-5 Lab ID: 507888-007 Collected: 05/07/24 08:24

Matrix: Soil

Units 507888-007 Analyte Result Qual RL DF **Batch** Prepared **Analyzed** Chemist Method: EPA 6010B Prep Method: EPA 3050B Lead 9.6 mg/Kg 0.95 0.95 339743 05/08/24 05/08/24 SBW

Sample ID: T34-6 Lab ID: 507888-008 Collected: 05/07/24 08:27

Matrix: Soil

507888-008 Analyte Result Qual Units RL DF **Batch Prepared Analyzed** Chemist Method: EPA 6010B Prep Method: EPA 3050B Lead 2.1 mg/Kg 0.99 0.99 339743 05/08/24 05/08/24 SBW

Sample ID: T35-0.5 Lab ID: 507888-009 Collected: 05/07/24 10:27

507888-009 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Lead	7.1	mg/Kg	0.96	0.96	339743	05/08/24	05/08/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
beta-BHC	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
delta-BHC	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Heptachlor	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Aldrin	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Dieldrin	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endrin	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	340015	05/11/24	05/13/24	MES
Methoxychlor	ND	ug/Kg	10	1	340015	05/11/24	05/13/24	MES
Toxaphene	ND	ug/Kg	100	1	340015	05/11/24	05/13/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	340015	05/11/24	05/13/24	MES
Surrogates			Limits					
TCMX	81%	%REC	23-120	1	340015	05/11/24	05/13/24	MES
Decachlorobiphenyl	105%	%REC	24-120	1	340015	05/11/24	05/13/24	MES

Sample ID: T35-2.5 Lab ID: 507888-010 Collected: 05/07/24 08:50

Matrix: Soil

507888-010 Analyte Units Result Qual RLDF **Batch Prepared Analyzed** Chemist Method: EPA 6010B Prep Method: EPA 3050B 339743 05/08/24 SBW Lead 8.9 mg/Kg 0.95 0.95 05/08/24

Sample ID: T35-5 Lab ID: 507888-011 Collected: 05/07/24 08:56

507888-011 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B						. торанов	,	
Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.97	339743	05/08/24	05/08/24	SBW
Arsenic	4.2	mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW
Barium	180	mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW
Beryllium	0.52	mg/Kg	0.49	0.97	339743	05/08/24	05/08/24	SBW
Cadmium	ND	mg/Kg	0.49	0.97	339743	05/08/24	05/08/24	SBW
Chromium	31	mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW
Cobalt	10	mg/Kg	0.49	0.97	339743	05/08/24	05/08/24	SBW
Copper	17	mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW
Lead	5.6	mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW
Molybdenum	ND	mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW
Nickel	10	mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW
Selenium	ND	mg/Kg	2.9	0.97	339743	05/08/24	05/08/24	SBW
Silver	ND	mg/Kg	0.49	0.97	339743	05/08/24	05/08/24	SBW
Thallium	ND	mg/Kg	2.9	0.97	339743	05/08/24	05/09/24	SBW
Vanadium	68	mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW
Zinc	55	mg/Kg	4.9	0.97	339743	05/08/24	05/08/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.1	339767	05/08/24	05/09/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	339955	05/10/24	05/13/24	DIB
TPH (C13-C22)	ND	mg/Kg	10	1	339955	05/10/24	05/13/24	DIB
TPH (C23-C44)	ND	mg/Kg	20	1	339955	05/10/24	05/13/24	DIB
Surrogates			Limits					
n-Triacontane	97%	%REC	70-130	1	339955	05/10/24	05/13/24	DIB

Sample ID: T36-2 Lab ID: 507888-012 Collected: 05/07/24 09:22

Matrix: Soil

507888-012 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Lead	23	mg/Kg	0.95	0.95	339743	05/08/24	05/08/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDT	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	340015	05/11/24	05/13/24	MES
Toxaphene	ND	ug/Kg	99	0.99	340015	05/11/24	05/13/24	MES
Chlordane (Technical)	ND	ug/Kg	50	0.99	340015	05/11/24	05/13/24	MES
Surrogates		-	Limits					
TCMX	79%	%REC	23-120	0.99	340015	05/11/24	05/13/24	MES
Decachlorobiphenyl	102%	%REC	24-120	0.99	340015	05/11/24	05/13/24	MES

Sample ID: T36-4 Lab ID: 507888-013 Collected: 05/07/24 09:25

Matrix: Soil

507888-013 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Lead	3.0		mg/Kg	0.95	0.95	339743	05/08/24	05/08/24	SBW

Sample ID: T37-2.5 Lab ID: 507888-014 Collected: 05/07/24 09:35

507888-014 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	1.8		mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW

Sample ID: T37-4 Lab ID: 507888-015 Collected: 05/07/24 09:40

507888-015 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B Antimony	5.1		mg/Kg	2.9	0.95	339743	05/08/24	05/08/24	SBW
Artimony	9.7		mg/Kg	0.95	0.95	339743	05/08/24	05/08/24	SBW
Barium	1,300		mg/Kg	0.95	0.95	339743	05/08/24	05/08/24	SBW
Beryllium	0.90		mg/Kg	0.93	0.95	339743	05/08/24	05/08/24	SBW
Cadmium	0.93		mg/Kg	0.48	0.95	339743	05/08/24	05/08/24	SBW
Chromium	35		mg/Kg	0.48	0.95	339743	05/08/24	05/08/24	SBW
Cobalt	8.7		mg/Kg	0.93	0.95	339743	05/08/24	05/08/24	SBW
Copper	160		mg/Kg	0.46	0.95	339743	05/08/24	05/08/24	SBW
Lead	1,600		mg/Kg	9.5	9.5	339743	05/08/24	05/09/24	SBW
Molybdenum	ND		mg/Kg	0.95	0.95	339743	05/08/24	05/09/24	SBW
Nickel	18		mg/Kg	0.95	0.95	339743	05/08/24	05/08/24	SBW
Selenium	ND		mg/Kg	2.9	0.95	339743	05/08/24	05/08/24	SBW
Silver	2.2			0.48	0.95	339743	05/08/24	05/08/24	SBW
Thallium	ND		mg/Kg	2.9	0.95	339743	05/08/24	05/08/24	SBW
Vanadium	50		mg/Kg		0.95	339743	05/08/24	05/08/24	SBW
	650		mg/Kg	0.95 4.8	0.95	339743	05/08/24	05/08/24	SBW
Zinc	000		mg/Kg	4.0	0.95	339743	05/06/24	05/06/24	SDW
Method: EPA 7471A Prep Method: METHOD									
Mercury	3.0		mg/Kg	0.82	5.9	339767	05/08/24	05/09/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND		mg/Kg	10	1	339955	05/10/24	05/13/24	DIB
TPH (C13-C22)	ND		mg/Kg	10	1	339955	05/10/24	05/13/24	DIB
TPH (C23-C44)	ND		mg/Kg	20	1	339955	05/10/24	05/13/24	DIB
Surrogates				Limits					
n-Triacontane	96%		%REC	70-130	1	339955	05/10/24	05/13/24	DIB
Method: EPA 8260B Prep Method: EPA 5030B									
3-Chloropropene	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Freon 12	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Chloromethane	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Vinyl Chloride	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Bromomethane	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Chloroethane	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Trichlorofluoromethane	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Acetone	ND		ug/Kg	100	1	339803	05/09/24	05/09/24	LYZ
Freon 113	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,1-Dichloroethene	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Methylene Chloride	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
MTBE	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
trans-1,2-Dichloroethene	IND					339803	05/09/24	05/09/24	LYZ
trans-1,2-Dichloroethene 1,1-Dichloroethane	ND		ug/Kg	5.0	1	<i>აა</i> ყისა	05/09/24	03/09/24	L12
•				5.0 100	1	339803	05/09/24	05/09/24	LYZ
1,1-Dichloroethane	ND		ug/Kg ug/Kg ug/Kg		1 1 1				

	Allai	y 313 i le 3uit.	יטו כ	301	000			
888-015 Analyte		ual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Chloroform	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Bromochloromethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,1,1-Trichloroethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,1-Dichloropropene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Carbon Tetrachloride	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,2-Dichloroethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Benzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Trichloroethene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,2-Dichloropropane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Bromodichloromethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Dibromomethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
4-Methyl-2-Pentanone	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
cis-1,3-Dichloropropene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Toluene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
trans-1,3-Dichloropropene	ND	ug/Kg	5.0	<u>.</u>	339803	05/09/24	05/09/24	LYZ
1,1,2-Trichloroethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,3-Dichloropropane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Tetrachloroethene	ND		5.0			05/09/24	05/09/24	LYZ
		ug/Kg		1	339803	05/09/24		
Dibromochloromethane	ND	ug/Kg	5.0	1	339803		05/09/24	LYZ
1,2-Dibromoethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Chlorobenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Ethylbenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
m,p-Xylenes	ND	ug/Kg	10	1	339803	05/09/24	05/09/24	LYZ
o-Xylene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Styrene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Bromoform	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Isopropylbenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,2,3-Trichloropropane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Propylbenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Bromobenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
2-Chlorotoluene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
4-Chlorotoluene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
tert-Butylbenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
sec-Butylbenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
para-Isopropyl Toluene	ND	ug/Kg	5.0	<u>'</u> 1	339803	05/09/24	05/09/24	LYZ
1,3-Dichlorobenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,4-Dichlorobenzene	ND				339803	05/09/24	05/09/24	LYZ
		ug/Kg	5.0	1		05/09/24		
n-Butylbenzene	ND	ug/Kg	5.0	1	339803		05/09/24	LYZ
1,2-Dichlorobenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Hexachlorobutadiene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Naphthalene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	1	339803	05/09/24	05/09/24	LYZ
	ND	ug/Kg	5.0		339803	05/09/24	05/09/24	LYZ

507888-015 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Ethyl tert-Butyl Ether (ETBE)	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Methyl tert-Amyl Ether (TAME)	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Xylene (total)	ND		ug/Kg	5.0	1	339803	05/09/24	05/09/24	LYZ
Surrogates				Limits					
Dibromofluoromethane	99%		%REC	70-145	1	339803	05/09/24	05/09/24	LYZ
1,2-Dichloroethane-d4	103%		%REC	70-145	1	339803	05/09/24	05/09/24	LYZ
Toluene-d8	99%		%REC	70-145	1	339803	05/09/24	05/09/24	LYZ
Bromofluorobenzene	99%		%REC	70-145	1	339803	05/09/24	05/09/24	LYZ

Sample ID: T37-5 Lab ID: 507888-016 Collected: 05/07/24 09:42

Matrix: Soil

507888-016 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Lead	3.1		mg/Kg	0.99	0.99	339743	05/08/24	05/08/24	SBW

Sample ID: T37-6 Lab ID: 507888-017 Collected: 05/07/24 09:47

507888-017 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	1.2		mg/Kg	0.97	0.97	339743	05/08/24	05/08/24	SBW

Sample ID: T38-1 Lab ID: 507888-018 Collected: 05/07/24 10:36

Matrix: Soil

507888-018 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	8.5		mg/Kg	0.97	0.97	339799	05/08/24	05/09/24	SBW
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
beta-BHC	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
gamma-BHC	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
delta-BHC	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Heptachlor	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Aldrin	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan I	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Dieldrin	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDE	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan II	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan sulfate	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDD	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin ketone	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDT	ND		ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Methoxychlor	ND		ug/Kg	9.9	0.99	340015	05/11/24	05/13/24	MES
Toxaphene	ND		ug/Kg	99	0.99	340015	05/11/24	05/13/24	MES
Chlordane (Technical)	ND		ug/Kg	50	0.99	340015	05/11/24	05/13/24	MES
Surrogates				Limits					
TCMX	81%		%REC	23-120	0.99	340015	05/11/24	05/13/24	MES
Decachlorobiphenyl	105%		%REC	24-120	0.99	340015	05/11/24	05/13/24	MES

Sample ID: T38-2 Lab ID: 507888-019 Collected: 05/07/24 10:40

507888-019 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	1.7		mg/Kg	0.95	0.95	339799	05/08/24	05/09/24	SBW

Sample ID: T38-3.5 Lab ID: 507888-020 Collected: 05/07/24 10:45

Matrix: Soil

507888-020 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	7.0	ı	ng/Kg	0.98	0.98	339799	05/08/24	05/09/24	SBW
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND	1	ng/Kg	10	1	339955	05/10/24	05/13/24	DIB
TPH (C13-C22)	ND	ı	ng/Kg	10	1	339955	05/10/24	05/13/24	DIB
TPH (C23-C44)	52	r	ng/Kg	20	1	339955	05/10/24	05/13/24	DIB
Surrogates				Limits					
n-Triacontane	98%	C	%REC	70-130	1	339955	05/10/24	05/13/24	DIB

Sample ID: T39-1 Lab ID: 507888-021 Collected: 05/07/24 11:18

507888-021 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Lead	9.5	mg/Kg	0.98	0.98	339799	05/08/24	05/09/24	SBW
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
4,4'-DDT	ND	ug/Kg	5.0	0.99	340015	05/11/24	05/13/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	340015	05/11/24	05/13/24	MES
Toxaphene	ND	ug/Kg	99	0.99	340015	05/11/24	05/13/24	MES
Chlordane (Technical)	ND	ug/Kg	50	0.99	340015	05/11/24	05/13/24	MES
Surrogates			Limits					
TCMX	76%	%REC	23-120	0.99	340015	05/11/24	05/13/24	MES
Decachlorobiphenyl	103%	%REC	24-120	0.99	340015	05/11/24	05/13/24	MES

Sample ID: T39-2 Lab ID: 507888-022 Collected: 05/07/24 11:33

Matrix: Soil

507888-022 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Lead	9.7		mg/Kg	0.97	0.97	339799	05/08/24	05/09/24	SBW

Sample ID: T39-4 Lab ID: 507888-023 Collected: 05/07/24 11:23

Matrix: Soil

507888-023 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	3.7		mg/Kg	0.98	0.98	339799	05/08/24	05/09/24	SBW

ND Not Detected

Type: Blank Lab ID: QC1151316 Batch: 339743

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1151316 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	05/08/24	05/08/24
Arsenic	ND		mg/Kg	1.0	05/08/24	05/08/24
Barium	ND		mg/Kg	1.0	05/08/24	05/08/24
Beryllium	ND		mg/Kg	0.50	05/08/24	05/09/24
Cadmium	ND		mg/Kg	0.50	05/08/24	05/08/24
Chromium	ND		mg/Kg	1.0	05/08/24	05/08/24
Cobalt	ND		mg/Kg	0.50	05/08/24	05/08/24
Copper	ND		mg/Kg	1.0	05/08/24	05/08/24
Lead	ND		mg/Kg	1.0	05/08/24	05/08/24
Molybdenum	ND		mg/Kg	1.0	05/08/24	05/08/24
Nickel	ND		mg/Kg	1.0	05/08/24	05/08/24
Selenium	ND		mg/Kg	3.0	05/08/24	05/08/24
Silver	ND		mg/Kg	0.50	05/08/24	05/08/24
Thallium	ND		mg/Kg	3.0	05/08/24	05/08/24
Vanadium	ND		mg/Kg	1.0	05/08/24	05/08/24
Zinc	ND		mg/Kg	5.0	05/08/24	05/08/24

Type: Lab Control Sample Lab ID: QC1151317 Batch: 339743

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1151317 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	97.29	100.0	mg/Kg	97%	80-120
Arsenic	100.5	100.0	mg/Kg	101%	80-120
Barium	108.3	100.0	mg/Kg	108%	80-120
Beryllium	103.1	100.0	mg/Kg	103%	80-120
Cadmium	101.9	100.0	mg/Kg	102%	80-120
Chromium	106.1	100.0	mg/Kg	106%	80-120
Cobalt	112.7	100.0	mg/Kg	113%	80-120
Copper	102.9	100.0	mg/Kg	103%	80-120
Lead	114.5	100.0	mg/Kg	115%	80-120
Molybdenum	100.9	100.0	mg/Kg	101%	80-120
Nickel	111.3	100.0	mg/Kg	111%	80-120
Selenium	93.12	100.0	mg/Kg	93%	80-120
Silver	49.96	50.00	mg/Kg	100%	80-120
Thallium	109.9	100.0	mg/Kg	110%	80-120
Vanadium	100.2	100.0	mg/Kg	100%	80-120
Zinc	109.0	100.0	mg/Kg	109%	80-120

Type: Matrix Spike Lab ID: QC1151318 Batch: 339743

Matrix (Source ID): Soil (507777-001) Method: EPA 6010B Prep Method: EPA 3050B

QC1151318 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	41.76	2.365	95.24	mg/Kg	41%	*	75-125	0.95
Arsenic	97.89	3.686	95.24	mg/Kg	99%		75-125	0.95
Barium	167.6	46.47	95.24	mg/Kg	127%	*	75-125	0.95
Beryllium	95.35	0.4409	95.24	mg/Kg	100%		75-125	0.95
Cadmium	95.02	ND	95.24	mg/Kg	100%		75-125	0.95
Chromium	125.8	21.59	95.24	mg/Kg	109%		75-125	0.95
Cobalt	106.3	10.15	95.24	mg/Kg	101%		75-125	0.95
Copper	107.8	8.756	95.24	mg/Kg	104%		75-125	0.95
Lead	106.1	5.906	95.24	mg/Kg	105%		75-125	0.95
Molybdenum	85.41	ND	95.24	mg/Kg	90%		75-125	0.95
Nickel	117.4	18.18	95.24	mg/Kg	104%		75-125	0.95
Selenium	87.28	ND	95.24	mg/Kg	92%		75-125	0.95
Silver	47.44	ND	47.62	mg/Kg	100%		75-125	0.95
Thallium	97.50	0.9816	95.24	mg/Kg	101%		75-125	0.95
Vanadium	146.4	35.89	95.24	mg/Kg	116%		75-125	0.95
Zinc	152.1	43.64	95.24	mg/Kg	114%		75-125	0.95

Type: Matrix Spike Duplicate Lab ID: QC1151319 Batch: 339743

Matrix (Source ID): Soil (507777-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1151319 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	41.86	2.365	97.09	mg/Kg	41%	*	75-125	2	41	0.97
Arsenic	104.5	3.686	97.09	mg/Kg	104%		75-125	5	35	0.97
Barium	174.8	46.47	97.09	mg/Kg	132%	*	75-125	3	20	0.97
Beryllium	99.08	0.4409	97.09	mg/Kg	102%		75-125	2	20	0.97
Cadmium	100.7	ND	97.09	mg/Kg	104%		75-125	4	20	0.97
Chromium	131.4	21.59	97.09	mg/Kg	113%		75-125	3	20	0.97
Cobalt	111.9	10.15	97.09	mg/Kg	105%		75-125	3	20	0.97
Copper	116.7	8.756	97.09	mg/Kg	111%		75-125	6	20	0.97
Lead	112.5	5.906	97.09	mg/Kg	110%		75-125	4	20	0.97
Molybdenum	90.81	ND	97.09	mg/Kg	94%		75-125	4	20	0.97
Nickel	124.1	18.18	97.09	mg/Kg	109%		75-125	4	20	0.97
Selenium	91.28	ND	97.09	mg/Kg	94%		75-125	3	20	0.97
Silver	50.08	ND	48.54	mg/Kg	103%		75-125	3	20	0.97
Thallium	102.2	0.9816	97.09	mg/Kg	104%		75-125	3	20	0.97
Vanadium	153.8	35.89	97.09	mg/Kg	121%		75-125	4	20	0.97
Zinc	166.7	43.64	97.09	mg/Kg	127%	*	75-125	8	20	0.97

Type: Post Digest Spike Lab ID: QC1151320 Batch: 339743

Matrix (Source ID): Soil (507777-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample			_			
QC1151320 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	105.1	2.365	99.01	mg/Kg	104%		75-125	0.99
Arsenic	107.6	3.686	99.01	mg/Kg	105%		75-125	0.99
Barium	155.6	46.47	99.01	mg/Kg	110%		75-125	0.99
Beryllium	105.4	0.4409	99.01	mg/Kg	106%		75-125	0.99
Cadmium	104.7	ND	99.01	mg/Kg	106%		75-125	0.99
Chromium	124.4	21.59	99.01	mg/Kg	104%		75-125	0.99
Cobalt	118.6	10.15	99.01	mg/Kg	110%		75-125	0.99
Copper	114.0	8.756	99.01	mg/Kg	106%		75-125	0.99
Lead	116.1	5.906	99.01	mg/Kg	111%		75-125	0.99
Molybdenum	103.8	ND	99.01	mg/Kg	105%		75-125	0.99
Nickel	124.8	18.18	99.01	mg/Kg	108%		75-125	0.99
Selenium	98.44	ND	99.01	mg/Kg	99%		75-125	0.99
Silver	52.42	ND	49.50	mg/Kg	106%		75-125	0.99
Thallium	108.6	0.9816	99.01	mg/Kg	109%		75-125	0.99
Vanadium	134.6	35.89	99.01	mg/Kg	100%		75-125	0.99
Zinc	151.3	43.64	99.01	mg/Kg	109%		75-125	0.99

Type: Blank Lab ID: QC1151474 Batch: 339799

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1151474 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	05/08/24	05/09/24
Arsenic	ND		mg/Kg	1.0	05/08/24	05/09/24
Barium	ND		mg/Kg	1.0	05/08/24	05/09/24
Beryllium	ND		mg/Kg	0.50	05/08/24	05/09/24
Cadmium	ND		mg/Kg	0.50	05/08/24	05/09/24
Chromium	ND		mg/Kg	1.0	05/08/24	05/09/24
Cobalt	ND		mg/Kg	0.50	05/08/24	05/09/24
Copper	ND		mg/Kg	1.0	05/08/24	05/09/24
Lead	ND		mg/Kg	1.0	05/08/24	05/09/24
Molybdenum	ND		mg/Kg	1.0	05/08/24	05/09/24
Nickel	ND		mg/Kg	1.0	05/08/24	05/09/24
Selenium	ND		mg/Kg	3.0	05/08/24	05/09/24
Silver	ND		mg/Kg	0.50	05/08/24	05/09/24
Thallium	ND		mg/Kg	3.0	05/08/24	05/09/24
Vanadium	ND		mg/Kg	1.0	05/08/24	05/09/24
Zinc	ND		mg/Kg	5.0	05/08/24	05/09/24

Type: Lab Control Sample Lab ID: QC1151475 Batch: 339799

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1151475 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	93.86	100.0	mg/Kg	94%	80-120
Arsenic	96.63	100.0	mg/Kg	97%	80-120
Barium	105.9	100.0	mg/Kg	106%	80-120
Beryllium	97.50	100.0	mg/Kg	97%	80-120
Cadmium	97.71	100.0	mg/Kg	98%	80-120
Chromium	103.4	100.0	mg/Kg	103%	80-120
Cobalt	108.9	100.0	mg/Kg	109%	80-120
Copper	96.38	100.0	mg/Kg	96%	80-120
Lead	108.2	100.0	mg/Kg	108%	80-120
Molybdenum	96.17	100.0	mg/Kg	96%	80-120
Nickel	106.4	100.0	mg/Kg	106%	80-120
Selenium	89.17	100.0	mg/Kg	89%	80-120
Silver	46.78	50.00	mg/Kg	94%	80-120
Thallium	109.4	100.0	mg/Kg	109%	80-120
Vanadium	94.33	100.0	mg/Kg	94%	80-120
Zinc	107.4	100.0	mg/Kg	107%	80-120

Type: Matrix Spike Lab ID: QC1151476 Batch: 339799

Matrix (Source ID): Soil (507888-018) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1151476 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	38.18	ND	98.04	mg/Kg	39%	*	75-125	0.98
Arsenic	106.0	10.59	98.04	mg/Kg	97%		75-125	0.98
Barium	171.8	60.74	98.04	mg/Kg	113%		75-125	0.98
Beryllium	94.58	0.4484	98.04	mg/Kg	96%		75-125	0.98
Cadmium	93.89	ND	98.04	mg/Kg	96%		75-125	0.98
Chromium	110.7	13.40	98.04	mg/Kg	99%		75-125	0.98
Cobalt	105.1	5.595	98.04	mg/Kg	102%		75-125	0.98
Copper	103.1	7.581	98.04	mg/Kg	97%		75-125	0.98
Lead	109.3	8.544	98.04	mg/Kg	103%		75-125	0.98
Molybdenum	89.20	ND	98.04	mg/Kg	91%		75-125	0.98
Nickel	104.6	6.410	98.04	mg/Kg	100%		75-125	0.98
Selenium	87.96	ND	98.04	mg/Kg	90%		75-125	0.98
Silver	45.28	ND	49.02	mg/Kg	92%		75-125	0.98
Thallium	102.4	ND	98.04	mg/Kg	104%		75-125	0.98
Vanadium	124.7	29.63	98.04	mg/Kg	97%		75-125	0.98
Zinc	138.7	35.73	98.04	mg/Kg	105%		75-125	0.98

Type: Matrix Spike Duplicate Lab ID: QC1151477 Batch: 339799

Matrix (Source ID): Soil (507888-018) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1151477 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	40.91	ND	95.24	mg/Kg	43%	*	75-125	10	41	0.95
Arsenic	104.9	10.59	95.24	mg/Kg	99%		75-125	2	35	0.95
Barium	165.8	60.74	95.24	mg/Kg	110%		75-125	2	20	0.95
Beryllium	94.06	0.4484	95.24	mg/Kg	98%		75-125	2	20	0.95
Cadmium	93.31	ND	95.24	mg/Kg	98%		75-125	2	20	0.95
Chromium	110.5	13.40	95.24	mg/Kg	102%		75-125	2	20	0.95
Cobalt	104.7	5.595	95.24	mg/Kg	104%		75-125	2	20	0.95
Copper	101.4	7.581	95.24	mg/Kg	99%		75-125	1	20	0.95
Lead	108.2	8.544	95.24	mg/Kg	105%		75-125	2	20	0.95
Molybdenum	89.28	ND	95.24	mg/Kg	94%		75-125	3	20	0.95
Nickel	103.9	6.410	95.24	mg/Kg	102%		75-125	2	20	0.95
Selenium	87.33	ND	95.24	mg/Kg	92%		75-125	2	20	0.95
Silver	44.49	ND	47.62	mg/Kg	93%		75-125	1	20	0.95
Thallium	101.2	ND	95.24	mg/Kg	106%		75-125	2	20	0.95
Vanadium	124.0	29.63	95.24	mg/Kg	99%		75-125	2	20	0.95
Zinc	139.1	35.73	95.24	mg/Kg	109%		75-125	2	20	0.95

Type: Post Digest Spike Lab ID: QC1151478 Batch: 339799

Matrix (Source ID): Soil (507888-018) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1151478 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	101.8	ND	97.09	mg/Kg	105%		75-125	0.97
Arsenic	113.6	10.59	97.09	mg/Kg	106%		75-125	0.97
Barium	167.9	60.74	97.09	mg/Kg	110%		75-125	0.97
Beryllium	101.5	0.4484	97.09	mg/Kg	104%		75-125	0.97
Cadmium	101.2	ND	97.09	mg/Kg	104%		75-125	0.97
Chromium	117.2	13.40	97.09	mg/Kg	107%		75-125	0.97
Cobalt	114.0	5.595	97.09	mg/Kg	112%		75-125	0.97
Copper	108.5	7.581	97.09	mg/Kg	104%		75-125	0.97
Lead	117.6	8.544	97.09	mg/Kg	112%		75-125	0.97
Molybdenum	102.6	ND	97.09	mg/Kg	106%		75-125	0.97
Nickel	112.6	6.410	97.09	mg/Kg	109%		75-125	0.97
Selenium	96.50	ND	97.09	mg/Kg	99%		75-125	0.97
Silver	48.24	ND	48.54	mg/Kg	99%		75-125	0.97
Thallium	110.3	ND	97.09	mg/Kg	114%		75-125	0.97
Vanadium	125.7	29.63	97.09	mg/Kg	99%		75-125	0.97
Zinc	146.0	35.73	97.09	mg/Kg	114%		75-125	0.97

Type: Blank Lab ID: QC1151380 Batch: 339767

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1151380 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	05/08/24	05/09/24

Type: Lab Control Sample Lab ID: QC1151381 Batch: 339767

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

 QC1151381 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Mercury
 0.8664
 0.8333
 mg/Kg
 104%
 80-120

Type: Matrix Spike Lab ID: QC1151382 Batch: 339767

Matrix (Source ID): Soil (507777-001) Method: EPA 7471A Prep Method: METHOD

Source Sample

QC1151382 Analyte Result Spiked DF Result Units Recovery Qual Limits Mercury 0.9181 ND 0.8621 106% 75-125 mg/Kg

Type: Matrix Spike Duplicate Lab ID: QC1151383 Batch: 339767

Matrix (Source ID): Soil (507777-001) Method: EPA 7471A Prep Method: METHOD

Source Sample **RPD** QC1151383 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** Lim DF 0.9473 75-125 20 ND 0.8772 108% Mercury mg/Kg 1.1

Type: Blank Lab ID: QC1152025 Batch: 339955

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1152025 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
TPH (C6-C12)	ND		mg/Kg	10	05/10/24	05/13/24
TPH (C13-C22)	ND		mg/Kg	10	05/10/24	05/13/24
TPH (C23-C44)	ND		mg/Kg	20	05/10/24	05/13/24
Surrogates				Limits		
n-Triacontane	103%		%REC	70-130	05/10/24	05/13/24

Type: Lab Control Sample Lab ID: QC1152026 Batch: 339955

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1152026 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	249.5	250.0	mg/Kg	100%	76-122
Surrogates					
n-Triacontane	9.975	10.00	mg/Kg	100%	70-130

Type: Matrix Spike Lab ID: QC1152027 Batch: 339955

Matrix (Source ID): Soil (507888-015) Method: EPA 8015M Prep Method: EPA 3580M

Source Sample Result QC1152027 Analyte Result **Spiked** Units Recovery Qual Limits DF 239.9 Diesel C10-C28 ND 248.8 mg/Kg 96% 62-126 1 Surrogates 9.533 n-Triacontane 9.950 mg/Kg 96% 70-130

Type: Matrix Spike Duplicate Lab ID: QC1152028 Batch: 339955

Matrix (Source ID): Soil (507888-015) Method: EPA 8015M Prep Method: EPA 3580M

Source Sample RPD QC1152028 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** Lim DF Diesel C10-C28 250.2 62-126 ND 248.3 mg/Kg 101% 35 0.99 Surrogates 100% n-Triacontane 9.940 9.930 mg/Kg 70-130 0.99

Type: Blank Lab ID: QC1152219 Batch: 340015

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1152219 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	05/11/24	05/13/24
beta-BHC	ND	ug/Kg	5.0	05/11/24	05/13/24
gamma-BHC	ND	ug/Kg	5.0	05/11/24	05/13/24
delta-BHC	ND	ug/Kg	5.0	05/11/24	05/13/24
Heptachlor	ND	ug/Kg	5.0	05/11/24	05/13/24
Aldrin	ND	ug/Kg	5.0	05/11/24	05/13/24
Heptachlor epoxide	ND	ug/Kg	5.0	05/11/24	05/13/24
Endosulfan I	ND	ug/Kg	5.0	05/11/24	05/13/24
Dieldrin	ND	ug/Kg	5.0	05/11/24	05/13/24
4,4'-DDE	ND	ug/Kg	5.0	05/11/24	05/13/24
Endrin	ND	ug/Kg	5.0	05/11/24	05/13/24
Endosulfan II	ND	ug/Kg	5.0	05/11/24	05/13/24
Endosulfan sulfate	ND	ug/Kg	5.0	05/11/24	05/13/24
4,4'-DDD	ND	ug/Kg	5.0	05/11/24	05/13/24
Endrin aldehyde	ND	ug/Kg	5.0	05/11/24	05/13/24
Endrin ketone	ND	ug/Kg	5.0	05/11/24	05/13/24
4,4'-DDT	ND	ug/Kg	5.0	05/11/24	05/13/24
Methoxychlor	ND	ug/Kg	10	05/11/24	05/13/24
Toxaphene	ND	ug/Kg	100	05/11/24	05/13/24
Chlordane (Technical)	ND	ug/Kg	50	05/11/24	05/13/24
Surrogates			Limits		
TCMX	82%	%REC	23-120	05/11/24	05/13/24
Decachlorobiphenyl	99%	%REC	24-120	05/11/24	05/13/24

Type: Lab Control Sample Lab ID: QC1152220 Batch: 340015

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1152220 Analyte	Result	Spiked	Units	Recovery Qua	l Limits
alpha-BHC	53.75	50.00	ug/Kg	107%	22-129
beta-BHC	55.10	50.00	ug/Kg	110%	28-125
gamma-BHC	55.52	50.00	ug/Kg	111%	22-128
delta-BHC	55.77	50.00	ug/Kg	112%	24-131
Heptachlor	54.97	50.00	ug/Kg	110%	18-124
Aldrin	54.34	50.00	ug/Kg	109%	23-120
Heptachlor epoxide	58.81	50.00	ug/Kg	118%	26-120
Endosulfan I	54.15	50.00	ug/Kg	108%	25-126
Dieldrin	57.20	50.00	ug/Kg	114%	23-124
4,4'-DDE	55.18	50.00	ug/Kg	110%	28-121
Endrin	63.64	50.00	ug/Kg	127%	25-127
Endosulfan II	55.50	50.00	ug/Kg	111%	29-121
Endosulfan sulfate	51.85	50.00	ug/Kg	104%	30-121
4,4'-DDD	55.97	50.00	ug/Kg	112%	26-120
Endrin aldehyde	31.48	50.00	ug/Kg	63%	10-120
Endrin ketone	56.91	50.00	ug/Kg	114%	28-125
4,4'-DDT	58.77	50.00	ug/Kg	118%	22-125
Methoxychlor	65.38	50.00	ug/Kg	131% *	28-130
Surrogates					
TCMX	44.63	50.00	ug/Kg	89%	23-120
Decachlorobiphenyl	55.41	50.00	ug/Kg	111%	24-120

Type: Matrix Spike Lab ID: QC1152221 Batch: 340015

Matrix (Source ID): Soil (507888-001) Method: EPA 8081A Prep Method: EPA 3546

		Source						
QC1152221 Analyte	Result	Sample Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	47.70	ND	50.00	ug/Kg	95%		46-120	
beta-BHC	46.57	ND	50.00	ug/Kg	93%		41-120	1
gamma-BHC	47.78	ND	50.00	ug/Kg	96%		41-120	1
delta-BHC	48.24	ND	50.00	ug/Kg	96%		38-123	1
Heptachlor	47.53	ND	50.00	ug/Kg	95%		39-120	1
Aldrin	41.68	ND	50.00	ug/Kg	83%		34-120	1
Heptachlor epoxide	49.61	ND	50.00	ug/Kg	99%		43-120	1
Endosulfan I	48.31	ND	50.00	ug/Kg	97%		45-120	1
Dieldrin	48.92	ND	50.00	ug/Kg	98%		45-120	1
4,4'-DDE	55.92	ND	50.00	ug/Kg	112%		34-120	1
Endrin	57.19	ND	50.00	ug/Kg	114%		40-120	1
Endosulfan II	48.32	ND	50.00	ug/Kg	97%		41-120	1
Endosulfan sulfate	47.51	ND	50.00	ug/Kg	95%		42-120	1
4,4'-DDD	49.52	ND	50.00	ug/Kg	99%		41-120	1
Endrin aldehyde	34.68	ND	50.00	ug/Kg	69%		30-120	1
Endrin ketone	49.66	ND	50.00	ug/Kg	99%		45-120	1
4,4'-DDT	47.94	ND	50.00	ug/Kg	96%		35-127	1
Methoxychlor	51.52	ND	50.00	ug/Kg	103%		42-136	1
Surrogates								
TCMX	38.94		50.00	ug/Kg	78%		23-120	1
Decachlorobiphenyl	47.46		50.00	ug/Kg	95%		24-120	1

Type: Matrix Spike Duplicate Lab ID: QC1152222 Batch: 340015

Matrix (Source ID): Soil (507888-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1152222 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	47.64	ND	50.00	ug/Kg	95%		46-120	0	30	1
beta-BHC	48.95	ND	50.00	ug/Kg	98%		41-120	5	30	1
gamma-BHC	50.48	ND	50.00	ug/Kg	101%		41-120	5	30	1
delta-BHC	50.69	ND	50.00	ug/Kg	101%		38-123	5	30	1
Heptachlor	49.88	ND	50.00	ug/Kg	100%		39-120	5	30	1
Aldrin	47.67	ND	50.00	ug/Kg	95%		34-120	13	30	1
Heptachlor epoxide	51.71	ND	50.00	ug/Kg	103%		43-120	4	30	1
Endosulfan I	51.81	ND	50.00	ug/Kg	104%		45-120	7	30	1
Dieldrin	50.86	ND	50.00	ug/Kg	102%		45-120	4	30	1
4,4'-DDE	57.83	ND	50.00	ug/Kg	116%		34-120	3	30	1
Endrin	58.65	ND	50.00	ug/Kg	117%		40-120	3	30	1
Endosulfan II	50.64	ND	50.00	ug/Kg	101%		41-120	5	30	1
Endosulfan sulfate	50.29	ND	50.00	ug/Kg	101%		42-120	6	30	1
4,4'-DDD	50.35	ND	50.00	ug/Kg	101%		41-120	2	30	1
Endrin aldehyde	43.86	ND	50.00	ug/Kg	88%		30-120	23	30	1
Endrin ketone	52.09	ND	50.00	ug/Kg	104%		45-120	5	30	1
4,4'-DDT	52.87	ND	50.00	ug/Kg	106%		35-127	10	30	1
Methoxychlor	56.85	ND	50.00	ug/Kg	114%		42-136	10	30	1
Surrogates										
TCMX	41.49		50.00	ug/Kg	83%		23-120			1
Decachlorobiphenyl	50.68		50.00	ug/Kg	101%		24-120			1

Type: Lab Control Sample Lab ID: QC1151488 Batch: 339803

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1151488 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	57.73	50.00	ug/Kg	115%	70-131
MTBE	50.26	50.00	ug/Kg	101%	69-130
Benzene	54.39	50.00	ug/Kg	109%	70-130
Trichloroethene	49.76	50.00	ug/Kg	100%	70-130
Toluene	53.36	50.00	ug/Kg	107%	70-130
Chlorobenzene	54.98	50.00	ug/Kg	110%	70-130
Surrogates					
Dibromofluoromethane	50.24	50.00	ug/Kg	100%	70-130
1,2-Dichloroethane-d4	49.21	50.00	ug/Kg	98%	70-145
Toluene-d8	49.73	50.00	ug/Kg	99%	70-145
Bromofluorobenzene	50.31	50.00	ug/Kg	101%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC1151489 Batch: 339803

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1151489 Analyte	Result	Spiked	Units	Recovery C	Qual Limits	RPD	RPD Lim
1,1-Dichloroethene	56.92	50.00	ug/Kg	114%	70-131	1	33
MTBE	49.41	50.00	ug/Kg	99%	69-130	2	30
Benzene	53.10	50.00	ug/Kg	106%	70-130	2	30
Trichloroethene	49.78	50.00	ug/Kg	100%	70-130	0	30
Toluene	52.24	50.00	ug/Kg	104%	70-130	2	30
Chlorobenzene	54.15	50.00	ug/Kg	108%	70-130	2	30
Surrogates							
Dibromofluoromethane	50.63	50.00	ug/Kg	101%	70-130		
1,2-Dichloroethane-d4	49.97	50.00	ug/Kg	100%	70-145		
Toluene-d8	50.14	50.00	ug/Kg	100%	70-145		
Bromofluorobenzene	51.29	50.00	ug/Kg	103%	70-145		

Type: Matrix Spike Lab ID: QC1151490 Batch: 339803

Matrix (Source ID): Soil (507999-001) Method: EPA 8260B Prep Method: EPA 5030B

QC1151490 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	56.39	ND	50.00	ug/Kg	113%		70-141	1
MTBE	49.58	ND	50.00	ug/Kg	99%		59-130	1
Benzene	51.40	ND	50.00	ug/Kg	103%		70-130	1
Trichloroethene	48.09	ND	50.00	ug/Kg	96%		69-130	1
Toluene	50.80	ND	50.00	ug/Kg	102%		70-130	1
Chlorobenzene	53.26	ND	50.00	ug/Kg	107%		70-130	1
Surrogates								
Dibromofluoromethane	49.41		50.00	ug/Kg	99%		70-145	1
1,2-Dichloroethane-d4	48.59		50.00	ug/Kg	97%		70-145	1
Toluene-d8	50.27		50.00	ug/Kg	101%		70-145	1
Bromofluorobenzene	50.39		50.00	ug/Kg	101%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1151491 Batch: 339803

Matrix (Source ID): Soil (507999-001) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1151491 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	55.25	ND	50.00	ug/Kg	111%		70-141	2	43	1
MTBE	48.71	ND	50.00	ug/Kg	97%		59-130	2	30	1
Benzene	50.38	ND	50.00	ug/Kg	101%		70-130	2	30	1
Trichloroethene	47.03	ND	50.00	ug/Kg	94%		69-130	2	30	1
Toluene	49.80	ND	50.00	ug/Kg	100%		70-130	2	30	1
Chlorobenzene	51.86	ND	50.00	ug/Kg	104%		70-130	3	30	1
Surrogates										
Dibromofluoromethane	49.48		50.00	ug/Kg	99%		70-145			1
1,2-Dichloroethane-d4	48.86		50.00	ug/Kg	98%		70-145			1
Toluene-d8	49.80		50.00	ug/Kg	100%		70-145			1
Bromofluorobenzene	50.35		50.00	ug/Kg	101%		70-145			1

Type: Blank Lab ID: QC1151492 Batch: 339803

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

			•		
QC1151492 Analyte	Result	Qual Units	RL	Prepared	Analyzed
3-Chloropropene	ND	ug/Kg	5.0	05/08/24	05/08/24
Freon 12	ND	ug/Kg	5.0	05/08/24	05/08/24
Chloromethane	ND	ug/Kg	5.0	05/08/24	05/08/24
Vinyl Chloride	ND	ug/Kg	5.0	05/08/24	05/08/24
Bromomethane	ND	ug/Kg	5.0	05/08/24	05/08/24
Chloroethane	ND	ug/Kg	5.0	05/08/24	05/08/24
Trichlorofluoromethane	ND	ug/Kg	5.0	05/08/24	05/08/24
Acetone	ND	ug/Kg	100	05/08/24	05/08/24
Freon 113	ND	ug/Kg	5.0	05/08/24	05/08/24
1,1-Dichloroethene	ND	ug/Kg	5.0	05/08/24	05/08/24
Methylene Chloride	ND	ug/Kg	5.0	05/08/24	05/08/24
MTBE	ND	ug/Kg	5.0	05/08/24	05/08/24
rans-1,2-Dichloroethene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,1-Dichloroethane	ND	ug/Kg	5.0	05/08/24	05/08/24
2-Butanone	ND	ug/Kg	100	05/08/24	05/08/24
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	05/08/24	05/08/24
2,2-Dichloropropane	ND	ug/Kg	5.0	05/08/24	05/08/24
Chloroform	ND	ug/Kg	5.0	05/08/24	05/08/24
Bromochloromethane	ND	ug/Kg	5.0	05/08/24	05/08/24
I,1,1-Trichloroethane	ND	ug/Kg	5.0	05/08/24	05/08/24
I,1-Dichloropropene	ND	ug/Kg	5.0	05/08/24	05/08/24
Carbon Tetrachloride	ND	ug/Kg	5.0	05/08/24	05/08/24
I,2-Dichloroethane	ND	ug/Kg	5.0	05/08/24	05/08/24
Benzene	ND	ug/Kg	5.0	05/08/24	05/08/24
Trichloroethene	ND ND	ug/Kg	5.0	05/08/24	05/08/24
1,2-Dichloropropane	ND	ug/Kg	5.0	05/08/24	05/08/24
Bromodichloromethane	ND	ug/Kg	5.0	05/08/24	05/08/24
Dibromomethane	ND ND	ug/Kg	5.0	05/08/24	05/08/24
1-Methyl-2-Pentanone	ND ND	ug/Kg	5.0	05/08/24	05/08/24
cis-1,3-Dichloropropene	ND ND		5.0	05/08/24	05/08/24
		ug/Kg			
Foluene	ND	ug/Kg	5.0	05/08/24	05/08/24
rans-1,3-Dichloropropene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,1,2-Trichloroethane	ND	ug/Kg	5.0	05/08/24	05/08/24
,3-Dichloropropane	ND	ug/Kg	5.0	05/08/24	05/08/24
Tetrachloroethene	ND	ug/Kg	5.0	05/08/24	05/08/24
Dibromochloromethane	ND	ug/Kg	5.0	05/08/24	05/08/24
1,2-Dibromoethane	ND	ug/Kg	5.0	05/08/24	05/08/24
Chlorobenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	05/08/24	05/08/24
Ethylbenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
n,p-Xylenes	ND	ug/Kg	10	05/08/24	05/08/24
o-Xylene	ND	ug/Kg	5.0	05/08/24	05/08/24
Styrene	ND	ug/Kg	5.0	05/08/24	05/08/24
Bromoform	ND	ug/Kg	5.0	05/08/24	05/08/24
sopropylbenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	05/08/24	05/08/24
1,2,3-Trichloropropane	ND	ug/Kg	5.0	05/08/24	05/08/24

QC1151492 Analyte	Result	Qual Units	RL	Prepared	Analyzed
Propylbenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
Bromobenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
2-Chlorotoluene	ND	ug/Kg	5.0	05/08/24	05/08/24
4-Chlorotoluene	ND	ug/Kg	5.0	05/08/24	05/08/24
tert-Butylbenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
sec-Butylbenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
para-Isopropyl Toluene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,3-Dichlorobenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,4-Dichlorobenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
n-Butylbenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,2-Dichlorobenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	05/08/24	05/08/24
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
Hexachlorobutadiene	ND	ug/Kg	5.0	05/08/24	05/08/24
Naphthalene	ND	ug/Kg	5.0	05/08/24	05/08/24
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	05/08/24	05/08/24
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	05/08/24	05/08/24
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	05/08/24	05/08/24
tert-Butyl Alcohol (TBA)	ND	ug/Kg	100	05/08/24	05/08/24
Isopropyl Ether (DIPE)	ND	ug/Kg	5.0	05/08/24	05/08/24
Ethyl tert-Butyl Ether (ETBE)	ND	ug/Kg	5.0	05/08/24	05/08/24
Methyl tert-Amyl Ether (TAME)	ND	ug/Kg	5.0	05/08/24	05/08/24
Xylene (total)	ND	ug/Kg	5.0	05/08/24	05/08/24
Surrogates			Limits		
Dibromofluoromethane	99%	%REC	70-130	05/08/24	05/08/24
1,2-Dichloroethane-d4	103%	%REC	70-145	05/08/24	05/08/24
Toluene-d8	97%	%REC	70-145	05/08/24	05/08/24
Bromofluorobenzene	99%	%REC	70-145	05/08/24	05/08/24

Value is outside QC limits

ND Not Detected

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 507968

Report Level : II

Report Date : 05/15/2024

Analytical Report prepared for:

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Project: MIDWAY RISING - Sports Arena

Authorized for release by:

Taylor Nasu, Project Manager Taylor.Nasu@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 511777

Report Level : II

Report Date : 09/10/2024

Analytical Report prepared for:

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Project: MIDWAY RISING - Sports Arena - REVISED REPORT

Authorized for release by:

Taylor Nasu, Project Manager Taylor.Nasu@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Chuck Houser Lab Job #: 511777

SCS Engineers Project No: MIDWAY RISING

8799 Balboa #290 Location: Sports Arena - REVISED REPORT San Diego, CA Date Received: 07/09/24

92123 Date Received: 07/09/24

Sample ID	Lab ID	Collected	Matrix
HA-24-026-0.5	511777-001	07/09/24 06:14	Soil
HA-24-026-1.5	511777-002	07/09/24 06:26	Soil
HA-24-026-2.5	511777-003	07/09/24 06:42	Soil
HA-24-026-4	511777-004	07/09/24 06:57	Soil
HA-24-026-5	511777-005	07/09/24 07:11	Soil
HA-24-027-0.5	511777-006	07/09/24 07:42	Soil
HA-24-027-1.5	511777-007	07/09/24 07:58	Soil
HA-24-027-2.5	511777-008	07/09/24 08:14	Soil
HA-24-015A-0.5	511777-009	07/09/24 08:39	Soil
HA-24-015A-1.5	511777-010	07/09/24 08:55	Soil
HA-24-015A-2.5	511777-011	07/09/24 09:15	Soil
HA-24-015A-4	511777-012	07/09/24 09:28	Soil
HA-24-015A-5	511777-013	07/09/24 09:41	Soil
HA-24-031-0.5	511777-014	07/09/24 10:06	Soil
HA-24-031-1.5	511777-015	07/09/24 10:24	Soil
HA-24-031-2.5	511777-016	07/09/24 10:43	Soil
HA-24-031-4	511777-017	07/09/24 10:57	Soil
HA-24-031-5	511777-018	07/09/24 11:17	Soil
HA-24-032-0.5	511777-019	07/09/24 11:34	Soil
HA-24-032-1.5	511777-020	07/09/24 11:52	Soil
HA-24-033-0.5	511777-021	07/09/24 12:09	Soil
HA-24-033-1.5	511777-022	07/09/24 12:24	Soil
HA-24-033-2.5	511777-023	07/09/24 12:39	Soil
HA-24-033-4	511777-024	07/09/24 12:51	Soil
HA-24-033-5	511777-025	07/09/24 13:00	Soil
HA-24-034-0.5	511777-026	07/09/24 13:12	Soil

Sample Summary

Chuck Houser Lab Job #: 511777

SCS Engineers Project No: MIDWAY RISING 8799 Balboa #290 Location: Sports Arena - RF

8799 Balboa #290 Location: Sports Arena - REVISED REPORT San Diego, CA Date Received: 07/09/24

92123 Date Received: 07/09/24

Sample ID	Lab ID	Collected	Matrix
HA-24-034-1.5	511777-027	07/09/24 13:22	Soil
HA-24-034-2.5	511777-028	07/09/24 13:35	Soil

Case Narrative

Lab Job 511777

SCS Engineers 8799 Balboa #290 San Diego, CA 92123

Chuck Houser

Number:

Project No: MIDWAY RISING

Location: Sports Arena - REVISED

REPORT

Date Received: 07/09/24

This data package contains sample and QC results for sixteen soil samples, requested for the above referenced project on 07/09/24. The samples were received cold and intact.

Pesticides (EPA 8081A) Soil:

- HA-24-015A-0.5 (lab # 511777-009) was diluted due to the color of the sample extract.
- No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

- Included 6010-Co
- Low recoveries were observed for many analytes in the MS/MSD of HA-24-026-0.5 (lab # 511777-001); the LCS was within limits. High RPD was also observed for many analytes.
- No other analytical problems were encountered.

ANALYTICA					
		Lab No: 01 ++	Standard:	5 Day:	3 Day:
		L Page: / of	3 г рау:	1 Day:	Custom TAT:
<<< Select a Laboratory >>>	^	Matrix: A=Air S	7	servatives:	Sample Receipt Temp:
#N/A			= Sediment Vater	$1 = Na_2S_2O_3$ $2 = HCl$ $3 = HNO_3$ $4 = H_2SO_4$ $5 = NaOH$ $6 = Other$) ₃ er
#N/A		SW = Swab T = Tissue WP	WP = Wipe O = Other		(lab use only)
CUSTOMER INFORMATION	PRO	PROJECT INFORMATION	Analysis Request	Test In	Test Instructions / Comments
Engineer	Name:	Nidway Risma			
Chuck Houser	Number:		(9) (9)		
Monsor (B) S CS EN A) New 17. COM	P.O. #:		170 019 510		
8799 Balloon Ave. #290	Address:		9 ;		
San Dieno Cut 9223			ö. ö.		
12-	Global ID:			A	
	Sampled By:	Tiles Creybon		AIU	
Sampling Date	ng Sampling Time	Matrix Container Pres.	2920 H9T 1940 1000 1000 1000 1000 1000 1000 1000	_)	5.2/01
-24-026-0.5 79124	510	Soil 4020 has 1'ce	XXXX		
24-026-15	626			X	
9	642		×× ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
4-920	157			メ	
026-5	711			· 	
027-0.5	742		×××		
-24-027-1.5	758			X	
tA-24-027-2-5	814		×		
-015A - 0.5	839		 X X X		
015A - 1-5 🖖	855	マーマーシー		X	
A Signature		Print Name	Company / Title		Date / Time
NA XX	7	1 Th a/ (Nev-ton)	SCS Frankers	61.	24 14.8
	7	MINE MANNERS	4	1/2	74 BUC.
	[]	MIX MINIMANS	(8)本	いると	u 17(3
	<u>\</u>	MUNCON	t/3,	1779	UN. 1713
		NGB	t/z	7-4.	Jy 1830
4. Onelowella	* <u> </u>	BERT CONTUGULA	E-4, -0R	02/00/20	1830

			Lab No:	2	ノナナ	Standard:	1	5 Day:	3 Day:
7 7 7		CAL		3	1 p	2 Day:	>	1 Day:	Custom TAT:
<<< Select a Laboratory >>>	atory >>>			Matrix: A	A = Air S = Soil/Solid	olid		1 56	Sample Receipt Temp:
#N/A			% 	Vater DW = Drinki PP = Pure Product) = Sediment Water	$1 = Na_2S_2O_3$ 2 = HCl $4 = H_2SO_4$ 5 = NaOH	= Na ₂ S ₂ O ₃ 2 = HCl 3 = HNO ₃ = H ₂ SO ₄ 5 = NaOH 6 = Other	
HIN/A		1000	= WS	SW = Swab T = Tissue	sue WP = Wipe	ö			(lab use only)
R INFORMATION		PROJE	OJECI INFORMATION	JATION		Analysis Request	luest	Test Instr	Test Instructions / Comments
See pa 1-	Nar	Name:			((
	Nu	Number:			も	වි ව ව			
	P.0	P.O. #:	i i		180	100			
	Adc	Address:			ନ୍ତ <u>'</u>) 9 -			
					72	49-		4	
	Glo	Global ID:			!)) []		Vír	
	San	Sampled By:			<u> </u>	57		12)	
Sample ID	Sampling Date	Sampling Time	Matrix	Container No. / Size	27 <u>0</u>	Meta Meta Land Mood		J.A.	
HA-24-033-0.5	7/9/24	1209	Soil 4	4029/455	×	, , , , ,			
1+4-24-033- 1.5	~	1224		3				X	
-24-033-25		1239			X 	X			
-1		1251	_					X	
333		1300	-					X	
.24-034-0.5		1312			X	XX			
		1322						×	· ·
-24-0345-5		1335	>	>	X	X			
			M	- M	A				
		are Same	#	770	#				
R	Algnature		Print	Print Name		Company / Title	Title	Ğ	Date / Time
) Noting	(Nevan	265	FINANNERS	٦	7/9/22	Or .77!
スク		MIN	N/M	とこ	8	4.8		40/04	YOU'S
			NSV//X	NAMA	\	\$. S S		リプラグ	正元
	7		1.1	are o) 	474		7-6-4	4 170
	11		NI	C/R6		the		7-4-1	1835
10:4			Brog	QUE TO PROVIDE	77	1 1 - PO		1010010	1. Dex

SAMPLE ACCEPTANCE CHECKLIST

Section 1		1		
Client: SCS Engineers	Project: Sports Arena			
Date Received: 07/09/2024	Sampler's Name Present:	✓ Yes	No	
Section 2 Sample(s) received in a cooler? Yes, How many? 1 Sample Temp (°C), One from each cooler: #1: 4.8 (Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptance the same day as sample receipt to have a higher temperate Shipping Information:	#2: #3:	#4: is acceptable		
Section 3				
Was the cooler packed with:	Bubble Wrap Styro Other	foam 		
Section 4	<u> </u>	YES	NO	N/A
Was a COC received?		 	110	1,77.
Are sample IDs present?		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Are sampling dates & times present?		<u> </u>		
Is a relinquished signature present?		-		
Are the tests required clearly indicated on the COC?		<u> </u>		1
Are custody seals present?		 '		10
			<i>,</i>	
If custody seals are present, were they intact? Are all samples sealed in plastic bags? (Recommended for	or Microbiology camples)			
Did all samples arrive intact? If no, indicate in Section 4 b		V		
Did all bottle labels agree with COC? (ID, dates and times		- V		
Were the samples collected in the correct containers for		 		
Are the containers labeled with the correct preserv		 		./
Is there headspace in the VOA vials greater than 5-6 mm				1
Was a sufficient amount of sample submitted for the req	uestea tests?	1 1		
Section 5 Explanations/Comments 511777	dis not one			
Section 6 For discrepancies, how was the Project Manager notified Project Manager's response:	? Verbal PM Initials: Email (email sent to/			
Completed By: Enthalpy Analytical, a subsidiary of N 931 W. Barkley Ave, Orange, CA 92868			· · · · · · · · · · · · · · · · · · ·	

www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

[External] - Midway Rising project.

Houser, Chuck < CHouser@scsengineers.com>

Fri 7/19/2024 5:57 PM

To:Taylor Nasu <taylor.nasu@enthalpy.com>

Cc:Overton, Tyler <TOverton@scsengineers.com>;Montague, Luke <LMontague@scsengineers.com>

Taylor,

For our Midway Rising project, please perform the following additional analyses:

Sample ID	Requested Analyses
HA-24-15A-0.5	WET & TCLP for Chlordane
HA-24-15A-2.5	WET & TCLP for Chlordane, Title 22 Metals (EPA 6010B)
HA-24-15A-4	OCPs (EPA 8081A)
HA-24-15A-5	OCPs (EPA 8081A)
HA-24-34-0.5	WET & TCLP for Chlordane
HA-24-34-2.5	WET & TCLP for Chlordane, Title 22 Metals (EPA 6010B)

Chuck Houser, CHg Project Manager

SCS Engineers

Office 858-571-5500 Ext. 2908

Direct: 858-583-7738 Mobile: 858-805-5523 <u>chouser@scsengineers.com</u>

CONFIDENTIALITY NOTICE: The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential, proprietary and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments and the reply from your system. If you are not the intended recipient, you are hereby notified that any disclosure, use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Lab Job #: 511777
Project No: MIDWAY RISING
Location: Sports Arena - REVISED REPORT
Date Received: 07/09/24

Sample ID: HA-24-026-0.5 Lab ID: 511777-001 Collected: 07/09/24 06:14

511777-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Arsenic	3.9	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Barium	54	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Chromium	14	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Cobalt	4.6	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Copper	11	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Lead	23	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Nickel	6.6	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Vanadium	33	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Zinc	68	mg/Kg	4.8	0.96	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD	ND	11.7	0.40	1.0	044004	07/14/04	07/14/04	NA 1.1
Mercury	ND	mg/Kg	0.16	1.2	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	344821	07/11/24	07/12/24	KMB
TPH (C13-C22)	ND	mg/Kg	10	1	344821	07/11/24	07/12/24	KMB
TPH (C23-C44)	57	mg/Kg	20	1	344821	07/11/24	07/12/24	KMB
Surrogates			Limits					
n-Triacontane	100%	%REC	70-130	1	344821	07/11/24	07/12/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
beta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
gamma-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
delta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Heptachlor	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Aldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Endosulfan I	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Dieldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
4,4'-DDE	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Endrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR

511777-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
4,4'-DDD	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Endrin aldehyde	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Endrin ketone	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
4,4'-DDT	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	KLR
Methoxychlor	ND	ug/Kg	9.9	0.99	344770	07/10/24	07/12/24	KLR
Toxaphene	ND	ug/Kg	99	0.99	344770	07/10/24	07/12/24	KLR
Chlordane (Technical)	63	ug/Kg	50	0.99	344770	07/10/24	07/12/24	KLR
Surrogates			Limits					
TCMX	85%	%REC	23-120	0.99	344770	07/10/24	07/12/24	KLR
Decachlorobiphenyl	83%	%REC	24-120	0.99	344770	07/10/24	07/12/24	KLR

Sample ID: HA-24-026-2.5 Lab ID: 511777-003 Collected: 07/09/24 06:42

511777-003 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	6.8	mg/Kg	0.99	0.99	344752	07/10/24	07/11/24	SBW
Lead	8.1	mg/Kg	0.99	0.99	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A								
Prep Method: EPA 3546	ND	// /	F 0		0.4.4770	07/40/04	07/40/04	MEO
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates		-	Limits					
TCMX	87%	%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	82%	%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-027-0.5 Lab ID: 511777-006 Collected: 07/09/24 07:42

511777-006 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Arsenic	23	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Barium	130	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Beryllium	1.0	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Chromium	9.4	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Cobalt	15	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Copper	14	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Lead	12	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Molybdenum	1.8	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Nickel	6.4	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Vanadium	39	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Zinc	53	mg/Kg	4.8	0.95	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.2	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	ND	mg/Kg	20	0.99	344822	07/14/24	07/16/24	KMB
Surrogates			Limits					
n-Triacontane	83%	%REC	70-130	0.99	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES

511777-006 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND		ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND		ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates				Limits					
TCMX	89%		%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	87%		%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-027-2.5 Lab ID: 511777-008 Collected: 07/09/24 08:14

511777-008 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B	Hoodit						7a.y 20 a	
Prep Method: EPA 3050B								
Arsenic	6.5	mg/Kg	0.98	0.98	344752	07/10/24	07/11/24	SBW
Lead	5.4	mg/Kg	0.98	0.98	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates		-	Limits					
TCMX	90%	%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	89%	%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA	-24-015/	A-0.5	Lab II	D: 511777-009		Co	llected: 07	7/09/24 08:39	9
511777-009 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									_
Antimony	ND	mg/Kg	3.0	Soil	1	344752	07/10/24	07/11/24	SBW
Arsenic	6.8	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Barium	79	mg/Kg	1.0	Soil	<u>.</u>	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.50	Soil	1	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.50	Soil	1	344752	07/10/24	07/11/24	SBW
Chromium	14	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Cobalt	15	mg/Kg	0.50	Soil	1	344752	07/10/24	07/11/24	SBW
Copper	21	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Lead	10	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Nickel	7.0	mg/Kg	1.0	Soil	<u>.</u>	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	3.0	Soil	1	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.50	Soil	<u>.</u>	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	3.0	Soil	<u>.</u>	344752	07/10/24	07/11/24	SBW
Vanadium	32	mg/Kg	1.0	Soil	1	344752	07/10/24	07/11/24	SBW
Zinc	40	mg/Kg	5.0	Soil	1	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD		9,19			<u>·</u>		0.7,10,21		
Mercury	ND	mg/Kg	0.14	Soil	1	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M		3 3							
TPH (C6-C12)	ND	mg/Kg	9.9	Soil	0.99	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/Kg	9.9	Soil	0.99	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	130	mg/Kg	20	Soil	0.99	344822	07/14/24	07/16/24	KMB
Surrogates			Limits						
n-Triacontane	92%	%REC	70-130	Soil	0.99	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	ND	ug/L	2.9	WET Leachate	2.9	346325	07/29/24	07/30/24	MES
Surrogates			Limits						
TCMX	65%	%REC	14-120	WET Leachate	2.9	346325	07/29/24	07/30/24	MES
Decachlorobiphenyl	99%	%REC	20-120	WET Leachate	2.9	346325	07/29/24	07/30/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
		5 9							

511777-009 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Endosulfan sulfate	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	20	Soil	2	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	200	Soil	2	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	5,400	ug/Kg	500	Soil	10	344770	07/10/24	07/15/24	MES
Surrogates			Limits						
TCMX	92%	%REC	23-120	Soil	2	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	88%	%REC	24-120	Soil	2	344770	07/10/24	07/12/24	MES

Sample ID: HA	-24-015/	A-2.5	Lab II	D: 511777-011		Co	llected: 07	7/09/24 09:15	5
511777-011 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B							<u>-</u>	<u> </u>	
Prep Method: EPA 3050B	ND		0.0	0-:1	0.00	044750	07/40/04	07/11/04	ODW
Antimony	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Arsenic	5.0	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Barium	100	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Chromium	22	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Cobalt	7.3	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Copper	13	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Lead	8.7	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Nickel	7.6	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Vanadium	53	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Zinc	43	mg/Kg	4.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND	mg/Kg	0.16	Soil	1.2	346010	07/25/24	07/25/24	MLL
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	3.1	ug/L	2.2	WET Leachate	2.2	346325	07/29/24	07/30/24	MES
Surrogates			Limits						
TCMX	68%	%REC	14-120	WET Leachate	2.2	346325	07/29/24	07/30/24	MES
Decachlorobiphenyl	94%	%REC	20-120	WET Leachate	2.2	346325	07/29/24	07/30/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	Soil	<u>.</u>	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND			Soil		344770	07/10/24	07/12/24	MES
4,4'-DDD		ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	
	ND	ug/Kg	5.0		1				MES
Endrin aldehyde	ND	ug/Kg	5.0	Soil	<u> </u>	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	Soil	1	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	10	Soil	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	100	Soil	1	344770	07/10/24	07/12/24	MES

511777-011 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Chlordane (Technical)	2,900		ug/Kg	250	Soil	5	344770	07/10/24	07/15/24	MES
Surrogates				Limits						
TCMX	78%		%REC	23-120	Soil	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	75%		%REC	24-120	Soil	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-015A-4 Lab ID: 511777-012 Collected: 07/09/24 09:28

511777-012 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
beta-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
delta-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Heptachlor	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Aldrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Dieldrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan sulfate	ND	ug/Kg	5.3	1	345741	07/23/24	07/23/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Methoxychlor	ND	ug/Kg	10	1	345741	07/23/24	07/23/24	MES
Toxaphene	ND	ug/Kg	100	1	345741	07/23/24	07/23/24	MES
Chlordane (Technical)	4,400	ug/Kg	1,000	20	345741	07/23/24	07/24/24	MES
Surrogates			Limits					
TCMX	97%	%REC	23-120	1	345741	07/23/24	07/23/24	MES
Decachlorobiphenyl	96%	%REC	24-120	1	345741	07/23/24	07/23/24	MES

Sample ID: HA-24-015A-5 Lab ID: 511777-013 Collected: 07/09/24 09:41

511777-013 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
beta-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
delta-BHC	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Heptachlor	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Aldrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Dieldrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	345741	07/23/24	07/23/24	MES
Methoxychlor	ND	ug/Kg	10	1	345741	07/23/24	07/23/24	MES
Toxaphene	ND	ug/Kg	100	1	345741	07/23/24	07/23/24	MES
Chlordane (Technical)	780	ug/Kg	100	2	345741	07/23/24	07/24/24	MES
Surrogates			Limits					
TCMX	96%	%REC	23-120	1	345741	07/23/24	07/23/24	MES
Decachlorobiphenyl	88%	%REC	24-120	1	345741	07/23/24	07/23/24	MES

Sample ID: HA-24-031-0.5 Lab ID: 511777-014 Collected: 07/09/24 10:06

511777-014 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Anumony	4.1	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Barium	120	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.90	0.96	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Chromium	25	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Cobalt	9.1	mg/Kg	0.90	0.96	344752	07/10/24	07/11/24	SBW
Copper	15	mg/Kg	0.46	0.96	344752	07/10/24	07/11/24	SBW
Lead	7.8	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Nickel	8.5		0.96	0.96	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.96	344752	07/10/24	07/11/24	SBW
Silver	ND ND	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
		mg/Kg					07/11/24	
Thallium	ND	mg/Kg	2.9	0.96	344752	07/10/24		SBW
Vanadium	62	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Zinc	48	mg/Kg	4.8	0.96	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.15	1.1	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	ND	mg/Kg	20	0.99	344822	07/14/24	07/16/24	KMB
urrogates			Limits					
n-Triacontane	86%	%REC	70-130	0.99	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
•	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldenvde	–	- 9'9	0.0	•	•	- · · -· - ·	- · · — - ·	
Endrin aldehyde Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES

511777-014 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND		ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	100		ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates				Limits					
TCMX	81%		%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	73%		%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-031-2.5 Lab ID: 511777-016 Collected: 07/09/24 10:43

511777-016 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Arsenic	4.7	mg/Kg	0.98	0.98	344752	07/10/24	07/11/24	SBW
Lead	7.5	mg/Kg	0.98	0.98	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	99	0.99	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	0.99	344770	07/10/24	07/12/24	MES
Surrogates		<u> </u>	Limits					
TCMX	85%	%REC	23-120	0.99	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	83%	%REC	24-120	0.99	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-032-0.5 Lab ID: 511777-019 Collected: 07/09/24 11:34

511777-019 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.97	344752	07/10/24	07/11/24	SBW
Arsenic	4.6	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Barium	100	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.49	0.97	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.49	0.97	344752	07/10/24	07/11/24	SBW
Chromium	22	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Cobalt	11	mg/Kg	0.49	0.97	344752	07/10/24	07/11/24	SBW
Copper	19	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Lead	7.2	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Nickel	7.9	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.97	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.49	0.97	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	0.97	344752	07/10/24	07/11/24	SBW
Vanadium	57	mg/Kg	0.97	0.97	344752	07/10/24	07/11/24	SBW
Zinc	45	mg/Kg	4.9	0.97	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.16	1.1	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/15/24	KMB
TPH (C13-C22)	ND	mg/Kg	9.9	0.99	344822	07/14/24	07/15/24	KMB
TPH (C23-C44)	ND	mg/Kg	20	0.99	344822	07/14/24	07/15/24	KMB
Surrogates			Limits					
n-Triacontane	87%	%REC	70-130	0.99	344822	07/14/24	07/15/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES

511777-019 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND		ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND		ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates				Limits					
TCMX	82%		%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	72%		%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-032-1.5 Lab ID: 511777-020 Collected: 07/09/24 11:52

511777-020 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B							<u> </u>	
Prep Method: EPA 3050B								
Arsenic	3.5	mg/Kg	1.0	1	344752	07/10/24	07/11/24	SBW
Lead	4.8	mg/Kg	1.0	1	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	0.99	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	9.9	0.99	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	99	0.99	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	0.99	344770	07/10/24	07/12/24	MES
Surrogates			Limits					
TCMX	88%	%REC	23-120	0.99	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	86%	%REC	24-120	0.99	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-033-0.5 Lab ID: 511777-021 Collected: 07/09/24 12:09

511777-021 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Arsenic	1.2	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Barium	98	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Chromium	14	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Cobalt	33	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Copper	48	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Lead	1.6	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Nickel	6.8	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.48	0.95	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	0.95	344752	07/10/24	07/11/24	SBW
Vanadium	66	mg/Kg	0.95	0.95	344752	07/10/24	07/11/24	SBW
Zinc	28	mg/Kg	4.8	0.95	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD								
Mercury	ND	mg/Kg	0.17	1.2	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M								
TPH (C6-C12)	ND	mg/Kg	10	1	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/Kg	10	1	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	ND	mg/Kg	20	1	344822	07/14/24	07/16/24	KMB
Surrogates			Limits					
n-Triacontane	80%	%REC	70-130	1	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES

511777-021 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methoxychlor	ND		ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND		ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND		ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates				Limits					
TCMX	85%		%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	81%		%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA-24-033-2.5 Lab ID: 511777-023 Collected: 07/09/24 12:39

511777-023 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B								
Arsenic	2.9	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Cobalt	8.8	mg/Kg	0.48	0.96	344752	07/10/24	07/11/24	SBW
Lead	2.4	mg/Kg	0.96	0.96	344752	07/10/24	07/11/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	10	1	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	100	1	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	ND	ug/Kg	50	1	344770	07/10/24	07/12/24	MES
Surrogates			Limits					
TCMX	85%	%REC	23-120	1	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	82%	%REC	24-120	1	344770	07/10/24	07/12/24	MES

Sample ID: HA	-24-034	-0.5	Lab ID	: 511777-026		Co	llected: 07	/09/24 13:12	
511777-026 Analyte	Result	Qual Unit	s RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B							Торигои	7 7	
Antimony	ND	mg/K	g 3.0	Soil	0.99	344752	07/10/24	07/11/24	SBW
Arsenic	6.8	mg/K	· ·	Soil	0.99	344752	07/10/24	07/11/24	SBW
Barium	87	mg/K		Soil	0.99	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Chromium	13	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Cobalt	81	mg/k	-	Soil	0.99	344752	07/10/24	07/11/24	SBW
Copper	47	mg/k		Soil	0.99	344752	07/10/24	07/11/24	SBW
Lead	10	mg/k	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/k	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Nickel	7.2	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/K		Soil	0.99	344752	07/10/24	07/11/24	SBW
Silver	0.71	mg/K	-	Soil	0.99	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/K		Soil	0.99	344752	07/10/24	07/11/24	SBW
Vanadium	32	mg/K	•	Soil	0.99	344752	07/10/24	07/11/24	SBW
Zinc	58	mg/K		Soil	0.99	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND	mg/K	.g 0.16	Soil	1.1	344824	07/11/24	07/11/24	MLL
Method: EPA 8015M Prep Method: EPA 3580M									
TPH (C6-C12)	ND	mg/k	.g 10	Soil	1	344822	07/14/24	07/16/24	KMB
TPH (C13-C22)	ND	mg/k	.g 10	Soil	1	344822	07/14/24	07/16/24	KMB
TPH (C23-C44)	110	mg/k	.g 20	Soil	1	344822	07/14/24	07/16/24	KMB
Surrogates			Limits						
n-Triacontane	88%	%RE	C 70-130	Soil	1	344822	07/14/24	07/16/24	KMB
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	ND	ug/l	2.8	WET Leachate	2.8	346325	07/29/24	07/30/24	MES
Surrogates			Limits						
TCMX	72%	%RE	C 14-120	WET Leachate	2.8	346325	07/29/24	07/30/24	MES
Decachlorobiphenyl	97%	%RE	C 20-120	WET Leachate	2.8	346325	07/29/24	07/30/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/K	g 10	Soil	2	344770	07/10/24	07/12/24	MES

511777-026 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Endosulfan sulfate	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin ketone	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDT	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	20	Soil	2	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	200	Soil	2	344770	07/10/24	07/12/24	MES
Chlordane (Technical)	7,200	ug/Kg	500	Soil	10	344770	07/10/24	07/15/24	MES
Surrogates			Limits						
TCMX	86%	%REC	23-120	Soil	2	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	77%	%REC	24-120	Soil	2	344770	07/10/24	07/12/24	MES

Sample ID: HA	\-24-034	-2.5	Lab ID	: 511777-028		Co	llected: 07	/09/24 13:35	
511777-028 Analyte	Result	Qual Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B							•		
Prep Method: EPA 3050B									
Antimony	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Arsenic	6.6	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Barium	98	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Beryllium	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Cadmium	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Chromium	13	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Cobalt	21	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Copper	25	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Lead	15	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Molybdenum	ND	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Nickel	7.4	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Selenium	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Silver	ND	mg/Kg	0.49	Soil	0.98	344752	07/10/24	07/11/24	SBW
Thallium	ND	mg/Kg	2.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Vanadium	30	mg/Kg	0.98	Soil	0.98	344752	07/10/24	07/11/24	SBW
Zinc	39	mg/Kg	4.9	Soil	0.98	344752	07/10/24	07/11/24	SBW
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND	mg/Kg	0.17	Soil	1.2	346010	07/25/24	07/25/24	MLL
Method: EPA 8081A Prep Method: EPA 3510C									
Chlordane (Technical)	2.7	ug/L	2.6	WET Leachate	2.6	346325	07/29/24	07/30/24	MES
Surrogates			Limits						
TCMX	72%	%REC	14-120	WET Leachate	2.6	346325	07/29/24	07/30/24	MES
Decachlorobiphenyl	93%	%REC	20-120	WET Leachate	2.6	346325	07/29/24	07/30/24	MES
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
beta-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
gamma-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
delta-BHC	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Aldrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Heptachlor epoxide	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan I	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Dieldrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDE	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan II	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endosulfan sulfate	ND	ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
4,4'-DDD	ND	ug/Kg ug/Kg	10	Soil	2	344770	07/10/24	07/12/24	MES
Endrin aldehyde	ND	ug/Kg ug/Kg	10	Soil		344770	07/10/24	07/12/24	MES
Endrin ketone	ND			Soil	2	344770	07/10/24	07/12/24	MES
		ug/Kg	10		2	344770			
4,4'-DDT	ND	ug/Kg	10	Soil	2		07/10/24	07/12/24	MES
Methoxychlor	ND	ug/Kg	20	Soil	2	344770	07/10/24	07/12/24	MES
Toxaphene	ND	ug/Kg	200	Soil	2	344770	07/10/24	07/12/24	MES

511777-028 Analyte	Result	Qual	Units	RL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Chlordane (Technical)	5,800		ug/Kg	500	Soil	10	344770	07/10/24	07/15/24	MES
Surrogates				Limits						
TCMX	96%		%REC	23-120	Soil	2	344770	07/10/24	07/12/24	MES
Decachlorobiphenyl	92%		%REC	24-120	Soil	2	344770	07/10/24	07/12/24	MES

ND Not Detected

Type: Blank Lab ID: QC1168194 Batch: 344752
Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1168194 Analyte	Result	Qual Units	s RL	Prepared	Analyzed
Antimony	ND	mg/K	g 3.0	07/10/24	07/11/24
Arsenic	ND	mg/K	g 1.0	07/10/24	07/11/24
Barium	ND	mg/K	g 1.0	07/10/24	07/11/24
Beryllium	ND	mg/K	g 0.50	07/10/24	07/11/24
Cadmium	ND	mg/K	g 0.50	07/10/24	07/11/24
Chromium	ND	mg/K	g 1.0	07/10/24	07/11/24
Cobalt	ND	mg/K	g 0.50	07/10/24	07/11/24
Copper	ND	mg/K	g 1.0	07/10/24	07/11/24
Lead	ND	mg/K	g 1.0	07/10/24	07/11/24
Molybdenum	ND	mg/K	g 1.0	07/10/24	07/11/24
Nickel	ND	mg/K	g 1.0	07/10/24	07/11/24
Selenium	ND	mg/K	g 3.0	07/10/24	07/11/24
Silver	ND	mg/K	g 0.50	07/10/24	07/11/24
Thallium	ND	mg/K	g 3.0	07/10/24	07/11/24
Vanadium	ND	mg/K	g 1.0	07/10/24	07/11/24
Zinc	ND	mg/K	g 5.0	07/10/24	07/11/24

Type: Lab Control Sample Lab ID: QC1168195 Batch: 344752

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1168195 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	106.4	100.0	mg/Kg	106%	80-120
Arsenic	100.7	100.0	mg/Kg	101%	80-120
Barium	105.8	100.0	mg/Kg	106%	80-120
Beryllium	102.2	100.0	mg/Kg	102%	80-120
Cadmium	102.9	100.0	mg/Kg	103%	80-120
Chromium	104.0	100.0	mg/Kg	104%	80-120
Cobalt	111.7	100.0	mg/Kg	112%	80-120
Copper	102.9	100.0	mg/Kg	103%	80-120
Lead	110.9	100.0	mg/Kg	111%	80-120
Molybdenum	101.5	100.0	mg/Kg	101%	80-120
Nickel	108.6	100.0	mg/Kg	109%	80-120
Selenium	94.62	100.0	mg/Kg	95%	80-120
Silver	50.93	50.00	mg/Kg	102%	80-120
Thallium	111.2	100.0	mg/Kg	111%	80-120
Vanadium	103.5	100.0	mg/Kg	103%	80-120
Zinc	107.2	100.0	mg/Kg	107%	80-120

Type: Matrix Spike Lab ID: QC1168196 Batch: 344752

Matrix (Source ID): Soil (511777-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC1168196 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	28.27	ND	96.15	mg/Kg	29%	*	75-125	0.96
Arsenic	66.96	3.933	96.15	mg/Kg	66%	*	75-125	0.96
Barium	118.0	54.23	96.15	mg/Kg	66%	*	75-125	0.96
Beryllium	64.33	0.2143	96.15	mg/Kg	67%	*	75-125	0.96
Cadmium	63.12	0.1064	96.15	mg/Kg	66%	*	75-125	0.96
Chromium	77.45	13.82	96.15	mg/Kg	66%	*	75-125	0.96
Cobalt	71.60	4.582	96.15	mg/Kg	70%	*	75-125	0.96
Copper	76.23	11.15	96.15	mg/Kg	68%	*	75-125	0.96
Lead	82.45	22.57	96.15	mg/Kg	62%	*	75-125	0.96
Molybdenum	61.97	ND	96.15	mg/Kg	64%	*	75-125	0.96
Nickel	70.93	6.570	96.15	mg/Kg	67%	*	75-125	0.96
Selenium	61.44	ND	96.15	mg/Kg	64%	*	75-125	0.96
Silver	31.86	ND	48.08	mg/Kg	66%	*	75-125	0.96
Thallium	67.09	ND	96.15	mg/Kg	70%	*	75-125	0.96
Vanadium	99.48	33.23	96.15	mg/Kg	69%	*	75-125	0.96
Zinc	120.2	67.93	96.15	mg/Kg	54%	*	75-125	0.96

Type: Matrix Spike Duplicate Lab ID: QC1168197 Batch: 344752

Matrix (Source ID): Soil (511777-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC1168197 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	36.32	ND	98.04	mg/Kg	37%	*	75-125	23	41	0.98
Arsenic	102.5	3.933	98.04	mg/Kg	101%		75-125	40*	35	0.98
Barium	175.4	54.23	98.04	mg/Kg	124%		75-125	38*	20	0.98
Beryllium	99.04	0.2143	98.04	mg/Kg	101%		75-125	41*	20	0.98
Cadmium	96.37	0.1064	98.04	mg/Kg	98%		75-125	40*	20	0.98
Chromium	118.5	13.82	98.04	mg/Kg	107%		75-125	40*	20	0.98
Cobalt	109.7	4.582	98.04	mg/Kg	107%		75-125	40*	20	0.98
Copper	117.5	11.15	98.04	mg/Kg	108%		75-125	41*	20	0.98
Lead	123.9	22.57	98.04	mg/Kg	103%		75-125	39*	20	0.98
Molybdenum	93.99	ND	98.04	mg/Kg	96%		75-125	39*	20	0.98
Nickel	108.6	6.570	98.04	mg/Kg	104%		75-125	40*	20	0.98
Selenium	93.46	ND	98.04	mg/Kg	95%		75-125	39*	20	0.98
Silver	49.37	ND	49.02	mg/Kg	101%		75-125	41*	20	0.98
Thallium	102.8	ND	98.04	mg/Kg	105%		75-125	40*	20	0.98
Vanadium	149.6	33.23	98.04	mg/Kg	119%		75-125	39*	20	0.98
Zinc	169.1	67.93	98.04	mg/Kg	103%		75-125	33*	20	0.98

Type: Post Digest Spike Lab ID: QC1168198 Batch: 344752

Matrix (Source ID): Soil (511777-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample			_			
QC1168198 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	100.1	ND	96.15	mg/Kg	104%		75-125	0.96
Arsenic	100.0	3.933	96.15	mg/Kg	100%		75-125	0.96
Barium	151.1	54.23	96.15	mg/Kg	101%		75-125	0.96
Beryllium	96.41	0.2143	96.15	mg/Kg	100%		75-125	0.96
Cadmium	95.00	0.1064	96.15	mg/Kg	99%		75-125	0.96
Chromium	109.5	13.82	96.15	mg/Kg	100%		75-125	0.96
Cobalt	106.2	4.582	96.15	mg/Kg	106%		75-125	0.96
Copper	110.4	11.15	96.15	mg/Kg	103%		75-125	0.96
Lead	124.2	22.57	96.15	mg/Kg	106%		75-125	0.96
Molybdenum	97.26	ND	96.15	mg/Kg	101%		75-125	0.96
Nickel	105.1	6.570	96.15	mg/Kg	102%		75-125	0.96
Selenium	95.10	ND	96.15	mg/Kg	99%		75-125	0.96
Silver	48.44	ND	48.08	mg/Kg	101%		75-125	0.96
Thallium	102.3	ND	96.15	mg/Kg	106%		75-125	0.96
Vanadium	129.7	33.23	96.15	mg/Kg	100%		75-125	0.96
Zinc	164.1	67.93	96.15	mg/Kg	100%		75-125	0.96

Type: Blank Lab ID: QC1168443 Batch: 344824

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1168443 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	07/11/24	07/11/24

Type: Lab Control Sample Lab ID: QC1168444 Batch: 344824

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1168444 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Mercury	0.8293	0.8333	mg/Kg	100%	80-120

Type: Matrix Spike Lab ID: QC1168445 Batch: 344824

Matrix (Source ID): Soil (511777-001) Method: EPA 7471A Prep Method: METHOD

Source Sample QC1168445 Analyte Result **Spiked** Units Recovery Qual Limits DF Result Mercury 0.8184 0.8475 mg/Kg 97% 75-125

Type: Matrix Spike Duplicate Lab ID: QC1168446 Batch: 344824

Matrix (Source ID): Soil (511777-001) Method: EPA 7471A Prep Method: METHOD

Source RPD Sample **RPD** QC1168446 Analyte Result **Spiked** Units Recovery Qual Limits Lim DF Result 0.8089 ND 0.8621 mg/Kg 94% 75-125 3 20 Mercury 1

Type: Blank Lab ID: QC1172453 Batch: 346010

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

 QC1172453 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Mercury
 ND
 mg/Kg
 0.14
 07/25/24
 07/25/24

Type: Lab Control Sample Lab ID: QC1172454 Batch: 346010

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

 QC1172454 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Mercury
 0.9037
 0.8333
 mg/Kg
 108%
 80-120

Type: Matrix Spike Lab ID: QC1172455 Batch: 346010

Matrix (Source ID): Soil (512714-001) Method: EPA 7471A Prep Method: METHOD

Source Sample

Result QC1172455 Analyte Result **Spiked** Units Recovery Qual Limits DF 1.078 ND 108% 75-125 Mercury 1.000 mg/Kg 1.2

Type: Matrix Spike Duplicate Lab ID: QC1172456 Batch: 346010

Matrix (Source ID): Soil (512714-001) Method: EPA 7471A Prep Method: METHOD

Source Sample **RPD** QC1172456 Analyte Result Result Spiked Units Recovery Qual Limits **RPD** Lim DF 0.9553 ND 0.8929 107% 75-125 Mercury mg/Kg 20 1.1

Type: Blank Lab ID: QC1168433 Batch: 344821
Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1168433 Analyte Result Qual Units RL **Prepared Analyzed** TPH (C6-C12) ND 10 07/11/24 07/11/24 mg/Kg ND 10 07/11/24 TPH (C13-C22) mg/Kg 07/11/24 TPH (C23-C44) ND mg/Kg 20 07/11/24 07/11/24 Surrogates Limits n-Triacontane 90% %REC 70-130 07/11/24 07/11/24

Type: Lab Control Sample Lab ID: QC1168434 Batch: 344821

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1168434 Analyte Result Spiked Units Recovery Qual Limits Diesel C10-C28 274.0 248.8 mg/Kg 110% 76-122 Surrogates n-Triacontane 9.632 9.950 97% 70-130 mg/Kg

Type: Matrix Spike Lab ID: QC1168435 Batch: 344821

Matrix (Source ID): Soil (511591-022) Method: EPA 8015M Prep Method: EPA 3580M

		Source Sample						
QC1168435 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	301.9	84.11	248.6	mg/Kg	88%		62-126	5
Surrogates								
n-Triacontane	9.015		9.945	mg/Kg	91%		70-130	5

Type: Matrix Spike Duplicate Lab ID: QC1168436 Batch: 344821

Matrix (Source ID): Soil (511591-022) Method: EPA 8015M Prep Method: EPA 3580M

		Source Sample							RPD	
QC1168436 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Diesel C10-C28	314.4	84.11	247.6	mg/Kg	93%		62-126	4	35	5
Surrogates										
n-Triacontane	9.484		9.906	mg/Kg	96%		70-130			5

Type: Blank Lab ID: QC1168437 Batch: 344822
Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1168437 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
TPH (C6-C12)	ND		mg/Kg	10	07/14/24	07/15/24
TPH (C13-C22)	ND		mg/Kg	10	07/14/24	07/15/24
TPH (C23-C44)	ND		mg/Kg	20	07/14/24	07/15/24
Surrogates				Limits		
n-Triacontane	96%		%REC	70-130	07/14/24	07/15/24

Type: Lab Control Sample Lab ID: QC1168438 Batch: 344822

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1168438 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	246.2	248.8	mg/Kg	99%	76-122
Surrogates					
n-Triacontane	8.481	9.950	mg/Kg	85%	70-130

Type: Matrix Spike Lab ID: QC1169292 Batch: 344822
Matrix (Source ID): Soil (511777-019) Method: EPA 8015M Prep Method: EPA 3580M

Source Sample QC1169292 Analyte DF Result Result **Spiked** Units Recovery Qual Limits Diesel C10-C28 243.8 249.8 62-126 ND mg/Kg 98% 1 Surrogates n-Triacontane 8.058 9.990 70-130 mg/Kg 81% 1

Type: Matrix Spike Duplicate Lab ID: QC1169293 Batch: 344822

Matrix (Source ID): Soil (511777-019) Method: EPA 8015M Prep Method: EPA 3580M

QC1169293 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim	DF
Diesel C10-C28	241.2	ND	249.1	mg/Kg	97%		62-126	1	35	1
Surrogates										
n-Triacontane	7.968		9.965	mg/Kg	80%		70-130			1

Type: Blank Lab ID: QC1173491 Batch: 346325
Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1173491 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	1.0	07/29/24	07/30/24
Surrogates				Limits		
TCMX	70%		%REC	14-120	07/29/24	07/30/24
Decachlorobiphenyl	87%		%REC	20-120	07/29/24	07/30/24

Type: Lab Control Sample Lab ID: QC1173492 Batch: 346325
Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1173492 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
4,4'-DDD	0.5129	0.5000	ug/L	103%		53-120
4,4'-DDE	0.4876	0.5000	ug/L	98%	#	55-120
4,4'-DDT	0.4802	0.5000	ug/L	96%	#	58-120
Surrogates						
TCMX	0.3936	0.5000	ug/L	79%		14-120
Decachlorobiphenyl	0.4375	0.5000	ug/L	87%		20-120

Type: Lab Control Sample Duplicate Lab ID: QC1173493 Batch: 346325

Matrix: Water Method: EPA 8081A Prep Method: EPA 3510C

QC1173493 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
4,4'-DDD	0.5519	0.5000	ug/L	110%		53-120	7	20
4,4'-DDE	0.5239	0.5000	ug/L	105%	#	55-120	7	20
4,4'-DDT	0.5272	0.5000	ug/L	105%	#	58-120	9	20
Surrogates								
TCMX	0.4145	0.5000	ug/L	83%		14-120		
Decachlorobiphenyl	0.4727	0.5000	ug/L	95%		20-120		

Type: Blank Lab ID: QC1173496 Batch: 346325

Matrix: WET Leachate Method: EPA 8081A Prep Method: EPA 3510C

QC1173496 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	2.0	07/29/24	07/30/24
Surrogates				Limits		
TCMX	74%		%REC	14-120	07/29/24	07/30/24
Decachlorobiphenyl	92%		%REC	20-120	07/29/24	07/30/24

Type: Blank Lab ID: QC1173497 Batch: 346325 Matrix: WET Leachate Method: EPA 8081A Prep Method: EPA 3510C

QC1173497 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Chlordane (Technical)	ND		ug/L	2.0	07/29/24	07/30/24
Surrogates				Limits		
TCMX	69%		%REC	14-120	07/29/24	07/30/24
Decachlorobiphenyl	90%		%REC	20-120	07/29/24	07/30/24

Type: Blank Lab ID: QC1168234 Batch: 344770

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1168234 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	07/10/24	07/12/24
beta-BHC	ND	ug/Kg	5.0	07/10/24	07/12/24
gamma-BHC	ND	ug/Kg	5.0	07/10/24	07/12/24
delta-BHC	ND	ug/Kg	5.0	07/10/24	07/12/24
Heptachlor	ND	ug/Kg	5.0	07/10/24	07/12/24
Aldrin	ND	ug/Kg	5.0	07/10/24	07/12/24
Heptachlor epoxide	ND	ug/Kg	5.0	07/10/24	07/12/24
Endosulfan I	ND	ug/Kg	5.0	07/10/24	07/12/24
Dieldrin	ND	ug/Kg	5.0	07/10/24	07/12/24
4,4'-DDE	ND	ug/Kg	5.0	07/10/24	07/12/24
Endrin	ND	ug/Kg	5.0	07/10/24	07/12/24
Endosulfan II	ND	ug/Kg	5.0	07/10/24	07/12/24
Endosulfan sulfate	ND	ug/Kg	5.0	07/10/24	07/12/24
4,4'-DDD	ND	ug/Kg	5.0	07/10/24	07/12/24
Endrin aldehyde	ND	ug/Kg	5.0	07/10/24	07/12/24
Endrin ketone	ND	ug/Kg	5.0	07/10/24	07/12/24
4,4'-DDT	ND	ug/Kg	5.0	07/10/24	07/12/24
Methoxychlor	ND	ug/Kg	10	07/10/24	07/12/24
Toxaphene	ND	ug/Kg	100	07/10/24	07/12/24
Chlordane (Technical)	ND	ug/Kg	50	07/10/24	07/12/24
Surrogates			Limits		
TCMX	90%	%REC	23-120	07/10/24	07/12/24
Decachlorobiphenyl	78%	%REC	24-120	07/10/24	07/12/24

Type: Lab Control Sample Lab ID: QC1168235 Batch: 344770

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1168235 Analyte	Result	Spiked	Units	Recovery Qual	Limits
alpha-BHC	43.43	50.00	ug/Kg	87%	22-129
beta-BHC	45.99	50.00	ug/Kg	92%	28-125
gamma-BHC	43.86	50.00	ug/Kg	88%	22-128
delta-BHC	42.56	50.00	ug/Kg	85%	24-131
Heptachlor	40.87	50.00	ug/Kg	82%	18-124
Aldrin	42.26	50.00	ug/Kg	85%	23-120
Heptachlor epoxide	40.15	50.00	ug/Kg	80%	26-120
Endosulfan I	41.63	50.00	ug/Kg	83%	25-126
Dieldrin	42.20	50.00	ug/Kg	84%	23-124
4,4'-DDE	44.85	50.00	ug/Kg	90%	28-121
Endrin	42.11	50.00	ug/Kg	84%	25-127
Endosulfan II	43.19	50.00	ug/Kg	86%	29-121
Endosulfan sulfate	36.38	50.00	ug/Kg	73%	30-121
4,4'-DDD	42.50	50.00	ug/Kg	85%	26-120
Endrin aldehyde	35.71	50.00	ug/Kg	71%	10-120
Endrin ketone	42.01	50.00	ug/Kg	84%	28-125
4,4'-DDT	44.91	50.00	ug/Kg	90%	22-125
Methoxychlor	43.10	50.00	ug/Kg	86%	28-130
Surrogates					
TCMX	47.94	50.00	ug/Kg	96%	23-120
Decachlorobiphenyl	49.37	50.00	ug/Kg	99%	24-120

Type: Matrix Spike Lab ID: QC1168236 Batch: 344770

Matrix (Source ID): Soil (511777-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1168236 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	43.12	ND	49.50	ug/Kg	87%		46-120	0.99
beta-BHC	45.08	ND	49.50	ug/Kg	91%		41-120	0.99
gamma-BHC	44.27	ND	49.50	ug/Kg	89%		41-120	0.99
delta-BHC	42.22	ND	49.50	ug/Kg	85%		38-123	0.99
Heptachlor	40.77	ND	49.50	ug/Kg	82%		39-120	0.99
Aldrin	42.50	ND	49.50	ug/Kg	86%		34-120	0.99
Heptachlor epoxide	39.97	ND	49.50	ug/Kg	81%		43-120	0.99
Endosulfan I	41.72	ND	49.50	ug/Kg	84%		45-120	0.99
Dieldrin	43.79	ND	49.50	ug/Kg	88%		45-120	0.99
4,4'-DDE	45.16	ND	49.50	ug/Kg	91%		34-120	0.99
Endrin	43.49	ND	49.50	ug/Kg	88%		40-120	0.99
Endosulfan II	44.22	ND	49.50	ug/Kg	89%		41-120	0.99
Endosulfan sulfate	39.37	ND	49.50	ug/Kg	80%		42-120	0.99
4,4'-DDD	44.74	3.452	49.50	ug/Kg	83%		41-120	0.99
Endrin aldehyde	43.67	ND	49.50	ug/Kg	88%		30-120	0.99
Endrin ketone	43.98	ND	49.50	ug/Kg	89%		45-120	0.99
4,4'-DDT	45.00	3.410	49.50	ug/Kg	84%		35-127	0.99
Methoxychlor	43.84	ND	49.50	ug/Kg	89%		42-136	0.99
Surrogates								
TCMX	44.69		49.50	ug/Kg	90%		23-120	0.99
Decachlorobiphenyl	44.52		49.50	ug/Kg	90%		24-120	0.99

Type: Matrix Spike Duplicate Lab ID: QC1168237 Batch: 344770

Matrix (Source ID): Soil (511777-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1168237 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	41.62	ND	50.00	ug/Kg	83%		46-120	5	30	1
beta-BHC	44.54	ND	50.00	ug/Kg	89%		41-120	2	30	1
gamma-BHC	43.66	ND	50.00	ug/Kg	87%		41-120	2	30	1
delta-BHC	41.97	ND	50.00	ug/Kg	84%		38-123	2	30	1
Heptachlor	40.42	ND	50.00	ug/Kg	81%		39-120	2	30	1
Aldrin	41.10	ND	50.00	ug/Kg	82%		34-120	4	30	1
Heptachlor epoxide	38.36	ND	50.00	ug/Kg	77%		43-120	5	30	1
Endosulfan I	41.09	ND	50.00	ug/Kg	82%		45-120	3	30	1
Dieldrin	42.61	ND	50.00	ug/Kg	85%		45-120	4	30	1
4,4'-DDE	43.86	ND	50.00	ug/Kg	88%		34-120	4	30	1
Endrin	42.15	ND	50.00	ug/Kg	84%		40-120	4	30	1
Endosulfan II	42.25	ND	50.00	ug/Kg	84%		41-120	6	30	1
Endosulfan sulfate	39.57	ND	50.00	ug/Kg	79%		42-120	0	30	1
4,4'-DDD	43.23	3.452	50.00	ug/Kg	80%		41-120	4	30	1
Endrin aldehyde	42.42	ND	50.00	ug/Kg	85%		30-120	4	30	1
Endrin ketone	42.69	ND	50.00	ug/Kg	85%		45-120	4	30	1
4,4'-DDT	43.06	3.410	50.00	ug/Kg	79%		35-127	5	30	1
Methoxychlor	44.24	ND	50.00	ug/Kg	88%		42-136	0	30	1
Surrogates										
TCMX	44.86		50.00	ug/Kg	90%		23-120			1
Decachlorobiphenyl	43.51		50.00	ug/Kg	87%		24-120			1

Type: Lab Control Sample Lab ID: QC1171661 Batch: 345741

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1171661 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	33.85	50.51	ug/Kg	67%		22-129
beta-BHC	38.18	50.51	ug/Kg	76%		28-125
gamma-BHC	34.32	50.51	ug/Kg	68%		22-128
delta-BHC	36.22	50.51	ug/Kg	72%		24-131
Heptachlor	33.97	50.51	ug/Kg	67%		18-124
Aldrin	29.22	50.51	ug/Kg	58%		23-120
Heptachlor epoxide	36.22	50.51	ug/Kg	72%	#	26-120
Endosulfan I	35.75	50.51	ug/Kg	71%		25-126
Dieldrin	36.20	50.51	ug/Kg	72%		23-124
4,4'-DDE	38.05	50.51	ug/Kg	75%		28-121
Endrin	37.17	50.51	ug/Kg	74%		25-127
Endosulfan II	41.90	50.51	ug/Kg	83%		29-121
Endosulfan sulfate	40.78	50.51	ug/Kg	81%		30-121
4,4'-DDD	39.22	50.51	ug/Kg	78%	#	26-120
Endrin aldehyde	10.04	50.51	ug/Kg	20%		10-120
Endrin ketone	42.81	50.51	ug/Kg	85%		28-125
4,4'-DDT	36.46	50.51	ug/Kg	72%		22-125
Methoxychlor	37.73	50.51	ug/Kg	75%		28-130
Surrogates						
TCMX	31.49	50.51	ug/Kg	62%		23-120
Decachlorobiphenyl	36.56	50.51	ug/Kg	72%		24-120

Type: Matrix Spike Lab ID: QC1171662 Batch: 345741

Matrix (Source ID): Soil (512546-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1171662 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	45.22	ND	49.50	ug/Kg	91%		46-120	0.99
beta-BHC	51.91	ND	49.50	ug/Kg	105%		41-120	0.99
gamma-BHC	46.95	ND	49.50	ug/Kg	95%		41-120	0.99
delta-BHC	49.82	ND	49.50	ug/Kg	101%		38-123	0.99
Heptachlor	45.89	ND	49.50	ug/Kg	93%		39-120	0.99
Aldrin	44.22	ND	49.50	ug/Kg	89%		34-120	0.99
Heptachlor epoxide	49.51	ND	49.50	ug/Kg	100%	#	43-120	0.99
Endosulfan I	47.33	ND	49.50	ug/Kg	96%		45-120	0.99
Dieldrin	47.12	ND	49.50	ug/Kg	95%		45-120	0.99
4,4'-DDE	50.02	ND	49.50	ug/Kg	101%		34-120	0.99
Endrin	48.89	ND	49.50	ug/Kg	99%		40-120	0.99
Endosulfan II	48.40	ND	49.50	ug/Kg	98%		41-120	0.99
Endosulfan sulfate	40.54	ND	49.50	ug/Kg	82%		42-120	0.99
4,4'-DDD	48.53	ND	49.50	ug/Kg	98%	#	41-120	0.99
Endrin aldehyde	33.77	ND	49.50	ug/Kg	68%		30-120	0.99
Endrin ketone	48.49	ND	49.50	ug/Kg	98%		45-120	0.99
4,4'-DDT	52.72	ND	49.50	ug/Kg	106%		35-127	0.99
Methoxychlor	49.89	ND	49.50	ug/Kg	101%		42-136	0.99
Surrogates								
TCMX	40.18		49.50	ug/Kg	81%		23-120	0.99
Decachlorobiphenyl	42.06		49.50	ug/Kg	85%		24-120	0.99

Type: Matrix Spike Duplicate Lab ID: QC1171663 Batch: 345741 Matrix (Source ID): Soil (512546-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1171663 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	49.44	ND	49.50	ug/Kg	100%		46-120	9	30	0.99
beta-BHC	52.87	ND	49.50	ug/Kg	107%		41-120	2	30	0.99
gamma-BHC	49.82	ND	49.50	ug/Kg	101%		41-120	6	30	0.99
delta-BHC	50.74	ND	49.50	ug/Kg	102%		38-123	2	30	0.99
Heptachlor	48.84	ND	49.50	ug/Kg	99%		39-120	6	30	0.99
Aldrin	46.77	ND	49.50	ug/Kg	94%		34-120	6	30	0.99
Heptachlor epoxide	50.93	ND	49.50	ug/Kg	103%	#	43-120	3	30	0.99
Endosulfan I	48.65	ND	49.50	ug/Kg	98%		45-120	3	30	0.99
Dieldrin	48.18	ND	49.50	ug/Kg	97%		45-120	2	30	0.99
4,4'-DDE	51.16	ND	49.50	ug/Kg	103%		34-120	2	30	0.99
Endrin	49.93	ND	49.50	ug/Kg	101%		40-120	2	30	0.99
Endosulfan II	50.14	ND	49.50	ug/Kg	101%		41-120	4	30	0.99
Endosulfan sulfate	34.92	ND	49.50	ug/Kg	71%		42-120	15	30	0.99
4,4'-DDD	50.35	ND	49.50	ug/Kg	102%	#	41-120	4	30	0.99
Endrin aldehyde	32.72	ND	49.50	ug/Kg	66%		30-120	3	30	0.99
Endrin ketone	49.15	ND	49.50	ug/Kg	99%		45-120	1	30	0.99
4,4'-DDT	54.04	ND	49.50	ug/Kg	109%		35-127	2	30	0.99
Methoxychlor	51.28	ND	49.50	ug/Kg	104%		42-136	3	30	0.99
Surrogates										
TCMX	45.05		49.50	ug/Kg	91%		23-120			0.99
Decachlorobiphenyl	43.35		49.50	ug/Kg	88%		24-120			0.99

CCV drift outside limits; average CCV drift within limits per method

requirements

Value is outside QC limits

ND Not Detected

Sample Summary

Chuck Houser

SCS Engineers

8799 Balboa #290

San Diego, CA

92123

Lab Job #: 507968

Project No: MIDWAY RISING

Location: Sports Arena

Date Received: 05/08/24

Sample ID	Lab ID	Collected	Matrix
T40-1	507968-001	05/08/24 07:50	Soil
T40-2.5	507968-002	05/08/24 07:56	Soil
T40-4	507968-003	05/08/24 07:57	Soil
T41-1	507968-004	05/08/24 08:29	Soil
T41-3	507968-005	05/08/24 08:41	Soil
T41-4.5	507968-006	05/08/24 08:45	Soil
T42-1	507968-007	05/08/24 08:12	Soil
T42-2	507968-008	05/08/24 08:15	Soil
T42-4.5	507968-009	05/08/24 08:19	Soil

Case Narrative

SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Chuck Houser

Lab Job 507968

Number:

Project No: MIDWAY

RISING

Location: Sports Arena

Date Received: 05/08/24

This data package contains sample and QC results for nine soil samples, requested for the above referenced project on 05/08/24. The samples were received cold and intact.

Pesticides (EPA 8081A):

- T42-1 (lab # 507968-007) was diluted due to the color of the sample extract.
- No other analytical problems were encountered.

Metals (EPA 6010B):

- High recovery was observed for lead in the post digest spike of T40-1 (lab # 507968-001); the LCS was within limits.
- No other analytical problems were encountered.

									•						
				-	Lab No:	50	507068	Ý	Star	Standard:	×	5 Day:	30	3 Day:	
	2	<u></u>	U =		Page:	en	Jo		2 Day:	خ		1 Day:	Š	Custom TAT	
Enthalpy	Enthalpy Analytical - Orange	il - Orange	a.	•		ıtrix:	A=Air S	S = Soil/Solid	īg.			ervatives:	┺	Sample Receipt Temp:	t Tem
931 W. Barkle	931 W. Barkley Avenue, Orange, CA 92868 Phone 714-771-6900	ange, CA 928 5900	89		\= \M	W = Water DW = Drinkir PP = Pure Product SW = Surb T = Times	Drinking V		= Sedim 'ater	ent	$1 = Na_2 S_2 O_3$ $4 = H_2 SO_4$ $5 =$	2=HCl 3	3 = HNO ₃ 6 = Other		
STIME GIVE OFFICE		2000			- AAC	Swab I = 1 issue	- 1	wP = wipe	O = Otner	ler				(lab use only)	<u>\$</u>
CUSTOMER INFORMATION	JKMATION			PROJECT	INFOR	OJECT INFORMATION			Ana	Analysis Request	est	Test	Instructio	Test Instructions / Comments	nts
Company: SCS Engineers			Name:	Midw	Midway-Rising-				H						
Report To: Chuck Houser			Number:	Sports	Sports Arena										
Email: chouser@scsengineers.com	engineers.	mo:	P.O.#:	1213320.07	20.07				Αĭ			,			
Address: 8799 Balboa Ave., Suite 290	e., Suite 290		Address:						808 9						
San Diego, CA 92123	2123							всто	ıcıqe						
Phone: 858-805-5523			Global 1D:					3 Aq	-						
Fax:			Sampled By:					g pəp	09Z8	0109					
Sample ID		Sampling Date		Sampling N Time	Matrix	Container No. / Size	Pres.	Title 22 Mi	Organochi	A43 bea		7	11.	2	
1 T40-1		518 1203	Du 7	S.	S	8 oz jar	None			1 4	_		1	+	
2 TUO-2.S		1	5.7	95	s	8 oz jar	None			-	_		 		
3 740-4			78.	5-7	s	8 oz jar	None	\vdash	Ĺ	17					
4 TY - I			\(\frac{1}{2}\)	2)	S	8 oz jar	None								
5 741-3			کخ	1/	S	8 oz jar	None			L V					
5/1-1719			8:45	45-	S	8 oz jar	None			7					
7 - 2 - 0 - 1				d	s	8 oz jar	None			 					
8 742-3			8:11	10	S	8 oz jar	None			w w					
9 143-90			\. \.	<i>a</i>	S	8 oz jar	None			~					
10		>		80	6	8 oz jar	None								
	S	Signature			Print	Print Name			Comp	Company / Title	He		Date/	/Time	
¹ Relinquished By:	Phas DA	MATES A	0		Jennife	Jennifer Morton			SCS	SCS Engineers	Ş	18/2	bCVE	1/1 CI	
¹ Received By:	2011		×	Ollms	MAGN	to total		+	オギャ	4		1/2/->	1 2	75.7	
Relinquished By:			a.	TIVE	etojij.	PY WA		Th)	M M			K K 121		1000	
Received By:	il			N		B			to	X		9-6	777) (p)	
Relinquished By:		7			1//	20			B	The		5-4	3	19,15	
	N					>	1		7			ر ر	_		ر ا

SAMPLE ACCEPTANCE CHECKLIST

Section 1	100			,
Client: SCS Hyg,	Project: Mid	*Meh	Ris	3179
Date Received: 516	724 Sampler's Name Present:	Yes	✓No	
Section 2				
l			Temp (°C	
	Yes, How many? No (skip section 2)	•	No Cooler) :
Sample Temp (°C), One from each	cooler: #1: <u>2,1 #2: #3: </u>	#4:		_ "
(Acceptance range is < 6°C but not frozen (for the same day as sample rece	Microbiology samples, acceptance range is < 10°C but not frozen). I ipt to have a higher temperature as long as there is evidence that co	t is acceptable _. Solina has beau	jor sample in.)	es collectea
Shipping Information:	promote a right temperature at long at a single and a single at a			
Section 3	0			
Was the cooler packed with:	ce lice Packs Bubble Wrap Styro	ofoam		
	Paper None Other			
Cooler Temp (°C): #1:	#2:#3:	#4:		
		T vcc 1	NO	21/0
Section 4		YES	NO	N/A
Was a COC received?				
Are sample IDs present?				1
Are sampling dates & times presen	t?			
Is a relinquished signature present	?			
Are the tests required clearly indic	ated on the COC?			
Are custody seals present?				
If custody seals are present, \				
Are all samples sea ed in plastic ba	gs? (Recommended for Microbiology samples)			
Did all samples arrive intact? If no,	indicate in Section 4 below.			
Did all bottle labels agree with COO	C? (ID, dates and times)	1		
	correct containers for the required tests?			
Are the containers labeled w	th the correct preservatives?			
Is there headspace in the VOA vials	greater than 5-6 mm in diameter?			
Was a sufficient amount of sample	submitted for the requested tests?			100.09
			-	
Section 5 Explanations/Commen				
1				
Section 6				
For discrepancies, now was the Pro	pject Manager notified? Verbal PM Initials:	_ Date/Time		
1 ' '	Email (email sent to	/on):	/	
Project Manager's response:				
i i sject i i angel e i an				
L				
	~ 10 17(1)			
Completed By:	Date: 5/8/29			
Enths	lpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.			
l I	arkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-120)9		
	www.enthalpy.com/socal			
	Sample Acceptance Checklist – Rev 4, 8/8/2017			
1 1			1	

Chuck Houser SCS Engineers 8799 Balboa #290 San Diego, CA 92123 Lab Job #: 507968 Project No: MIDWAY RISING Location: Sports Arena Date Received: 05/08/24

Sample ID: T40-1 Lab ID: 507968-001 Collected: 05/08/24 07:50

Matrix: Soil

507968-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B						<u> </u>	<u> </u>	
Prep Method: EPA 3050B								
Lead	22	mg/Kg	1.0	1	339914	05/09/24	05/10/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
beta-BHC	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
gamma-BHC	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
delta-BHC	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Heptachlor	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Aldrin	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Heptachlor epoxide	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Endosulfan I	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Dieldrin	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
4,4'-DDE	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Endrin	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Endosulfan II	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
4,4'-DDD	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Endrin aldehyde	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Endrin ketone	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
4,4'-DDT	ND	ug/Kg	5.1	1	340050	05/12/24	05/14/24	KLR
Methoxychlor	ND	ug/Kg	10	1	340050	05/12/24	05/14/24	KLR
Toxaphene	ND	ug/Kg	100	1	340050	05/12/24	05/14/24	KLR
Chlordane (Technical)	ND	ug/Kg	51	1	340050	05/12/24	05/14/24	KLR
Surrogates			Limits					
TCMX	69%	%REC	23-120	1	340050	05/12/24	05/14/24	KLR
Decachlorobiphenyl	88%	%REC	24-120	1	340050	05/12/24	05/14/24	KLR

Sample ID: T40-2.5 Lab ID: 507968-002 Collected: 05/08/24 07:56

Matrix: Soil

507968-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	1.6		mg/Kg	0.95	0.95	339914	05/09/24	05/10/24	SBW

Sample ID: T40-4 Lab ID: 507968-003 Collected: 05/08/24 07:57

Matrix: Soil

507968-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Frep Method. LFA 3030D									
Lead	2.7		mg/Kg	0.96	0.96	339914	05/09/24	05/10/24	SBW

Sample ID: T41-1 Lab ID: 507968-004 Collected: 05/08/24 08:29

Matrix: Soil

507968-004 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Lead	9.6	mg/Kg	0.98	0.98	339914	05/09/24	05/10/24	SBW
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
beta-BHC	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
gamma-BHC	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
delta-BHC	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Heptachlor	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Aldrin	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Heptachlor epoxide	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Endosulfan I	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Dieldrin	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
4,4'-DDE	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Endrin	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Endosulfan II	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Endosulfan sulfate	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
4,4'-DDD	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Endrin aldehyde	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Endrin ketone	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
4,4'-DDT	ND	ug/Kg	4.9	0.98	340050	05/12/24	05/14/24	KLR
Methoxychlor	ND	ug/Kg	9.8	0.98	340050	05/12/24	05/14/24	KLR
Toxaphene	ND	ug/Kg	98	0.98	340050	05/12/24	05/14/24	KLR
Chlordane (Technical)	ND	ug/Kg	49	0.98	340050	05/12/24	05/14/24	KLR
Surrogates		-	Limits					
TCMX	68%	%REC	23-120	0.98	340050	05/12/24	05/14/24	KLR
Decachlorobiphenyl	99%	%REC	24-120	0.98	340050	05/12/24	05/14/24	KLR

Sample ID: T41-3 Lab ID: 507968-005 Collected: 05/08/24 08:41

Matrix: Soil

507968-005 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	1.7		mg/Kg	0.95	0.95	339914	05/09/24	05/10/24	SBW

Sample ID: T41-4.5 Lab ID: 507968-006 Collected: 05/08/24 08:45

Matrix: Soil

507968-006 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	ND		mg/Kg	1.0	1	339914	05/09/24	05/10/24	SBW

Sample ID: T42-1 Lab ID: 507968-007 Collected: 05/08/24 08:12

Matrix: Soil

507968-007 Analyte	Result	Qual U	nits	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	7.2	m	g/Kg	0.97	0.97	339914	05/09/24	05/10/24	SBW
Method: EPA 8081A Prep Method: EPA 3546									
alpha-BHC	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
beta-BHC	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
gamma-BHC	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
delta-BHC	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Heptachlor	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Aldrin	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Heptachlor epoxide	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Endosulfan I	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Dieldrin	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
4,4'-DDE	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Endrin	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Endosulfan II	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Endosulfan sulfate	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
4,4'-DDD	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Endrin aldehyde	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Endrin ketone	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
4,4'-DDT	ND	u	g/Kg	10	2	340050	05/12/24	05/14/24	KLR
Methoxychlor	ND	u	g/Kg	20	2	340050	05/12/24	05/14/24	KLR
Toxaphene	ND	u	g/Kg	200	2	340050	05/12/24	05/14/24	KLR
Chlordane (Technical)	ND	u	g/Kg	100	2	340050	05/12/24	05/14/24	KLR
Surrogates				Limits					
TCMX	70%	%	REC	23-120	2	340050	05/12/24	05/14/24	KLR
Decachlorobiphenyl	85%	%	REC	24-120	2	340050	05/12/24	05/14/24	KLR

Sample ID: T42-2 Lab ID: 507968-008 Collected: 05/08/24 08:15

Matrix: Soil

507968-008 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	1.4		mg/Kg	0.98	0.98	339914	05/09/24	05/10/24	SBW

Sample ID: T42-4.5 Lab ID: 507968-009 Collected: 05/08/24 08:19

Matrix: Soil

507968-009 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B									
Lead	ND		mg/Kg	0.98	0.98	339914	05/09/24	05/10/24	SBW

ND Not Detected

Type: Blank Lab ID: QC1151858 Batch: 339914

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

 QC1151858 Analyte
 Result
 Qual
 Units
 RL
 Prepared
 Analyzed

 Lead
 ND
 mg/Kg
 1.0
 05/09/24
 05/10/24

Type: Lab Control Sample Lab ID: QC1151859 Batch: 339914

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

 QC1151859 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Lead
 103.5
 100.0
 mg/Kg
 103%
 80-120

Type: Matrix Spike Lab ID: QC1151860 Batch: 339914

Matrix (Source ID): Soil (507968-001) Method: EPA 6010B Prep Method: EPA 3050B

Source Sample QC1151860 Analyte Result Result Spiked **Units** Recovery Qual Limits DF 112.8 21.63 99.01 92% 75-125 Lead mg/Kg 0.99

Type: Matrix Spike Duplicate Lab ID: QC1151861 Batch: 339914

Matrix (Source ID): Soil (507968-001) Method: EPA 6010B Prep Method: EPA 3050B

Source Sample RPD QC1151861 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** Lim DF 107.4 21.63 95.24 75-125 20 Lead mg/Kg 90% 2 0.95

Type: Post Digest Spike Lab ID: QC1151862 Batch: 339914

Matrix (Source ID): Soil (507968-001) Method: EPA 6010B Prep Method: EPA 3050B

Source Sample QC1151862 Analyte Result Result **Spiked** Units Recovery Qual Limits DF Lead 153.6 21.63 100.0 mg/Kg 132% 75-125 1

Type: Blank Lab ID: QC1152362 Batch: 340050 Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1152362 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.1	05/12/24	05/14/24
beta-BHC	ND	ug/Kg	5.1	05/12/24	05/14/24
gamma-BHC	ND	ug/Kg	5.1	05/12/24	05/14/24
delta-BHC	ND	ug/Kg	5.1	05/12/24	05/14/24
Heptachlor	ND	ug/Kg	5.1	05/12/24	05/14/24
Aldrin	ND	ug/Kg	5.1	05/12/24	05/14/24
Heptachlor epoxide	ND	ug/Kg	5.1	05/12/24	05/14/24
Endosulfan I	ND	ug/Kg	5.1	05/12/24	05/14/24
Dieldrin	ND	ug/Kg	5.1	05/12/24	05/14/24
4,4'-DDE	ND	ug/Kg	5.1	05/12/24	05/14/24
Endrin	ND	ug/Kg	5.1	05/12/24	05/14/24
Endosulfan II	ND	ug/Kg	5.1	05/12/24	05/14/24
Endosulfan sulfate	ND	ug/Kg	5.1	05/12/24	05/14/24
4,4'-DDD	ND	ug/Kg	5.1	05/12/24	05/14/24
Endrin aldehyde	ND	ug/Kg	5.1	05/12/24	05/14/24
Endrin ketone	ND	ug/Kg	5.1	05/12/24	05/14/24
4,4'-DDT	ND	ug/Kg	5.1	05/12/24	05/14/24
Methoxychlor	ND	ug/Kg	10	05/12/24	05/14/24
Toxaphene	ND	ug/Kg	100	05/12/24	05/14/24
Chlordane (Technical)	ND	ug/Kg	51	05/12/24	05/14/24
Surrogates			Limits		
TCMX	78%	%REC	23-120	05/12/24	05/14/24
Decachlorobiphenyl	98%	%REC	24-120	05/12/24	05/14/24

Type: Lab Control Sample Lab ID: QC1152363 Batch: 340050

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1152363 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	45.96	51.02	ug/Kg	90%	#	22-129
beta-BHC	46.96	51.02	ug/Kg	92%		28-125
gamma-BHC	46.94	51.02	ug/Kg	92%	#	22-128
delta-BHC	45.65	51.02	ug/Kg	89%	#	24-131
Heptachlor	46.91	51.02	ug/Kg	92%		18-124
Aldrin	46.23	51.02	ug/Kg	91%		23-120
Heptachlor epoxide	47.80	51.02	ug/Kg	94%		26-120
Endosulfan I	43.65	51.02	ug/Kg	86%		25-126
Dieldrin	48.38	51.02	ug/Kg	95%		23-124
4,4'-DDE	50.99	51.02	ug/Kg	100%		28-121
Endrin	46.54	51.02	ug/Kg	91%		25-127
Endosulfan II	45.40	51.02	ug/Kg	89%		29-121
Endosulfan sulfate	47.70	51.02	ug/Kg	93%		30-121
4,4'-DDD	44.65	51.02	ug/Kg	88%		26-120
Endrin aldehyde	13.09	51.02	ug/Kg	26%		10-120
Endrin ketone	47.45	51.02	ug/Kg	93%		28-125
4,4'-DDT	46.12	51.02	ug/Kg	90%		22-125
Methoxychlor	47.46	51.02	ug/Kg	93%		28-130
Surrogates						
TCMX	39.83	51.02	ug/Kg	78%		23-120
Decachlorobiphenyl	48.61	51.02	ug/Kg	95%		24-120

Type: Matrix Spike Lab ID: QC1152364 Batch: 340050
Matrix (Source ID): Soil (507973-005) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1152364 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	39.59	ND	51.02	ug/Kg	78%	#	46-120	1
beta-BHC	42.43	ND	51.02	ug/Kg	83%		41-120	1
gamma-BHC	41.28	ND	51.02	ug/Kg	81%	#	41-120	1
delta-BHC	40.21	ND	51.02	ug/Kg	79%	#	38-123	1
Heptachlor	41.89	ND	51.02	ug/Kg	82%		39-120	1
Aldrin	41.01	ND	51.02	ug/Kg	80%		34-120	1
Heptachlor epoxide	42.24	ND	51.02	ug/Kg	83%		43-120	1
Endosulfan I	44.45	ND	51.02	ug/Kg	87%		45-120	1
Dieldrin	43.67	ND	51.02	ug/Kg	86%		45-120	1
4,4'-DDE	45.65	ND	51.02	ug/Kg	89%		34-120	1
Endrin	41.95	ND	51.02	ug/Kg	82%		40-120	1
Endosulfan II	42.73	ND	51.02	ug/Kg	84%		41-120	1
Endosulfan sulfate	40.91	ND	51.02	ug/Kg	80%		42-120	1
4,4'-DDD	39.77	ND	51.02	ug/Kg	78%		41-120	1
Endrin aldehyde	38.13	ND	51.02	ug/Kg	75%		30-120	1
Endrin ketone	44.34	ND	51.02	ug/Kg	87%		45-120	1
4,4'-DDT	41.88	ND	51.02	ug/Kg	82%		35-127	1
Methoxychlor	41.79	ND	51.02	ug/Kg	82%		42-136	1
Surrogates								
TCMX	35.09		51.02	ug/Kg	69%		23-120	1
Decachlorobiphenyl	43.18		51.02	ug/Kg	85%		24-120	1

Type: Matrix Spike Duplicate Lab ID: QC1152365 Batch: 340050 Matrix (Source ID): Soil (507973-005) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC1152365 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	39.34	ND	50.00	ug/Kg	79%	#	46-120	1	30	1
beta-BHC	41.87	ND	50.00	ug/Kg	84%		41-120	1	30	1
gamma-BHC	41.07	ND	50.00	ug/Kg	82%	#	41-120	2	30	1
delta-BHC	40.26	ND	50.00	ug/Kg	81%	#	38-123	2	30	1
Heptachlor	41.91	ND	50.00	ug/Kg	84%		39-120	2	30	1
Aldrin	41.10	ND	50.00	ug/Kg	82%		34-120	2	30	1
Heptachlor epoxide	41.92	ND	50.00	ug/Kg	84%		43-120	1	30	1
Endosulfan I	44.34	ND	50.00	ug/Kg	89%		45-120	2	30	1
Dieldrin	43.63	ND	50.00	ug/Kg	87%		45-120	2	30	1
4,4'-DDE	45.74	ND	50.00	ug/Kg	91%		34-120	2	30	1
Endrin	41.32	ND	50.00	ug/Kg	83%		40-120	1	30	1
Endosulfan II	42.78	ND	50.00	ug/Kg	86%		41-120	2	30	1
Endosulfan sulfate	40.42	ND	50.00	ug/Kg	81%		42-120	1	30	1
4,4'-DDD	40.28	ND	50.00	ug/Kg	81%		41-120	3	30	1
Endrin aldehyde	36.72	ND	50.00	ug/Kg	73%		30-120	2	30	1
Endrin ketone	45.83	ND	50.00	ug/Kg	92%		45-120	5	30	1
4,4'-DDT	40.48	ND	50.00	ug/Kg	81%		35-127	1	30	1
Methoxychlor	41.67	ND	50.00	ug/Kg	83%		42-136	2	30	1
Surrogates										
TCMX	35.45		50.00	ug/Kg	71%		23-120			1
Decachlorobiphenyl	45.63		50.00	ug/Kg	91%		24-120			1

CCV drift outside limits; average CCV drift within limits per method

requirements

Value is outside QC limits

ND Not Detected

Appendix D ProUCL Worksheets

	A B C	D E	F	G H I J K I	L
1	•	UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.2 8/12/2024 9:	10:54 AM		
5	From File	WorkSheet.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Arsenic				
12					
13			General	Statistics	
14	Total	Number of Observations	48	Number of Distinct Observations	40
15				Number of Missing Observations	0
16		Minimum	1.2	Mean	5.835
17		Maximum	23	Median	4.7
18		SD	4.789	Std. Error of Mean	0.691
19		Coefficient of Variation	0.821	Skewness	2.233
20					
21				GOF Test	
22		hapiro Wilk Test Statistic	0.75	Shapiro Wilk GOF Test	
23	1% S	hapiro Wilk Critical Value	0.929	Data Not Normal at 1% Significance Level	
24		Lilliefors Test Statistic	0.216	Lilliefors GOF Test	
25	1	% Lilliefors Critical Value	0.148	Data Not Normal at 1% Significance Level	
26		Data Not	Normal at 1	% Significance Level	
27					
28	0=0/ 11		suming Nori	nal Distribution	
29	95% No	ormal UCL	0.005	95% UCLs (Adjusted for Skewness)	7.04
30		95% Student's-t UCL	6.995	95% Adjusted-CLT UCL (Chen-1995)	7.21
31				95% Modified-t UCL (Johnson-1978)	7.032
32			0	20F T	
33		A-D Test Statistic	0.759	Anderson Posting Commo COE Toot	
34		5% A-D Critical Value	0.759	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level
35		K-S Test Statistic	0.761	Kolmogorov-Smirnov Gamma GOF Test	CE LEVEI
36		5% K-S Critical Value	0.121	Detected data appear Gamma Distributed at 5% Significance	re I evel
37				stributed at 5% Significance Level	O LGVGI
38		Dottotion data appear	Samma Di		
39			Gamma	Statistics	
40		k hat (MLE)	2.152	k star (bias corrected MLE)	2.031
41 42		Theta hat (MLE)	2.712	Theta star (bias corrected MLE)	2.873
43		nu hat (MLE)	206.5	nu star (bias corrected)	195
44	M	LE Mean (bias corrected)	5.835	MLE Sd (bias corrected)	4.095
45		, /		Approximate Chi Square Value (0.05)	163.7
46	Adjus	sted Level of Significance	0.045	Adjusted Chi Square Value	162.8
47	•			·	
48		Ass	suming Gam	ma Distribution	
49	95% A	pproximate Gamma UCL	6.952	95% Adjusted Gamma UCL	6.989
50				<u> </u>	
JU					

	A	В	С	D	E	F	G	Н	ı	J	К	L	
51		•		1	<u> </u>	Lognorma	GOF Test						
52			5	Shapiro Wilk	Test Statistic	0.968		Shap	iro Wilk Lo	gnormal GOF	Test		
53			10% S	Shapiro Wilk (Critical Value	0.954		Data appear	Lognormal	at 10% Signi	ficance Level		
54				Lilliefors	Test Statistic	0.0819		Lill	iefors Logn	ormal GOF 1	est		
55			10)% Lilliefors (Critical Value	0.117		Data appear	Lognormal	at 10% Signi	ficance Level		
56					Data appear	Lognormal a	at 10% Signi	ficance Leve	el .				
57													
58							I Statistics						
59				Minimum of		0.182					logged Data	1.51	
60				Maximum of	Logged Data	3.135				SD of	logged Data	0.70)3
61													
62							ormal Distrib	ution	000/	Ob a book and	M)/UE) UOI	7 70	20
63			050/		95% H-UCL	7.169 8.578				Chebyshev (,	7.70 9.78	
64				Chebyshev (•	12.16			97.5%	Chebysnev (MIVUE) UCL	9.78	38
65			99%	Chebyshev (MVUE) UCL	12.10							
66					Nonnarame	atric Dietribu	tion Free UC	1 Statistics					
67					<u> </u>		Discernible						
68 69					Data appoo								
70					Nonpa	rametric Dist	tribution Free	e UCLs					
71				95	5% CLT UCL	6.972				95% BCA Bo	otstrap UCL	7.29	92
72			95%	Standard Bo	ootstrap UCL	6.953				95% Boo	tstrap-t UCL	7.39	9 7
73			Ś	95% Hall's Bo	ootstrap UCL	7.282			95%	Percentile Bo	otstrap UCL	7.02	27
74			90% CI	hebyshev(Me	an, Sd) UCL	7.909			95% CI	hebyshev(Me	an, Sd) UCL	8.84	18
75			97.5% Cl	hebyshev(Me	an, Sd) UCL	10.15			99% CI	hebyshev(Me	an, Sd) UCL	12.7	1
76													
77							UCL to Use						
78			95	5% Adjusted (Gamma UCL	6.989							
79													
80			_	-							ate 95% UCL	•	
81										m simulation			
82	Ho	wever, sımu	ilations resul	its will not cov	ver all Real W	orid data se	ts; for additio	nai insight th	e user may	want to cons	ult a statistici	an.	
				1									
83													
83 84 85													

А	B C D E	F	G H I J K	L
86 Lead				
67				
88		General	Statistics	
89	Total Number of Observations	45	Number of Distinct Observations	33
90	Total Number of Observations		Number of Missing Observations	3
91	Minimum	1.2	Mean	10.33
92	Maximum	63	Median	8.5
93	SD	10.45	Std. Error of Mean	1.558
94	Coefficient of Variation	1.012	Skewness	3.44
95 96		-		
97		Normal C	GOF Test	
98	Shapiro Wilk Test Statistic	0.66	Shapiro Wilk GOF Test	
99	1% Shapiro Wilk Critical Value	0.926	Data Not Normal at 1% Significance Level	
	Lilliefors Test Statistic	0.252	Lilliefors GOF Test	
100	1% Lilliefors Critical Value	0.153	Data Not Normal at 1% Significance Level	
101			% Significance Level	
103	Ass	sumina Norr	nal Distribution	
	95% Normal UCL	J	95% UCLs (Adjusted for Skewness)	
105	95% Student's-t UCL	12.95	95% Adjusted-CLT UCL (Chen-1995)	13.75
			95% Modified-t UCL (Johnson-1978)	13.08
107				
108		Gamma (GOF Test	
109	A-D Test Statistic	1.092	Anderson-Darling Gamma GOF Test	
110	5% A-D Critical Value	0.767	Data Not Gamma Distributed at 5% Significance Level	
	K-S Test Statistic	0.142	Kolmogorov-Smirnov Gamma GOF Test	
112	5% K-S Critical Value	0.134	Data Not Gamma Distributed at 5% Significance Level	
114	Data Not Gamn	na Distribute	ed at 5% Significance Level	
115				
116		Gamma	Statistics	
117	k hat (MLE)	1.573	k star (bias corrected MLE)	1.483
118	Theta hat (MLE)	6.566	Theta star (bias corrected MLE)	6.965
119	nu hat (MLE)	141.6	nu star (bias corrected)	133.5
120	MLE Mean (bias corrected)	10.33	MLE Sd (bias corrected)	8.482
121			Approximate Chi Square Value (0.05)	107.8
122	Adjusted Level of Significance	0.0447	Adjusted Chi Square Value	107
123				
124	Ass	uming Gam	ma Distribution	
125	95% Approximate Gamma UCL	12.79	95% Adjusted Gamma UCL	12.88
126				
127		Lognormal	GOF Test	
128	Shapiro Wilk Test Statistic	0.934	Shapiro Wilk Lognormal GOF Test	
129	10% Shapiro Wilk Critical Value	0.953	Data Not Lognormal at 10% Significance Level	
130	Lilliefors Test Statistic	0.171	Lilliefors Lognormal GOF Test	
	10% Lilliefors Critical Value	0.12	Data Not Lognormal at 10% Significance Level	
131				
131 132	Data Not Lo	gnormal at	10% Significance Level	

	Α	В	С	D	Е	F	G	Н	1		J		K	L
134						Lognorma	al Statistics							
135					f Logged Data	0.182					Mean of	f logge	ed Data	1.985
136				Maximum of	f Logged Data	4.143					SD of	f logge	ed Data	0.872
137														
138					Assı	uming Logno	ormal Distrib	ution						
139					95% H-UCL	14.28					hebyshev	•	•	15.19
140					(MVUE) UCL	17.3			97.5	% C	hebyshev	(MVU	E) UCL	20.23
141			99%	Chebyshev	(MVUE) UCL	25.98								
142														
143					-		ition Free UC							
144					Data do n	ot follow a [Discernible D	istribution						
145														
146					-		tribution Fre	e UCLs						
147					95% CLT UCL	12.89				95	5% BCA B			14.01
148					Bootstrap UCL	12.79					95% Bo			14.67
149					Bootstrap UCL	25.49					ercentile B			12.89
150				• •	ean, Sd) UCL	15.01					byshev(Me		•	17.12
151			97.5% C	hebyshev(M	ean, Sd) UCL	20.06			99%	Che	byshev(Me	ean, S	d) UCL	25.83
152														
153							UCL to Use							
154				95% St	udent's-t UCL	12.95								
155														
156		The ca	alculated UC		ed on assump					and	unbiased	mann	er.	
157					se verify the									
158					were collected					ds,				
159				t	hen contact a	statistician	to correctly c	alculate U	CLs.					
160														
161					ection of a 95%	•		•						
162					ıpon data size				•					
163	Н	wever, simu	ulations resu	Its will not co	over all Real W	orld data se	ets; for additio	nal insight	the user ma	ay w	ant to cons	sult a	statistici	an.
164														

	Α	В	С	D	E	F	G	Н	I	J	K	L
2					UCL Stati	stics for Unc	ensored Full	Data Sets				
3		User Sele	ected Options									
4	Dat	te/Time of C		+	2 9/5/2024 10	:43:39 AM						
5			From File	WorkShee	t.xls							
6		Fu	II Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9 10												
	Cobalt											
12	Oobait											
13							Statistics					
14			Total	Number of	Observations	27					Observations	21
15						4.0			Numbe	er of Missing	Observations	0
16 17					Minimum						Mean Median	12.84 9.1
18					Maximum SD					Std	Error of Mean	2.286
19				Coefficier	nt of Variation					Ota.	Skewness	3.095
20												
21							GOF Test					
22				-	Test Statistic					lik GOF Tes		
23			1% S		Critical Value			Data No		1% Significa	ince Level	
24			1		Test Statistic			Data Na		s GOF Test	noo Lovol	
25 26			ı	% Lilletors	Critical Value		│ │% Significar		ot ivormai at	1% Significa	ince Levei	
27					Data 140	t Hormai at	70 Olgillical	ICC LCVCI				
28					As	suming Nor	mal Distribut	ion				
29			95% No	ormal UCL					UCLs (Adj	usted for Sk	ewness)	
30				95% St	udent's-t UCL	16.74					(Chen-1995)	18.06
31									95% Modif	fied-t UCL (J	ohnson-1978)	16.97
32						Commo	GOF Test					
34				A-D	Test Statistic		GOF TEST	Ande	rson-Darling	g Gamma G	OF Test	
35					Critical Value		D				gnificance Lev	/el
36					Test Statistic			Kolmog	jorov-Smirn	nov Gamma	GOF Test	
37					Critical Value					uted at 5% Si	gnificance Lev	/el
38				D	ata Not Gam	ma Distribut	ed at 5% Sig	nificance Le	evel			
39 40						Gamma	Statistics					
41					k hat (MLE)		Otatiotics		k	star (bias co	orrected MLE)	2.044
42				Th	eta hat (MLE)						orrected MLE)	6.285
43					nu hat (MLE)	122.7					ias corrected)	110.4
44			M	LE Mean (bi	ias corrected)	12.84					ias corrected)	8.985
45					. 0: :::	0.0454					e Value (0.05)	87.12
46 47			Adjus	sted Level o	f Significance	0.0401			Α	adjusted Chi	Square Value	85.8
48					As	sumina Gam	ıma Distribut	tion				
49			95% A	pproximate	Gamma UCL	16.27	2.50150		9!	5% Adjusted	Gamma UCL	16.52
50												
51							GOF Test					
52				•	Test Statistic					gnormal GO		
53			10% S		Critical Value					at 10% Signif	icance Level	
54 55			10		Test Statistic Critical Value						i est nificance Level	
56			10		appear Appro					. at 10 /0 Oigi	ourioo Level	
57				_ = = = = =	· · · · · · · · · · · · · · · · · · ·			g				
58							l Statistics					
59					Logged Data						of logged Data	2.317
60			N	Maximum of	Logged Data	4.127				SD o	of logged Data	0.631
61					۸۵۵	umina Loana	rmal Distrib	ution				
62 63					95% H-UCL		ormal Distrib	นแบบ	90%	Chehyshey	(MVUE) UCL	17.03
64			95%	Chebvshev	(MVUE) UCL						(MVUE) UCL	22.18
65					(MVUE) UCL				27.070	- /=/001	·,	
				-	•	•	•					

	Α	В	С	D	Е	F	G	Н	I	J	K	L
66												
67					Nonparamo	etric Distribu	tion Free UC	CL Statistics				
68					Data appea	ar to follow a	Discernible	Distribution				
69												
70					Nonpa	rametric Dis	tribution Fre	e UCLs				
71				95	% CLT UCL	16.6				95% BCA Bo	otstrap UCL	18.76
72			95%	Standard Bo	otstrap UCL	16.51				95% Boo	tstrap-t UCL	20.17
73			9	5% Hall's Bo	otstrap UCL	33.12			95%	Percentile Bo	otstrap UCL	16.88
74			90% Ch	ebyshev(Me	an, Sd) UCL	19.7			95% Cł	nebyshev(Me	an, Sd) UCL	22.81
75			97.5% Ch	ebyshev(Me	an, Sd) UCL	27.12			99% Cł	nebyshev(Me	an, Sd) UCL	35.59
76												
77						Suggested	UCL to Use					
78					95% H-UCL	16.04						
79												
80	l	Note: Sugge:	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to he	lp the user to	select the n	nost appropri	ate 95% UCI	
81		Recom	nmendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fro	m simulation	studies.	
82	Но	wever, simu	lations result	ts will not cov	er all Real V	/orld data se	ts; for addition	onal insight th	ne user may	want to cons	ult a statistic	ian.
83												

	А	В		С	D		Е	F	G	Н	I	J	工	K	工	L
2						L	ICL Stati	stics for Dat	a Sets with N	Non-Detects	i					
3		User Sel	lected	Options	,											
4	Dat	e/Time of				5.2 9/	5/2024 1	1:01:23 AM								
5			Fro	m File	WorkShe	eet_a.	kls									
6			ull Pre		OFF											
7		Confidence			95% 2000											
9	Number o	of Bootstrap	p Opei	alions	2000											
	Molybdenur	n														
11																
12									Statistics							
13				l otal	Number		ervations of Detects				Numb	er of Distino Number				10 25
14 15				N	umber of						Numb	per of Distin				7
16							ım Detec	-						n-Detec		0.95
17					N	√aximu	ım Detec	t 2.9				Maxim	um No	n-Detec	ct	1.1
18					V		e Detect					Perce		-Detect		89.29%
19							n Detect							Detect		0.586
20							n Detects					L.		Detect Detect		0.262 N/A
22					Mean of									Detect	-	0.251
23						- 33 -							- 55			
24									only 3 Dete							
25				Т	his is not	enoug	h to con	npute meani	ngful or relial	ole statistics	and estima	ites.				
26																
27 28							Nor	mal GOF Te	st on Detects	s Only						
29				S	hapiro W	/ilk Tes				J Olliy	Shapiro V	Vilk GOF Te	est			
30					hapiro Wi				D	etected Data				cance L	.evel	
31							t Statisti					s GOF Test				
32				1	% Lilliefo					etected Data		rmal at 1%	Signific	cance L	evel	
33 34									mal at 1% Si eliable for sr							
35					· ·	11016 C	101 1031	s may be am	Chable for 31	nan sample	31203					
36				Kaplan-	Meier (KI	M) Sta	tistics us	ing Normal	Critical Value	es and other	Nonparame	etric UCLs				
37							KM Meaı				K	(M Standard				0.0988
38							90KM SE				050/ 1/14			CA) UC		N/A
39 40							M (t) UCI /I (z) UCI				95% KM (Percentile E 95% KM B		. ,		N/A N/A
41					90% KM (95% KM C				1.518
42					.5% KM (99% KM C			_	2.07
43						-			•							-
44									etected Obs		•					
45							t Statistical Value		Detecto	d data appe	Anderson-D			Significa		Laval
46 47							t Statisti		Detecte		Kolmogorov			JIGI IIII CC	ii iC C	FEAGI
48							cal Value		Detecte	d data appe				Significa	ance	Level
49									tributed at 5							
50																
51						1, 1		1	n Detected [Data Only	1	cotor/bica		tod MI F	- 1	NI/A
52 53					-		nat (MLE nat (MLE	<i>'</i>				star (bias o				N/A N/A
54							nat (MLE	•			111010	nu star (N/A
55							(detects	-				(
56								, I	1							
57				-					using Impute							
58		CDOC **							% NDs with n					-1E 00	1)	
59 60		GRUS M	ay not						as <1.0, espe				(e.g.,	< 15-20)	
61				1 0	, JUGII 311				en the sampl			J 1 V 3				
_		For a	amma	distribu	ted detect				ay be compu			ution on KM	l estim	ates		
62		- 3	amma			ica aai			1						\neg	
63			amma				Minimun							Mea		0.261
		- 3					Minimun Maximun SI	n 2.9						Mea Media	n	0.261 0.01 2.739

								-			_		
	A	В	С	D	L bot /		F 0.201	G	Н	<u> </u>	J k atar (bian a	K K	L 0.202
66					k hat (0.291 0.899					orrected MLE)	0.283 0.922
67				- 11	heta hat (16.27			Ineta	•	orrected MLE)	15.86
68			Adjustos	Level of S	nu hat (0.0404				nu star (t	nas correcteu)	13.60
69 70		۸۰۰	oroximate Ch			,	7.865			Adjusted C	hi Sauara W	alue (15.86, β)	7.517
71		Aþl		amma Apı			0.527					Adjusted UCL	7.517 N/A
72			93 /6 C	анша Ар	proximate	OCL	0.527				33 /6 Gairiiria	Aujusteu UCL	IN/A
73					Fetimata	s of G	amma Para	meters using	ı KM Fetims	atee			
74					Mean		1.088	inotora dani	J IXIVI ESUITIO	103		SD (KM)	0.427
75					Variance	, ,	0.182				SF	of Mean (KM)	0.0988
76						(KM)	6.495					k star (KM)	5.823
77					nu hat		363.7					nu star (KM)	326.1
78					theta hat		0.167				t	heta star (KM)	0.187
79			809	% gamma p			1.438			90		ercentile (KM)	1.69
80				% gamma p			1.919					ercentile (KM)	2.399
81				31		(/					· · J· · · ·	,	
82					(Gamm	a Kaplan-M	eier (KM) St	atistics				
83		Appr	roximate Chi	Square Va			285.3			Adjusted Ch	ni Square Val	lue (326.10, β)	282.9
84		•	95% KM A				1.243					I Gamma UCL	1.254
85				••									
86					Lognorm	al GO	F Test on D	etected Obs	ervations C	nly			
87			5	Shapiro Wil			0.906				Vilk GOF Te	st	
88			10% S	hapiro Will	c Critical	Value	0.789	Dete	cted Data a	ppear Logn	ormal at 10%	6 Significance I	Level
89				Lilliefor	s Test Sta	atistic	0.305			Lilliefor	s GOF Test		
90			10	% Lilliefors	s Critical '	Value	0.389	Dete	cted Data a	ppear Logn	ormal at 10%	6 Significance I	Level
91				De	tected Da	ata ap	ear Lognor	mal at 10%	Significance	Level		-	
92				N	ote GOF	tests	may be unre	liable for sn	nall sample	sizes			
93													
94					Lognorma	al ROS	Statistics	Using Imput	ed Non-Det	ects			
95				Mean in	Original	Scale	0.652				Mea	n in Log Scale	-0.709
96				SD in	Original	Scale	0.617					D in Log Scale	0.712
97		95% t l	JCL (assume	es normalit	y of ROS	data)	0.851			95%	6 Percentile B	Bootstrap UCL	0.855
98				95% BCA	Bootstrap	UCL	0.913				95% B	ootstrap t UCL	0.969
99				95% H-U	ICL (Log	ROS)	0.849						
100													
101			Statis					Data and As	suming Log	normal Dis			
102					Mean (lo		0.038					KM Geo Mean	1.039
103				K	M SD (lo	gged)	0.266			95%		alue (KM-Log)	1.783
104			KM Standa				0.0616					JCL (KM -Log)	1.179
105					M SD (lo		0.266			95%	6 Critical H V	alue (KM-Log)	1.783
106			KM Standa	rd Error of	Mean (lo	gged)	0.0616						
107													
108							DL/2 S	tatistics					
109			DL/2	Normal						DL/2 Log	-Transforme		2 - 12
110					Original		0.682					n in Log Scale	-0.543
111					Original		0.57					D in Log Scale	0.474
112				JCL (Assu			0.866					% H-Stat UCL	0.775
113			DL/2	is not a re	commend	ded me	ethod, provi	ded for comp	parisons and	historical	reasons		
114					h.		ed. Di vii	Marie Et	N 01-11-11				
115				D.: :				tion Free UC					
116				Detect	ea Data	appea	r Normal Dis	stributed at	1% Significa	ince Level			
117							Cummart: !	1101 4- 11-					
118					EO/ 1/84 /·	LIO!		UCL to Use					
119				98	5% KM (t)	UCL	1.256						
120		Notes Comme	otiono =====	lina tha a - 1	lootice of	o 050/	LICI ana ma	ovidod to le-l	la tha	2 00l0 54 4k -	most cons	rioto OEO/ LIOI	
121									-			oriate 95% UCL	
122	L1.		nmendations										ian
123	Н	owever, Simil	nauons resul	is will flot C	over all F	vedi VV	onu uata se	is, ioi addillo	mai msigni t	ne user ma	y want to cor	nsult a statistici	all.
124													