Priority Development Project (PDP) Storm Water Quality Management Plan (SWQMP) KA Enterprises C-Store and Car Wash

Permit Application Number: PRJ-1054862

Drawing Number \_\_\_\_\_\_, I.O. Number\_

Check if electing for offsite alternative compliance

**Engineer of Work:** 

atri de

Patric de Boer Provide Wet Signature and Stamp Above Line

**Prepared For:** KA Enterprises 5820 Orbelin Drive, Suite 201 San Diego, CA 92121

**Prepared By:** 

Omega Engineering Consultants 4320 Viewridge Ave, Suite C San Diego, CA 92113 (858) 634-8620 Date: 08/25/2023

Approved by: City of San Diego

Date





# **Table of Contents**

- Acronyms
- Certification Page
- Submittal Record
- Project Vicinity Map
- FORM DS-560: Storm Water Applicability Checklist
- FORM I-1: Applicability of Permanent, Post-Construction Storm Water BMP Requirements
- HMP Exemption Exhibit (for all hydromodification management exempt projects)
- FORM I-3B: Site Information Checklist for PDPs
- FORM I-4B: Source Control BMP Checklist for PDPs
- FORM I-5B: Site Design BMP Checklist PDPs
- FORM I-6: Summary of PDP Structural BMPs
- Attachment 1: Backup for PDP Pollutant Control BMPs
  - o Attachment 1a: DMA Exhibit
  - Attachment 1b: Tabular Summary of DMAs (Worksheet B-1 from Appendix B) and Design Capture Volume Calculations
  - Attachment 1c: FORM I-7 : Worksheet B.3-1 Harvest and Use Feasibility Screening
  - Attachment 1d: Infiltration Feasibility Information(One or more of the following):
    - FORM I-8A: Worksheet C.4-1 Categorization of Infiltration Feasibility Condition based on Geotechnical Conditions
    - Form I-8B: Worksheet C.4-2 Categorization of Infiltration Feasibility Condition based on Groundwater and Water Balance Conditions
    - Infiltration Feasibility Condition Letter
    - Worksheet C.4-3: Infiltration and Groundwater Protection for Full Infiltration BMPs
    - FORM I-9: Worksheet D.5-1 Factor of Safety and Design Infiltration Rate
  - Attachment 1e: Pollutant Control BMP Design Worksheets / Calculations
- Attachment 2: Backup for PDP Hydromodification Control Measures
  - Attachment 2a: Hydromodification Management Exhibit
  - Attachment 2b: Management of Critical Coarse Sediment Yield Areas
  - Attachment 2c: Geomorphic Assessment of Receiving Channels
  - o Attachment 2d: Flow Control Facility Design



- Attachment 3: Structural BMP Maintenance Plan
  - Maintenance Agreement (Form DS-3247) (when applicable)
- Attachment 4: Copy of Plan Sheets Showing Permanent Storm Water BMPs
- Attachment 5: Project's Drainage Report
- Attachment 6: Project's Geotechnical and Groundwater Investigation Report



## Acronyms

| APN     | Assessor's Parcel Number                        |
|---------|-------------------------------------------------|
| ASBS    | Area of Special Biological Significance         |
| BMP     | Best Management Practice                        |
| CEQA    | California Environmental Oualitv Act            |
| CGP     | Construction General Permit                     |
| DCV     | Design Capture Volume                           |
| DMA     | Drainage Management Areas                       |
| ESA     | Environmentally Sensitive Area                  |
| GLU     | Geomorphic Landscape Unit                       |
| GW      | Ground Water                                    |
| HMP     | Hvdromodification Management Plan               |
| HSG     | Hvdrologic Soil Group                           |
| HU      | Harvest and Use                                 |
| INF     | Infiltration                                    |
| LID     | Low Impact Development                          |
| LUP     | Linear Underground/Overhead Proiects            |
| MS4     | Municipal Separate Storm Sewer System           |
| N/A     | Not Applicable                                  |
| NPDES   | National Pollutant Discharge Elimination System |
| NRCS    | Natural Resources Conservation Service          |
| PDP     | Priority Development Proiect                    |
| PE      | Professional Engineer                           |
| POC     | Pollutant of Concern                            |
| SC      | Source Control                                  |
| SD      | Site Design                                     |
| SDRWQCB | San Diego Regional Water Ouality Control Board  |
| SIC     | Standard Industrial Classification              |
| SWPPP   | Stormwater Pollutant Protection Plan            |
| SWQMP   | Storm Water Quality Management Plan             |
| TMDL    | Total Maximum Dailv Load                        |
| WMAA    | Watershed Management Area Analysis              |
| WPCP    | Water Pollution Control Program                 |
| WQIP    | Water Quality Improvement Plan                  |
|         |                                                 |



## **Certification Page**

Project Name:KA Enterprises C-Store and Car WashPermit ApplicationPRJ-1054862

I hereby declare that I am the Engineer in Responsible Charge of design of storm water BMPs for this project, and that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the requirements of the Storm Water Standards, which is based on the requirements of SDRWQCB Order No. R9-2013-0001 as amended by R9-2015-0001 and R9-2015-0100 (MS4 Permit).

I have read and understand that the City Engineer has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the Storm Water Standards. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable source control and site design BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by the City Engineer is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

atrin de Bour

Engineer of Work's Signature

83583

03/03/2025

PE#

Expiration Date

## Patric T. de Boer

Print Name

## **Omega Engineering Consultants**

Company

8/29/2023

Date





# Submittal Record

Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is re-submitted, provide the date and status of the project. In last column indicate changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments.

| Submittal<br>Number | Date       | Project Status                        | Changes           |
|---------------------|------------|---------------------------------------|-------------------|
| 1                   | 02/01/2022 | Preliminary<br>Design/Planning/CEQA   | Initial Submittal |
|                     |            | Final Design                          |                   |
| 2                   | 3/21/2023  | ✓ Preliminary<br>Design/Planning/CEQA | 2nd Submittal     |
|                     |            | Final Design                          |                   |
| 3                   | 08/29/2023 | Preliminary<br>Design/Planning/CEQA   | 3rd submittal     |
| -                   |            | Final Design                          |                   |
| 4                   |            | Preliminary<br>Design/Planning/CEQA   |                   |
| •                   |            | Final Design                          |                   |



# **Project Vicinity Map**

**Project Name:** KA Enterprises C-Store and Car Wash **Permit Application** PRJ-1054862





# City of San Diego Form DS-560 Storm Water Requirements Applicability Checklist

Attach DS-560 form.

7 The City of San Diego | Storm Water Standards PDP SWQMP Template | January 2018 Edition







# Stormwater Requirements Applicability Checklist

**Project Address:** 

**Project Number:** 

#### SECTION 1: Construction Stormwater Best Management Practices (BMP) Requirements

All construction sites are required to implement construction BMPs per the performance standards in the <u>Stormwater Standards</u> <u>Manual</u>. Some sites are also required to obtain coverage under the State Construction General Permit (CGP)<sup>1</sup>, administered by the <u>California State Water Resources Control Board</u>.

# For all projects, complete Part A - If the project is required to submit a Stormwater Pollution Prevention Plan (SWPPP) or Water Pollution Control Plan (WPCP), continue to Part B.

PART A - Determine Construction Phase Stormwater Requirements

 Is the project subject to California's statewide General National Pollutant Discharge Elimination System (NPDES) permit for Stormwater Discharges Associated with Construction Activities, also known as the State Construction General Permit (CGP)? (Typically projects with land disturbance greater than or equal to 1 acre.)

O Yes, SWPPP is required; skip questions 2-4.

O No; proceed to the next question.

O No; proceed to the next question.

2. Does the project propose construction or demolition activity, including but not limited to, clearing, grading, grubbing, excavation, or any other activity resulting in ground disturbance and/or contact with stormwater?

O Yes, WPCP is required; skip questions 3-4.

3. Does the project propose routine maintenance to maintain the original line and grade, hydraulic capacity, or original purpose of the facility? (Projects such as pipeline/utility replacement)

O Yes, WPCP is required; skip question 4. O No; proceed to the next question.

- 4. Does the project only include the following Permit types listed below?
  - Electrical Permit, Fire Alarm Permit, Fire Sprinkler Permit, Plumbing Permit, Sign Permit, Mechanical Permit, Spa Permit.
  - Individual Right of Way Permits that exclusively include only ONE of the following activities: water service, sewer lateral, or utility service.
  - Right of Way Permits with a project footprint less than 150 linear feet that exclusively include only ONE of the following
    activities: curb ramp, sidewalk and driveway apron replacement, potholing, curb and gutter replacement, and retaining
    wall encroachments.

Sector Yes, no document is required.

#### Check one of the boxes below and continue to Part B

- O If you checked "Yes" for question 1, an SWPPP is REQUIRED continue to Part B
- O If you checked "No" for question 1 and checked "Yes" for question 2 or 3, a WPCP is REQUIRED. If the project proposes less than 5,000 square feet of ground disturbance AND has less than a 5-foot elevation change over the entire project area, a Minor WPCP may be required instead. Continue to Part B
- O If you check "No" for all questions 1-3 and checked "Yes" for question 4, Part B does not apply, and no document is required. Continue to Section 2.

**CLEAR FORM** 

Visit our web site: <u>sandiego.gov/dsd</u>.

Upon request, this information is available in alternative formats for persons with disabilities. DS-560 (09-21)

<sup>&</sup>lt;sup>1</sup> More information on the City's construction BMP requirements as well as CGP requirements can be found at http://www.sandiego.gov/stormwater/regulations/index.shtml

#### PART B - Determine Construction Site Priority

This prioritization must be completed within this form, noted on the plans, and included in the SWPPP or WPCP. The city reserves the right to adjust the priority of projects both before and after construction. Construction projects are assigned an inspection frequency based on if the project has a "high threat to water quality." The City has aligned the local definition of "high threat to water quality" to the risk determination approach of the State Construction General Permit (CGP). The CGP determines risk level based on project specific sediment risk and receiving water risk. Additional inspection is required for projects within the Areas of Special Biological Significance (ASBS) watershed. **NOTE:** The construction priority does **NOT** change construction BMP requirements that apply to projects; rather, it determines the frequency of inspections that will be conducted by city staff.

#### Complete Part B and continue to Section 2

#### 1. ASBS

A. Projects located in the ASBS watershed.

#### 2. High Priority

- A. Projects that qualify as Risk Level 2 or Risk Level 3 per the Construction General Permit (CGP) and are not located in the ASBS watershed.
- B. Projects that qualify as LUP Type 2 or LUP Type 3 per the CGP and are not located in the ASBS watershed.

#### 3. Medium Priority

- A. Projects that are not located in an ASBS watershed or designated as a High priority site.
- B. Projects that qualify as Risk Level 1 or LUP Type 1 per the CGP and are not located in an ASBS watershed.
- C. WPCP projects (>5,000 square feet of ground disturbance) located within the Los Peñasquitos watershed management area.

#### 4. Low Priority

A. Projects not subject to a Medium or High site priority designation and are not located in an ASBS watershed.

#### **Section 2: Construction Stormwater BMP Requirements**

Additional information for determining the requirements is found in the Stormwater Standards Manual.

#### PART C - Determine if Not Subject to Permanent Stormwater Requirements

Projects that are considered maintenance or otherwise not categorized as "new development projects" or "redevelopment projects" according to the <u>Stormwater Standards Manual</u> are not subject to Permanent Stormwater BMPs.

- If "yes" is checked for any number in Part C: Proceed to Part F and check "Not Subject to Permanent Stormwater BMP Requirements."
- If "no" is checked for all the numbers in Part C: Continue to Part D.
- 1. Does the project only include interior remodels and/or is the project entirely within an existing enclosed structure and does not have the potential to contact stormwater?

O Yes O No

2. Does the project only include the construction of overhead or underground utilities without creating new impervious surfaces?

O Yes O No

3. Does the project fall under routine maintenance? Examples include but are not limited to roof or exterior structure surface replacement, resurfacing or reconfiguring surface parking lots or existing roadways without expanding the impervious footprint, and routine replacement of damaged pavement (grinding, overlay and pothole repair).

O Yes O No

#### **CLEAR FORM**

#### **PART D –** PDP Exempt Requirements

PDP Exempt projects are required to implement site design and source control BMPs.

- If "yes" is checked for any questions in Part D, continue to Part F and check the box labeled "PDP Exempt."
- If "no" is checked for all questions in Part D, continue to Part E.
- 1. Does the project ONLY include new or retrofit sidewalks, bicycle lanes, or trails that:
  - Are designed and constructed to direct stormwater runoff to adjacent vegetated areas, or other non-erodible permeable areas? Or;
  - Are designed and constructed to be hydraulically disconnected from paved streets and roads? Or;
  - Are designed and constructed with permeable pavements or surfaces in accordance with the Green Streets guidance in the City's Stormwater Standards manual?

O Yes, PDP exempt requirements apply O No, proceed to next question

2. Does the project ONLY include retrofitting or redeveloping existing paved alleys, streets or roads designed and constructed in accordance with the Green Streets guidance in the <u>City's Stormwater Standards Manual</u>?

O Yes, PDP exempt requirements apply O No, proceed to next question

PART E - Determine if Project is a Priority Development Project (PDP)

Projects that match one of the definitions below are subject to additional requirements, including preparation of a Stormwater Quality Management Plan (SWQMP).

- If "yes" is checked for any number in Part E, continue to Part F and check the box labeled "Priority Development Project."
- If "no" is checked for every number in Part E, continue to Part F and check the box labeled "Standard Development Project."

| 1. | New development that creates 10,000 square feet or more of impervious surfaces collectively over<br>the project site. This includes commercial, industrial, residential, mixed-use, and public development<br>projects on public or private land.                                                                                                                                                           | <b>O</b> Yes | ONo |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 2. | Redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surfaces on an existing site of 10,000 square feet or more of impervious surfaces. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.                                                                                                      | OYes         | ONo |
| 3. | <b>New development or redevelopment of a restaurant.</b> Facilities that sell prepared foods and beverages for consumption, including stationary lunch counters and refreshment stands selling prepared foods and drinks for immediate consumption (Standard Industrial Classification (SIC) 5812), and where the land development creates and/or replaces 5,000 square feet or more of impervious surface. | OYes         | ONo |
| 4. | <b>New development or redevelopment on a hillside.</b> The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site) and where the development will grade on any natural slope that is twenty-five percent or greater.                                                                                                                           | <b>O</b> Yes | ONo |
| 5. | New development or redevelopment of a parking lot that creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).                                                                                                                                                                                                                                        | <b>O</b> Yes | ONo |
| 6. | <b>New development or redevelopment of streets, roads, highways, freeways, and driveways.</b> The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).                                                                                                                                                                                     | <b>O</b> Yes | ONo |

City of San Diego • Form DS-560 • September 2021

# the project requires hydromodification plan management. Title Rogelio Ruiz Signature Date

open channel any distance as an isolated flow from the project to the ESA (i.e. not commingled with flows from adjacent lands). OYes ONo 8. New development or redevelopment projects of retail gasoline outlet (RGO) that create and/or replaces 5,000 square feet of impervious surface. The development project meets the following criteria: (a) 5,000 square feet or more or (b) has a projected Average Daily Traffic (ADT) of 100 or more vehicles per day.

7. New development or redevelopment discharging directly to an environmentally sensitive area. The

project creates and/or replaces 2,500 square feet of impervious surface (collectively over the project site), and discharges directly to an Environmentally Sensitive Area (ESA). "Discharging directly to" includes flow that is conveyed overland a distance of 200 feet or less from the project to the ESA, or conveyed in a pipe or

| 9. | New development or redevelopment projects of an automotive repair shop that creates and/or replaces 5,000 square feet or more of impervious surfaces. Development projects categorized in any one |  | <b>O</b> No |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|
|    | of Standard Industrial Classification (SIC) codes <u>5013</u> , <u>5014</u> , <u>5541</u> , <u>7532-7534</u> or <u>7536-7539</u> .                                                                |  |             |

| 10. | <b>Other Pollutant Generating Project.</b> These projects are not covered in any of the categories above but involve the disturbance of one or more acres of land and are expected to generate post-construction phase pollutants, including fertilizers and pesticides. This category does not include projects creating less than 5,000 square feet of impervious area and projects containing landscaping without a requirement for the | <b>O</b> Yes | <b>O</b> No |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
|     | regular use of fertilizers and pesticides (such as a slope stabilization project using native plants). Impervious                                                                                                                                                                                                                                                                                                                          |              |             |
|     | area calculations need not include linear pathways for infrequent vehicle use, such as emergency                                                                                                                                                                                                                                                                                                                                           |              |             |
|     | maintenance access or bicycle and pedestrian paths if the linear pathways are built with pervious surfaces                                                                                                                                                                                                                                                                                                                                 |              |             |
|     | or if runoff from the pathway sheet flows to adjacent pervious areas.                                                                                                                                                                                                                                                                                                                                                                      |              |             |

PART F - Select the appropriate category based on the outcomes of Part C through Part E

| 1. | The project is NOT SUBJECT TO PERMANENT STORMWATER REQUIREMENTS                                                                                                                                                            | OYes | <b>O</b> No |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| 2. | The project is a <b>STANDARD DEVELOPMENT PROJECT</b> . Site design and source control BMP requirements apply. See the <u>Stormwater Standards Manual</u> for guidance.                                                     | OYes | <b>O</b> No |
| 3. | The Project is <b>PDP EXEMPT</b> . Site design and source control BMP requirements apply. Refer to the <u>Stormwater Standards Manual</u> for guidance.                                                                    | OYes | <b>O</b> No |
| 4. | The project is a <b>PRIORITY DEVELOPMENT PROJECT</b> . Site design, source control and structural pollutant control BMP requirements apply. Refer to the <u>Stormwater Standards Manual</u> for guidance on determining if | OYes | <b>O</b> No |

Name of Owner or Agent

**CLEAR FORM** 

Page 4

**O**No

**O**Yes

## THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING



| Applicability of Permane                                        | ent, Post-Con           | struction     | Form I-1                                              |
|-----------------------------------------------------------------|-------------------------|---------------|-------------------------------------------------------|
| Storm Water BMP Requirements                                    |                         |               |                                                       |
| Project lo                                                      | dentification           |               |                                                       |
| Project Name: KA Enterprises C-Store and Car Wash               |                         |               |                                                       |
| Permit Application Number: PRJ-1054862                          |                         |               | Date: 10/06/2022                                      |
| Determination                                                   | of Requireme            | nts           | · · · ·                                               |
| The purpose of this form is to identify permanen                | t, post-constru         | iction requir | rements that apply to the                             |
| separate forms that will serve as the backup for t              | he determinat           | ion of requi  | n some cases referencing<br>irements.                 |
| Answer each step below, starting with <b>Step 1</b> and         | l progressing th        | hrough eacl   | n step until reaching                                 |
| "Stop". Refer to the manual sections and/or sepa                | rate forms refe         | erenced in e  | each step below.                                      |
| Step                                                            | Answer                  | Carla Cha     | Progression                                           |
| step 1: is the project a "development"                          | <b>√</b> <sup>Yes</sup> | Go to Ste     | p 2.                                                  |
| (Part 1 of Storm Water Standards) for                           | No                      | Stop. Peri    | manent BMP                                            |
| guidance.                                                       |                         | requirem      | ents do not apply. No                                 |
|                                                                 |                         | SWQMP v       | vill be required. Provide                             |
|                                                                 |                         | discussio     | n below.                                              |
|                                                                 |                         |               |                                                       |
| <b>Step 2:</b> Is the project a Standard Project, PDP, or       | Standard                | Stop. Stan    | idard Project                                         |
| To answer this item, see Section 1.4 of the                     | Project                 | requireme     | ents apply                                            |
| manual in its entirety for guidance AND                         | ✓ PDP                   | PDP requi     | rements apply, including<br>MP. Go to <b>Step 3</b> . |
| complete Form DS-560, Storm Water                               |                         | Stop. Star    | ndard Project                                         |
| Requirements Applicability Checklist.                           | Exempt                  | requirem      | ents apply. Provide                                   |
|                                                                 |                         | discussio     | n and list any additional                             |
|                                                                 |                         | requirem      | ents below.                                           |
| Discussion / justification, and additional requirer applicable: | nents for exce          | ptions to PE  | OP definitions, if                                    |



| Form I-1                                                                                         | Page 2 of 2     |                                           |
|--------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------|
| Step                                                                                             | Answer          | Progression                               |
| Step 3. Is the project subject to earlier PDP                                                    | Yes             | Consult the City Engineer to              |
| requirements due to a prior lawful approval?                                                     |                 | determine requirements.                   |
| See Section 1.10 of the manual (Part 1 of                                                        |                 | Provide discussion and identify           |
| Storm Water Standards) for guidance.                                                             |                 | requirements below. Go to <b>Step 4</b> . |
|                                                                                                  | <b>√</b> No     | BMP Design Manual PDP                     |
|                                                                                                  |                 | requirements apply. Go to <b>Step 4</b> . |
| Discussion / justification of prior lawful approval,<br><u>lawful approval does not apply</u> ): | and identify re | quirements ( <u>not required if prior</u> |
| Step 4. Do hydromodification control                                                             | <b>√</b> Yes    | PDP structural BMPs required for          |
| requirements apply?                                                                              |                 | pollutant control (Chapter 5) and         |
| See Section 1.6 of the manual (Part 1 of                                                         |                 | hydromodification control (Chapter        |
| Storm Water Standards) for guidance.                                                             |                 | 6). Go to <b>Step 5</b> .                 |
|                                                                                                  | No              | Stop. PDP structural BMPs required        |
|                                                                                                  |                 | for pollutant control (Chapter 5)         |
|                                                                                                  |                 | only. Provide brief discussion of         |
|                                                                                                  |                 | exemption to hydromodification            |
|                                                                                                  |                 | control below.                            |
| Discussion / justification if hydromodification cor                                              | itrol requireme | nts do <u>not</u> apply:                  |
| Step 5. Does protection of critical coarse                                                       | Yes             | Management measures required              |
| sediment yield areas apply?                                                                      |                 | for protection of critical coarse         |
| See Section 6.2 of the manual (Part 1 of                                                         |                 | sediment yield areas (Chapter 6.2).       |
| Storm Water Standards) for guidance.                                                             |                 | Stop.                                     |
|                                                                                                  | <b>√</b> No     | Management measures not                   |
|                                                                                                  |                 | required for protection of critical       |
|                                                                                                  |                 | coarse sediment yield areas.              |
|                                                                                                  |                 | Provide brief discussion below.           |
|                                                                                                  |                 | Stop.                                     |
| Discussion / justification if protection of critical co                                          | barse sediment  | : yield areas does <u>not</u> apply:      |
|                                                                                                  |                 |                                           |
|                                                                                                  |                 |                                           |



# **HMP Exemption Exhibit**

Attach a HMP Exemption Exhibit that shows direct storm water runoff discharge from the project site to HMP exempt area. Include project area, applicable underground storm drain line and/or concrete lined channels, outfall information and exempt waterbody. Reference applicable drawing number(s).

Exhibit must be provided on 11"x17" or larger paper.

PROJECT IS NOT HMP EXEMPT. CALCULATIONS AND DMA SHEET ARE PROVIDED IN ATTACHMENT 1



## THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING



| Site Info                                                                                                                     | For PDPs Form I-3B                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Project Sun                                                                                                                   | nmary Information                                                                                                         |
| Project Name                                                                                                                  | KA Enterprises C-Store and Car Wash                                                                                       |
| Project Address                                                                                                               | 3060 Carmel Valley Rd.<br>San Diego, CA 92130                                                                             |
| Assessor's Parcel Number(s) (APN(s))                                                                                          | 307-240-07                                                                                                                |
| Permit Application Number                                                                                                     | PRJ-1054862                                                                                                               |
| Project Watershed                                                                                                             | Select One:<br>☐San Dieguito River<br>Penasquitos<br>☐Mission Bay<br>☐San Diego River<br>☐San Diego Bay<br>☐Tijuana River |
| Hydrologic subarea name with Numeric<br>Identifier up to two decimal places (9XX.XX)                                          | 906.10                                                                                                                    |
| Project Area<br>(total area of Assessor's Parcel(s) associated<br>with the project or total area of the right-of-<br>way)     | <u>0.88</u> Acres ( <u>38,483</u> Square Feet)                                                                            |
| Area to be disturbed by the project<br>(Project Footprint)                                                                    | <u>0.77</u> Acres ( <u>33,541</u> Square Feet)                                                                            |
| Project Proposed Impervious Area<br>(subset of Project Footprint)                                                             | <u>0.56</u> Acres ( <u>24,245</u> Square Feet)                                                                            |
| Project Proposed Pervious Area<br>(subset of Project Footprint)                                                               | <u>0.21</u> Acres ( <u>9,296</u> Square Feet)                                                                             |
| Note: Proposed Impervious Area + Proposed Po<br>This may be less than the Project Area.                                       | ervious Area = Area to be Disturbed by the Project.                                                                       |
| The proposed increase or decrease in<br>impervious area in the proposed condition as<br>compared to the pre-project condition | 8%                                                                                                                        |



| Form I-3B Page 2 of 11                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of Existing Site Condition and Drainage Patterns                                                                                                                                                                                                      |
| Current Status of the Site (select all that apply):                                                                                                                                                                                                               |
| ✓Existing development                                                                                                                                                                                                                                             |
| Previously graded but not built out                                                                                                                                                                                                                               |
| □Agricultural or other non-impervious use                                                                                                                                                                                                                         |
| □Vacant, undeveloped/natural                                                                                                                                                                                                                                      |
| Description / Additional Information:                                                                                                                                                                                                                             |
| The existing development consists of a convenience store, gas station canopy and asphalt parking lot on the lower portion of the lot. The upper portion of the lot has an asphalt parking lot. The site is currently 68% impervious with a general slope of 4.1%. |
| Existing Land Cover Includes (select all that apply):                                                                                                                                                                                                             |
| ☑ Vegetative Cover                                                                                                                                                                                                                                                |
| □Non-Vegetated Pervious Areas                                                                                                                                                                                                                                     |
| Impervious Areas                                                                                                                                                                                                                                                  |
| Description / Additional Information:                                                                                                                                                                                                                             |
| The impervious areas consist of a convenience store, gas station canopy, and asphalt parking lots. The pervious areas consist of landscape area and undeveloped portions of the site.                                                                             |
| Underlying Soil belongs to Hydrologic Soil Group (select all that apply):                                                                                                                                                                                         |
| □NRCS Type A                                                                                                                                                                                                                                                      |
| NRCS Type B                                                                                                                                                                                                                                                       |
| □NRCS Type C                                                                                                                                                                                                                                                      |
| ☑NRCS Type D                                                                                                                                                                                                                                                      |
| Approximate Depth to Groundwater:                                                                                                                                                                                                                                 |
| □Groundwater Depth < 5 feet                                                                                                                                                                                                                                       |
| ☐5 feet < Groundwater Depth < 10 feet                                                                                                                                                                                                                             |
| ☑ 10 feet < Groundwater Depth < 20 feet                                                                                                                                                                                                                           |
| Groundwater Depth > 20 feet                                                                                                                                                                                                                                       |
| Existing Natural Hydrologic Features (select all that apply):                                                                                                                                                                                                     |
| Watercourses                                                                                                                                                                                                                                                      |
| □ Seeps                                                                                                                                                                                                                                                           |
| □ Springs                                                                                                                                                                                                                                                         |
| □ Wetlands                                                                                                                                                                                                                                                        |
| I ∕ None                                                                                                                                                                                                                                                          |
| Description / Additional Information:                                                                                                                                                                                                                             |
| N/A                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                   |



| Form I-3B Page 3 of 11                                                                          |
|-------------------------------------------------------------------------------------------------|
| Description of Existing Site Topography and Drainage                                            |
| How is storm water runoff conveyed from the site? At a minimum, this description should answer: |
| 1. Whether existing drainage conveyance is natural or urban;                                    |
| 2. If runoff from offsite is conveyed through the site? If yes, quantification of all offsite   |
| drainage areas, design flows, and locations where offsite flows enter the project site and      |
| summarize how such flows are conveyed through the site;                                         |
| 3. Provide details regarding existing project site drainage conveyance network, including       |
| storm drains, concrete channels, swales, detention facilities, storm water treatment            |
| Identify all discharge locations from the existing project along with a summary of the          |
| 4. Conveyance system size and canacity for each of the discharge locations. Provide             |
| summary of the pre-project drainage areas and design flows to each of the existing runoff       |
| discharge locations.                                                                            |
| Descriptions/Additional Information                                                             |
| 1. The existing drainage conveyance is urban and consists of overland flow and                  |
| surface flow along the asphalt parking lot                                                      |
|                                                                                                 |
| 2. No offsite runoff is expected to enter the site.                                             |
|                                                                                                 |
| 3. The existing site does not have an on-site storm drain system. The site drains via           |
| overland flow and surface flow to the curb inlets on Carmel Valley Road.                        |
|                                                                                                 |
| 4. The entire site drains to a single discharge point.                                          |
|                                                                                                 |
| The northerly portion of the lot drains towards the southerly developed portion of              |
| the lot via an asphalt swale. The runoff then drains via surface flow to Carmel Valley.         |
| Road and ultimately to the catch basin on the northeasterly corner of the                       |
| intersection of Carmel Valley Read and the on ramp to Interstate E North. This point            |
| intersection of Carmer valley Road and the on-ramp to interstate 5 North. This point            |
| is referred to as Discharge Point # 1 in the Drainage Study.                                    |
| The existing conditions has a 100-year flow of 2.86 cfs for Discharge Point # 1                 |
| The existing conditions has a roo-year new of 2.00 cis for Discharge round $\#$ 1.              |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |



## Form I-3B Page 4 of 11

Description of Proposed Site Development and Drainage Patterns

Project Description / Proposed Land Use and/or Activities:

The project proposes to demo the existing convenience store and construct a new convenience store. In addition, a car wash will be constructed along with its associated improvements. The existing canopy will remain. The proposed improvements include landscape, on-site storm drain system, tree wells subsurface detention facility and Modular Wetland System. The subsurface detention facility and Modular Wetland System will be located along the southerly portion of the site. The conveyed runoff will discharge at the public storm drain system on Carmel Valley Road.

Off-site street improvements include the driveways, sidewalk, and curb and gutter.

List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features):

The impervious features of the site consist of building roof, gas station canpy, driveways and hardscape.

List/describe proposed pervious features of the project (e.g., landscape areas): The pervious features of the site consist of landscape areas and tree wells.

Does the project include grading and changes to site topography?

☑ Yes □ No

Description / Additional Information:

The proposed project will change the site topography but will keep the same discharge points as the existing conditions.



## Form I-3B Page 5 of 11

Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)?

✓Yes

□No

If yes, provide details regarding the proposed project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural and constructed channels, and the method for conveying offsite flows through or around the proposed project site. Identify all discharge locations from the proposed project site along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide a summary of pre and post-project drainage areas and design flows to each of the runoff discharge locations. Reference the drainage study for detailed calculations.

Description / Additional Information:

The site was analyzed as a single drainage basin that encompasses the proposed convenience store, car wash, landscape and hardscape. The site will modify the drainage patterns of the site but will keep the same discharge point as the existing conditions.

The project proposes to add an on-site storm drain system with the addition of brow ditches, gutters and catch basins to hep convey runoff to the discharge point.

The runoff generated by the majority of the site will drain to a series of catch basins and drain towards the southwesterly corner of the site where it conveys to a subsurface detention facility. The subsurface detention facility will consist of a 900-sf gravel filled, subsurface detention with a row of 8 Stormtech SC-740 storage arches. The detention system is assumed to be full during the peak of the 100-year storm. No attenuation of peak flows is assumed in this analysis. Following detention and treatment, the flow will drain to an area drain located on the southeasterly landscape area. Finally, a 12" pipe will hard-connect to the existing curb inlet on the public sidewalk. This point is referred to as Discharge Point # 1 in this report.

The southeasterly corner of the site drains to the landscape area located on the southeasterly corner of the site. The runoff then drains to an area drain where it confluences with the runoff discharged from the subsurface detention basin.

See Drainage Study included in Attachment 5 for calculations.



| Form I-3B Page 6 of 11                                                                            |
|---------------------------------------------------------------------------------------------------|
| Identify whether any of the following features, activities, and/or pollutant source areas will be |
| present (select all that apply):                                                                  |
| ☑Onsite storm drain inlets                                                                        |
| Interior floor drains and elevator shaft sump pumps                                               |
| Interior parking garages                                                                          |
| ☑Need for future indoor & structural pest control                                                 |
| ☑Landscape/outdoor pesticide use                                                                  |
| Pools, spas, ponds, decorative fountains, and other water features                                |
| Food service                                                                                      |
| Refuse areas                                                                                      |
| Industrial processes                                                                              |
| Outdoor storage of equipment or materials                                                         |
| ☑Vehicle and equipment cleaning                                                                   |
| Vehicle/equipment repair and maintenance                                                          |
| ✓Fuel dispensing areas                                                                            |
| Loading docks                                                                                     |
| ☑ Fire sprinkler test water                                                                       |
| Miscellaneous drain or wash water                                                                 |
| ✓Plazas, sidewalks, and parking lots                                                              |
| Description/Additional Information:                                                               |
|                                                                                                   |



| Form I-3B Page 7 of 11                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identification and Narrative of Receiving Water                                                                                                                                                                                                                                                |
| Narrative describing flow path from discharge location(s), through urban storm conveyance system, to receiving creeks, rivers, and lagoons and ultimate discharge location to Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable)                                                 |
| The runoff generated by the site drains at the public inlets on Carmel Valley Rd., thence to Los Penasquitos Lagoon and ultimately to the Pacific Ocean.                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                |
| Provide a summary of all beneficial uses of receiving waters downstream of the project discharge locations                                                                                                                                                                                     |
| Los Penasquitos Lagoon: BIOL, EST, MAR, MIGR, RARE, REC1, REC2, SHELL, WILD                                                                                                                                                                                                                    |
| Identify all ASBS (areas of special biological significance) receiving waters downstream of the project discharge locations                                                                                                                                                                    |
| There are no ASBS receiving waters downstream of the project's discharge locations.                                                                                                                                                                                                            |
| Provide distance from project outfall location to impaired or sensitive receiving waters                                                                                                                                                                                                       |
| The project's outfall location is approximately 0.25 miles from the Los Penasquitos<br>Lagoon receiving water.                                                                                                                                                                                 |
| Summarize information regarding the proximity of the permanent, post-construction storm water BMPs to the City's Multi-Habitat Planning Area and environmentally sensitive lands                                                                                                               |
| The site proposes a permanent post-construction Modular Wetland System BMP.<br>The site's discharge point lies approximately 500 feet upstream of City owned MHPA<br>areas identified by the City of San Diego General Plan Conservation Element. The<br>site does not drain to the MHPA area. |
|                                                                                                                                                                                                                                                                                                |



|                                                     |                                                                                                 | Form L 2D D                                       | $\partial \sigma \sigma Q of 11$ |                    |                                                                               |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|--------------------|-------------------------------------------------------------------------------|--|--|
| 1-                                                  |                                                                                                 | FORMI-3D P                                        | age o or TT                      | 6.6                |                                                                               |  |  |
| List any 303(d) impaired                            | water bo                                                                                        | dies within the pa                                | ath of storm wate                | er from th         | n<br>ne project site to the                                                   |  |  |
| Pacific Ocean (or bay, lag                          | oon, lake                                                                                       | e or reservoir, as                                | applicable), identi              | ify the po         | ollutant(s)/stressor(s)                                                       |  |  |
| causing impairment, and                             | causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for |                                                   |                                  |                    |                                                                               |  |  |
| the impaired water bodie                            | the impaired water bodies:                                                                      |                                                   |                                  |                    |                                                                               |  |  |
| 303(d) Impaired Water Body<br>(Refer to Appendix K) |                                                                                                 | Pollutant(s)/Stressor(s) (Refer to<br>Appendix K) |                                  | TMDL:<br>Polluta   | TMDLs/WQIP Highest Priority<br>Pollutant (Refer to Table 1-4 in<br>Chapter 1) |  |  |
| Los Penasquitos Lag                                 | goon                                                                                            | Sedimentation/Siltation                           |                                  | Estima             | Estimated Completion 2019                                                     |  |  |
|                                                     |                                                                                                 | Tox                                               | icity                            | Estimated Required |                                                                               |  |  |
|                                                     |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
|                                                     |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
|                                                     |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
|                                                     |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
|                                                     |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
|                                                     |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
|                                                     |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
|                                                     |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
|                                                     | Ide                                                                                             | entification of Pro                               | ject Site Pollutant              | ts*                |                                                                               |  |  |
| *Identification of proje                            | ct site                                                                                         | pollutants is or                                  | nly required if                  | flow-thru          | u treatment BMPs are                                                          |  |  |
| implemented onsite in li                            | eu of ret                                                                                       | ention or biofiltra                               | ation BMPs (note                 | the proj           | ect must also participate                                                     |  |  |
| in an alternative complia                           | nce prog                                                                                        | gram unless prior                                 | lawful approval t                | o meet e           | arlier PDP requirements                                                       |  |  |
| IS demonstrated)                                    | nated fr                                                                                        | om the project of                                 | ite baced on all                 | nronoco            | d use(s) of the site (see                                                     |  |  |
| Appendix B 6):                                      | pated in                                                                                        | om the project s                                  | ate based on all                 | propose            | a use(s) of the site (see                                                     |  |  |
| Арреник Б.ој.                                       | Not Ar                                                                                          | policable to the                                  | Anticipated fro                  | m the              | Also a Receiving Water                                                        |  |  |
| Pollutant                                           | P                                                                                               | roject Site                                       | Project Sit                      | e                  | Pollutant of Concern                                                          |  |  |
| Sediment                                            |                                                                                                 |                                                   |                                  |                    | $\checkmark$                                                                  |  |  |
| Nutrients                                           |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
| Heavy Metals                                        |                                                                                                 |                                                   | $\checkmark$                     |                    |                                                                               |  |  |
| Organic Compounds                                   |                                                                                                 |                                                   | $\checkmark$                     |                    |                                                                               |  |  |
| Trash & Debris                                      |                                                                                                 |                                                   | $\checkmark$                     |                    |                                                                               |  |  |
| Oxygen Demanding                                    |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
| Substances                                          |                                                                                                 |                                                   |                                  |                    |                                                                               |  |  |
| Oil & Grease                                        |                                                                                                 |                                                   | $\checkmark$                     |                    |                                                                               |  |  |
| Bacteria & Viruses                                  | $\checkmark$                                                                                    |                                                   | $\checkmark$                     |                    |                                                                               |  |  |

 $\checkmark$ 

Bacteria & Viruses

Pesticides



| Form I-3B Page 9 of 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydromodification Management Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Do hydromodification management requirements apply (see Section 1.6)?</li> <li>✓Yes, hydromodification management flow control structural BMPs required.</li> <li>□No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.</li> <li>□No, the project will discharge runoff directly to conveyance channels whose bed and bank are concrete-lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.</li> <li>□No, the project will discharge runoff directly to an area identified as appropriate for an exemption by the WMAA for the watershed in which the project resides.</li> <li>Description / Additional Information (to be provided if a 'No' answer has been selected above):</li> <li>N/A</li> </ul> |
| Note: If "No" answer has been selected the SWQMP must include an exhibit that shows the storm water conveyance system from the project site to an exempt water body. The exhibit should include details about the conveyance system and the outfall to the exempt water body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Critical Coarse Sediment Yield Areas*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| * This Section only required if hydromodification management requirements apply<br>Based on Section 6.2 and Appendix H does CCSVA exist on the project footprint or in the upstroam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| area draining through the project footprint?<br>☐Yes<br>☑No<br>Discussion / Additional Information:<br>The project is located 0.30 miles from the nearest CCSYA. See attached CCSYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| exhibit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Form I-3B Page 10 of 11                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow Control for Post-Project Runoff*                                                                                                                                                                                                                                                                                                                                                                                |
| *This Section only required if hydromodification management requirements apply<br>List and describe point(s) of compliance (POCs) for flow control for hydromodification management<br>(see Section 6.3.1). For each POC, provide a POC identification name or number correlating to the<br>project's HMP Exhibit and a receiving channel identification name or number correlating to the<br>project's HMP Exhibit. |
| The POC occurs offsite in the existing curb inlet on Carmel Valley Road where all the site flow confluence.                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Has a geomorphic assessment been performed for the receiving channel(s)?<br>☑No, the low flow threshold is 0.1Q₂ (default low flow threshold)<br>□Yes, the result is the low flow threshold is 0.1Q₂<br>□Yes, the result is the low flow threshold is 0.3Q₂<br>□Yes, the result is the low flow threshold is 0.5Q₂                                                                                                   |
| lf a geomorphic assessment has been performed, provide title, date, and preparer:<br>N/A                                                                                                                                                                                                                                                                                                                             |
| Discussion / Additional Information: (optional)<br>N/A                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |



## Form I-3B Page 11 of 11 Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements.

The site was the location of an underground storage gas tank leak and is shown on the map of contaminated sites in the BMP Design Manual. No infiltration is proposed due to this. See case # T06019720520 on GeoTracker.waterboards.ca.gov

### Optional Additional Information or Continuation of Previous Sections As Needed

This space provided for additional information or continuation of information from previous sections as needed.

N/A



| Source Control BMP Checklist<br>for PDPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | Form I-4B                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|--|--|
| Source Control BMPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                    |  |  |
| All development projects must implement source control B feasible. See Chapter 4 and Appendix E of the BMP Design Manua Standards) for information to implement source control BMPs shown in                                                                                                                                                                                                                                                                                                                                                                                                               | MPs whe<br>l (Part 1 d<br>n this checl | ere applicable and<br>of the Storm Water<br>klist. |  |  |
| <ul> <li>Answer each category below pursuant to the following.</li> <li>"Yes" means the project will implement the source control BMP as described in Chapter 4 and/or Appendix E of the BMP Design Manual. Discussion / justification is not required.</li> <li>"No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided.</li> <li>"N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project has no outdoor materials</li> </ul> |                                        |                                                    |  |  |
| storage areas). Discussion / justification may be provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                    |  |  |
| Source Control Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | Applied?                                           |  |  |
| 4.2.1 Prevention of Illicit Discharges into the MS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>√</b> Yes                           |                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                    |  |  |
| 4.2.2 Storm Drain Stenciling or Signage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>√</b> Yes                           | NO N/A                                             |  |  |
| Discussion / justification if 4.2.2 not implemented:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                    |  |  |
| 4.2.3 Protect Outdoor Materials Storage Areas from Rainfall, Run-<br>On, Runoff, and Wind Dispersal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                    | □ No 🔽 N/A                                         |  |  |
| Discussion / justification if 4.2.3 not implemented:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                    |  |  |
| No outdoor material storage proposed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                    |  |  |
| 4.2.4 Protect Materials Stored in Outdoor Work Areas from<br>Rainfall, Run-On, Runoff, and Wind Dispersal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                                    | □No ☑N/A                                           |  |  |
| Discussion / justification if 4.2.4 not implemented:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                    |  |  |
| No outdoor storage areas proposed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                    |  |  |
| 4.2.5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ✓Yes                                   | □No □N/A                                           |  |  |
| Discussion / justification if 4.2.5 not implemented:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                    |  |  |



| Form I-4B Page 2 of 2                                                |                         |
|----------------------------------------------------------------------|-------------------------|
| Source Control Requirement                                           | Applied?                |
| 4.2.6 Additional BMPs Based on Potential Sources of Runoff Pollutant | s (must answer for each |
| source listed below)                                                 |                         |
| On-site storm drain inlets                                           | ✔Yes    No     N/A      |
| Interior floor drains and elevator shaft sump pumps                  | 🗌 Yes 🗌 No 🖌 N/A        |
| Interior parking garages                                             | 🗌 Yes 🗌 No 🖌 N/A        |
| Need for future indoor & structural pest control                     | ✔Yes   No   N/A         |
| Landscape/Outdoor Pesticide Use                                      | ✔Yes   No   N/A         |
| Pools, spas, ponds, decorative fountains, and other water features   | YesNo 🖌 N/A             |
| Food service                                                         | YesNo 🖌 N/A             |
| Refuse areas                                                         | ✓Yes No N/A             |
| Industrial processes                                                 | Yes No VA               |
| Outdoor storage of equipment or materials                            | ☐Yes ☐No 🖌 N/A          |
| Vehicle/Equipment Repair and Maintenance                             | ☐Yes ☐No 🖌 N/A          |
| Fuel Dispensing Areas                                                | ✔Yes   No   N/A         |
| Loading Docks                                                        | ☐Yes ☐No 🖌 N/A          |
| Fire Sprinkler Test Water                                            | ✓Yes No N/A             |
| Miscellaneous Drain or Wash Water                                    | ✓Yes No N/A             |
| Plazas, sidewalks, and parking lots                                  | ✓Yes No N/A             |
| SC-6A: Large Trash Generating Facilities                             | ☐Yes ☐No 🖌 N/A          |
| SC-6B: Animal Facilities                                             | YesNo ♀ N/A             |
| SC-6C: Plant Nurseries and Garden Centers                            | YesNo 🖌 N/A             |
| SC-6D: Automotive Facilities                                         | Yes No VA               |

Discussion / justification if 4.2.6 not implemented. Clearly identify which sources of runoff pollutants are discussed. Justification must be provided for <u>all</u> "No" answers shown above.

The potential sources of runoff pollutants checked as "N/A" are not proposed in the project.



| Site Design BMPs         All development projects must implement site design BMPs where applicable and feasible. See         Chapter 4 and Appendix E of the BMP Design Manual (Part 1 of Storm Water Standards) for         information to implement site design BMPs shown in this checklist.         Answer each category below pursuant to the following.         • "Yes" means the project will implement the site design BMP as described in Chapter 4 and/<br>Appendix E of the BMP Design Manual. Discussion / justification is not required.         • "No" means the BMP is applicable to the project but it is not feasible to impleme<br>Discussion / justification must be provided.         • "N/A" means the BMP is not applicable at the project site because the project does r<br>include the feature that is addressed by the BMP (e.g., the project site has no existing natu<br>areas to conserve). Discussion / justification may be provided.         A site map with implemented site design RMPs must be included at the end of this checklist.         Site Design Requirement       Applied?         4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features       Yes       No         No natural drainage pathways on-site.       No       V// |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All development projects must implement site design BMPs where applicable and feasible. See         Chapter 4 and Appendix E of the BMP Design Manual (Part 1 of Storm Water Standards) for         information to implement site design BMPs shown in this checklist.         Answer each category below pursuant to the following.         • "Yes" means the project will implement the site design BMP as described in Chapter 4 and, Appendix E of the BMP Design Manual. Discussion / justification is not required.         • "No" means the BMP is applicable to the project but it is not feasible to impleme Discussion / justification must be provided.         • "N/A" means the BMP is not applicable at the project site because the project does r include the feature that is addressed by the BMP (e.g., the project site has no existing natu areas to conserve). Discussion / justification may be provided.         A site map with implemented site design BMPs must be included at the end of this checklist.         Site Design Requirement       Applied?         4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features       Yes       No         No       Justification if 4.3.1 not implemented:       No natural drainage pathways on-site.  | Site Design BMPs                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| "Yes" means the project will implement the site design BMP as described in Chapter 4 and,<br>Appendix E of the BMP Design Manual. Discussion / justification is not required.     "No" means the BMP is applicable to the project but it is not feasible to impleme<br>Discussion / justification must be provided.     "N/A" means the BMP is not applicable at the project site because the project does r<br>include the feature that is addressed by the BMP (e.g., the project site has no existing natu<br>areas to conserve). Discussion / justification may be provided. A site map with implemented site design BMPs must be included at the end of this checklist.     Site Design Requirement     Applied? 4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features     No    N//     Discussion / justification if 4.3.1 not implemented:     No natural drainage pathways on-site.     1-1 Are existing natural drainage pathways and hydrologic    Yes  No    N//                                                                                                                                                                                                                                                                                              | must implement site design BMPs where applicable and feasible. See<br>E of the BMP Design Manual (Part 1 of Storm Water Standards) for<br>It site design BMPs shown in this checklist.                                                                                                                                                                                                                                                                                        |
| <ul> <li>"N/A" means the BMP is not applicable at the project site because the project does r include the feature that is addressed by the BMP (e.g., the project site has no existing natu areas to conserve). Discussion / justification may be provided.</li> <li>A site map with implemented site design BMPs must be included at the end of this checklist.</li> <li>Site Design Requirement Applied?</li> <li>4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features Yes No V// Discussion / justification if 4.3.1 not implemented:</li> <li>No natural drainage pathways on-site.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | broject will implement the site design BMP as described in Chapter 4 and/or<br>BMP Design Manual. Discussion / justification is not required.<br>BMP is applicable to the project but it is not feasible to implement.<br>Fication must be provided.                                                                                                                                                                                                                          |
| A site map with implemented site design BMPs must be included at the end of this checklist.         Site Design Requirement       Applied?         4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features       Yes       No       \vec{V}/\/         Discussion / justification if 4.3.1 not implemented:       No       \vec{V}/\/       No       \vec{V}/\/         No natural drainage pathways on-site.       Image and hydrologic       Yes       No       \vec{V}/\/         1-1       Are existing natural drainage pathways and hydrologic       Yes       No       \vec{V}/\/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BMP is not applicable at the project site because the project does not re that is addressed by the BMP (e.g., the project site has no existing natural e). Discussion / justification may be provided.                                                                                                                                                                                                                                                                        |
| Site Design Requirement       Applied?         4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features       Yes       No       N//         Discussion / justification if 4.3.1 not implemented:       No natural drainage pathways on-site.       No natural drainage pathways on-site.       No       No       N//         1-1       Are existing natural drainage pathways and hydrologic       Yes       No       V//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nted site design BMPs must be included at the end of this checklist.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features       Yes       No       ✓ N//         Discussion / justification if 4.3.1 not implemented:       No natural drainage pathways on-site.       No natural drainage pathways on-site.         1-1       Are existing natural drainage pathways and hydrologic       Yes       No       ✓ N//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Design Requirement Applied?                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Discussion / justification if 4.3.1 not implemented:<br>No natural drainage pathways on-site.<br>1-1 Are existing natural drainage pathways and hydrologic Yes No V/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ainage Pathways and Hydrologic Features Yes No VA                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I - I Are existing natural drainage pathways and hydrologic [ res [ 100 [ $\checkmark$ ] $\aleph$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ways on-site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| features mapped on the site map?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1-2 Are trees implemented? If yes, are they shown on the site Yes No N//<br>map?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atural drainage pathways and hydrologic Yes No MA                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1-3 Implemented trees meet the design criteria in 4.3.1 Fact Ves No N/<br>Sheet (e.g. soil volume, maximum credit, etc.)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | atural drainage pathways and hydrologic       Yes       No       V/A         d on the site map?       mented? If yes, are they shown on the site       Yes       No       N/A                                                                                                                                                                                                                                                                                                 |
| 1-4 Is tree credit volume calculated using Appendix B.2.2.1 and<br>SD-1 Fact Sheet in Appendix E? □ No □ N//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atural drainage pathways and hydrologic       Yes       No       V/A         d on the site map?       mented? If yes, are they shown on the site       Yes       No       N/A         ees meet the design criteria in 4.3.1 Fact       Yes       No       N/A         olume, maximum credit, etc.)?       No       N/A                                                                                                                                                        |
| 4.3.2 Have natural areas, soils and vegetation been conserved?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atural drainage pathways and hydrologic       Yes       No       ✓ N/A         d on the site map?       mented? If yes, are they shown on the site       ✓ Yes       No       N/A         ees meet the design criteria in 4.3.1 Fact       ✓ Yes       No       N/A         plume, maximum credit, etc.)?       Iume calculated using Appendix B.2.2.1 and       ✓ Yes       No       N/A                                                                                     |
| Discussion / justification if 4.3.2 not implemented:<br>No natural areas or vegetation exist on-site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atural drainage pathways and hydrologic       Yes       No       ✓ N/A         d on the site map?       mented? If yes, are they shown on the site       ✓ Yes       No       N/A         ees meet the design criteria in 4.3.1 Fact       ✓ Yes       No       N/A         plume, maximum credit, etc.)?       Iume calculated using Appendix B.2.2.1 and       ✓ Yes       No       N/A         soils and vegetation been conserved?       Yes       Yes       No       N/A |



| Site Design Requirement       Applied7         4.3.3 Minimize Impervious Area       Yes       No       N/A         Discussion / justification if 4.3.3 not implemented:       Impervious areas have been designed to the minimum areas and widths necessary for the proposed use.       Impervious areas have been designed to the minimum areas and widths necessary for the proposed use.         4.3.4 Minimize Soil Compaction       ✓ Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       Soil compaction of trees.       No       N/A         Soil compaction will be minimized on landscape areas and location of trees.       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.       No       M/A         5-1       Is the pervious area receiving runon from impervious area       Yes       No       M/A         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact<br>identified on the site map?       No       M/A         5-2       Does the pervious area dispersion credit volume calculated using       Yes       No       M/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Form I-5B Page 2 of 4                                                   |              |              |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|--------------|----------|
| 4.3.3 Minimize Impervious Area       Yes       No       N/A         Discussion / Justification if 4.3.3 not implemented:       Impervious areas have been designed to the minimum areas and widths necessary for the proposed use.         4.3.4 Minimize Soil Compaction       Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       No       N/A         Discussion / justification if 4.3.4 not implemented:       No       N/A         Soil compaction will be minimized on landscape areas and location of trees.       No       N/A         Discussion / justification if 4.3.5 not implemented:       No       N/A         Discussion / justification if 4.3.5 not implemented:       No       N/A         Discussion / justification if 4.3.5 not implemented:       Impervious area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       Impervious area dispersion.       N/A       N/A         Discussion / justification if 4.3.5 not implemented:       Impervious area dispersion.       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       Impervious area dispersion.       Yes       No       N/A         Solution of the site map?       Solution of the site map?       Solution of the site map?       No       N/A         Sheet in Appendix E (e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Site Design Requirement                                                 |              | Applied?     | -        |
| Discussion / justification if 4.3.3 not implemented:         Impervious areas have been designed to the minimum areas and widths necessary for the proposed use.         4.3.4 Minimize Soil Compaction         ✓ Yes       No         Discussion / justification if 4.3.4 not implemented:         Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion       Yes         Discussion / justification if 4.3.5 not implemented:         The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area         5-2       Does the pervious area astisfy the design criteria in 4.3.5 Fact         Yes       No         Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)         5-3       Is impervious area dispersion credit volume calculated using _Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.3.3 Minimize Impervious Area                                          | 🗌 Yes        | √No          | □N/A     |
| Impervious areas have been designed to the minimum areas and widths necessary for the proposed use.         4.3.4 Minimize Soil Compaction         ✓ Yes         No         Discussion / justification if 4.3.4 not implemented:         Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion         Yes       ✓ No         Discussion / justification if 4.3.5 not implemented:         The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area identified on the site map?         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)         5-3       Is impervious area dispersion credit volume calculated using Yes         No       ✓N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discussion / justification if 4.3.3 not implemented:                    |              |              |          |
| use.         4.3.4 Minimize Soil Compaction         Discussion / justification if 4.3.4 not implemented:         Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion         Yes         No         Discussion / justification if 4.3.5 not implemented:         The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area         Yes       No         Sole tin Appendix E (e.g. maximum slope, minimum length, etc.)       Yes         5-3       Is impervious area dispersion credit volume calculated using Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Impervious areas have been designed to the minimum areas and width:     | s necessa    | ry for the p | roposed  |
| 4.3.4 Minimize Soil Compaction       ✓Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       Yes       No       N/A         The site does not propose sufficient pervious open space to implement impervious area dispersion.       Soil complement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area       Yes       No       N/A         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact       Yes       No       N/A         Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       No       ✓N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | use.                                                                    |              |              |          |
| 4.3.4 Minimize Soil Compaction       ✓ Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       Soil compaction will be minimized on landscape areas and location of trees.         5.01 compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area dispersion.         5-2       Does the pervious area asisfy the design criteria in 4.3.5 Fact         Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       No       ✓ N/A         5-3       Is impervious area dispersion credit volume calculated using       Yes       No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |              |              |          |
| 4.3.4 Minimize Soil Compaction       ✓ Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       Soil compaction will be minimized on landscape areas and location of trees.         Soil compaction will be minimized on landscape areas and location of trees.           4.3.5 Impervious Area Dispersion       Yes       ✓ No       N/A         Discussion / justification if 4.3.5 not implemented:            The site does not propose sufficient pervious open space to implement impervious area dispersion.            5-1       Is the pervious area receiving runon from impervious area dispersion.             5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       Yes       No       ✓       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |              |              |          |
| 4.3.4 Minimize Soil Compaction       Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       Soil compaction will be minimized on landscape areas and location of trees.       Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area       Yes       No       N/A         5-2       Des the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       Yes       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |              |              |          |
| 4.3.4 Minimize Soil Compaction       ✓ Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion       Yes       ✓ No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area dispersion.         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact yes       No       ✓ N/A         Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       5-3       Is impervious area dispersion credit volume calculated using       Yes       No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |              |              |          |
| 4.3.4 Minimize Soil Compaction       ✓ Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion       Yes       ✓ No       N/A         Discussion / justification if 4.3.5 not implemented:       Yes       ✓ No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area intervious area dispersion.         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact independix E (e.g. maximum slope, minimum length, etc.)       Yes       No       ✓ N/A         5-3       Is impervious area dispersion credit volume calculated using       Yes       No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |              |              |          |
| 4.3.4 Minimize Soil Compaction       ✓Yes       No       N/A         Discussion / justification if 4.3.4 not implemented:       Soil compaction will be minimized on landscape areas and location of trees.         5oil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion       ✓Yes       ✓No       N/A         Discussion / justification if 4.3.5 not implemented:       Yes       ✓No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area       Yes       No       ✓N/A         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact       Yes       No       ✓N/A         Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       5-3       Is impervious area dispersion credit volume calculated using       Yes       No       ✓N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |              |              |          |
| Discussion / justification if 4.3.4 not implemented:         Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion         Yes         Yes         No         N/A         Discussion / justification if 4.3.5 not implemented:         The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area identified on the site map?         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact         Yes       No         Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       No         5-3       Is impervious area dispersion credit volume calculated using         Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3.4 Minimize Soil Compaction                                          | <b>√</b> Yes | No           | □N/A     |
| Soil compaction will be minimized on landscape areas and location of trees.         4.3.5 Impervious Area Dispersion       Yes         ✓ No       N/A         Discussion / justification if 4.3.5 not implemented:         The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area dispersion.         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact<br>Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       No       ✓ N/A         5-3       Is impervious area dispersion credit volume calculated using<br>Amagediu B 2.1.1 and 4.2.5 Eact Sheet in Amagediu C2       No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Discussion / justification if 4.3.4 not implemented:                    |              |              |          |
| 4.3.5 Impervious Area Dispersion       Yes       ✓ No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area       Yes       No       ✓ N/A         identified on the site map?       5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       Yes       No       ✓ N/A         5-3       Is impervious area dispersion credit volume calculated using Yes       No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil compaction will be minimized on landscape areas and location of tr | ees.         |              |          |
| 4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       No       N/A         The site does not propose sufficient pervious open space to implement impervious area dispersion.       Second Se |                                                                         |              |              |          |
| 4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       No       N/A         The site does not propose sufficient pervious open space to implement impervious area dispersion.       Second Se |                                                                         |              |              |          |
| 4.3.5 Impervious Area Dispersion       Yes       ✓ No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area       Yes       No       ✓ N/A         identified on the site map?       5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact       Yes       No       ✓ N/A         5-3       Is impervious area dispersion credit volume calculated using the negative P2 of the pervious area dispersion credit parametic P2       No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |              |              |          |
| 4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area       Yes       No       N/A         5-1       Is the pervious area receiving runon from impervious area       Yes       No       N/A         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact<br>Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       No       N/A         5-3       Is impervious area dispersion credit volume calculated using       Yes       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |              |              |          |
| 4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:       No       N/A         The site does not propose sufficient pervious open space to implement impervious area dispersion.       Sea dispersion.         5-1       Is the pervious area receiving runon from impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area dispersion.         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)         5-3       Is impervious area dispersion credit volume calculated using Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |              |              |          |
| 4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:         The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area<br>identified on the site map?       Yes       No       N/A         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact<br>Sheet in Appendix E (e.g. maximum slope, minimum length,<br>etc.)       Yes       No       N/A         5-3       Is impervious area dispersion credit volume calculated using       Yes       No       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |              |              |          |
| 4.3.5 Impervious Area Dispersion       Yes       No       N/A         Discussion / justification if 4.3.5 not implemented:         The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area identified on the site map?         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)         5-3       Is impervious area dispersion credit volume calculated using Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |              |              |          |
| Discussion / justification if 4.3.5 not implemented:         The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area identified on the site map?         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)         5-3       Is impervious area dispersion credit volume calculated using Yes         No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3.5 Impervious Area Dispersion                                        | Yes          | <b>√</b> No  | N/A      |
| The site does not propose sufficient pervious open space to implement impervious area dispersion.         5-1       Is the pervious area receiving runon from impervious area identified on the site map?         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)         5-3       Is impervious area dispersion credit volume calculated using Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discussion / justification if 4.3.5 not implemented:                    |              |              |          |
| <ul> <li>5-1 Is the pervious area receiving runon from impervious area Yes N/A identified on the site map?</li> <li>5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact Yes No V/A Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)</li> <li>5-3 Is impervious area dispersion credit volume calculated using Yes No V/A</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The site does not propose sufficient pervious open space to implement   | imperviou    | us area disi | persion. |
| 5-1       Is the pervious area receiving runon from impervious area lidentified on the site map?       Yes       No       ✓ N/A         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       Yes       No       ✓ N/A         5-3       Is impervious area dispersion credit volume calculated using Appendix E 2.1.1 and 4.2.5 Fact Sheet in Appendix E 2.1.1       Yes       No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |              |              |          |
| 5-1       Is the pervious area receiving runon from impervious area identified on the site map?       No       ✓ N/A         5-2       Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       Yes       No       ✓ N/A         5-3       Is impervious area dispersion credit volume calculated using       Yes       No       ✓ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |              |              |          |
| <ul> <li>5-1 Is the pervious area receiving runon from impervious area Yes N/A identified on the site map?</li> <li>5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact Yes N/A Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)</li> <li>5-3 Is impervious area dispersion credit volume calculated using Yes N/A</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |              |              |          |
| <ul> <li>5-1 Is the pervious area receiving runon from impervious area<br/>identified on the site map?</li> <li>5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact<br/>Sheet in Appendix E (e.g. maximum slope, minimum length,<br/>etc.)</li> <li>5-3 Is impervious area dispersion credit volume calculated using Yes No ✓N/A</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |              |              |          |
| <ul> <li>5-1 Is the pervious area receiving runon from impervious area<br/>identified on the site map?</li> <li>5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact<br/>Sheet in Appendix E (e.g. maximum slope, minimum length,<br/>etc.)</li> <li>5-3 Is impervious area dispersion credit volume calculated using<br/>Appendix B 2 1 1 and 4 2 5 Fact Sheet in Appendix F2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |              |              |          |
| <ul> <li>5-1 Is the pervious area receiving runon from impervious area Yes N/A identified on the site map?</li> <li>5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)</li> <li>5-3 Is impervious area dispersion credit volume calculated using Yes N/A Appendix B 2.1.1 and 4.3.5 Fact Sheet in Appendix E2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |              |              |          |
| <ul> <li>5-1 Is the pervious area receiving runon from impervious area Yes N/A identified on the site map?</li> <li>5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact Yes No ✓ N/A Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)</li> <li>5-3 Is impervious area dispersion credit volume calculated using Yes No ✓ N/A Appendix B 2.1.1 and 4.3.5 Fact Sheet in Appendix E2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |              |              |          |
| identified on the site map?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5-1 Is the pervious area receiving runon from impervious area           | Yes          | No           | ✓ N/A    |
| <ul> <li>5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact Yes N/A Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)</li> <li>5-3 Is impervious area dispersion credit volume calculated using Yes N/A Appendix B 2.1.1 and 4.3.5 Fact Sheet in Appendix E2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | identified on the site map?                                             |              |              |          |
| Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)       Is impervious area dispersion credit volume calculated using Yes       No       ✓N/A         5-3       Is impervious area dispersion credit volume calculated using Yes       No       ✓N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact    | Yes          | □ No         | ✓ N/A    |
| etc.) 5-3 Is impervious area dispersion credit volume calculated using Yes No V/A Appendix B.2.1.1 and 4.2.5 Fast Sheet in Appendix F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sheet in Appendix E (e.g. maximum slope, minimum length,                |              |              |          |
| 5-3 is impervious area dispersion credit volume calculated using Ves NO VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | etc.)                                                                   |              |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appendix B 2.1.1 and 4.3.5 Fact Sheet in Appendix F2                    |              |              |          |



|               | Form I-5B Page 3 of 4                                                 |              |             |              |
|---------------|-----------------------------------------------------------------------|--------------|-------------|--------------|
|               | Site Design Requirement                                               |              | Applied?    |              |
| 4.3.6 Ru      | noff Collection                                                       | ☐ Yes        | ✓No         | □ N/A        |
| Discu         | ussion / justification if 4.3.6 not implemented:                      |              |             |              |
| Sufficien     | t area is not available on site for the proper implementation of      | runoff col   | lection.    |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
| 6a <b>-</b> 1 | Are green roofs implemented in accordance with design                 | Yes          | No          | <b>√</b> N/A |
|               | criteria in 4.3.6A Fact Sheet? If yes, are they shown on              |              |             |              |
|               | the site map?                                                         |              |             |              |
| 6a <b>-</b> 2 | Is the green roof credit volume calculated using Appendix             | Yes          | No          | <b>√</b> N/A |
|               | B.2.1.2 and 4.3.6A Fact Sheet in Appendix E?                          |              | <u> </u>    |              |
| 6b-1          | Are permeable pavements implemented in accordance with                | 🗌 Yes        |             | <b>√</b> N/A |
|               | design criteria in 4.3.68 Fact Sneet? If yes, are they snown          |              |             |              |
| 6h-2          | Is the nermeable navement credit volume calculated                    |              |             |              |
| 002           | using Appendix B.2.1.3 and 4.3.6B Fact Sheet in Appendix              |              |             |              |
| 4.3.7 Lar     | dracaping with Native or Drought Tolerant Species                     | <b>√</b> Yes | ΠNο         | ∏n/a         |
| Disc          | ussion / justification if 4.3.7 not implemented:                      |              |             |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
| 429115        | runt and Use Draginitation                                            |              |             |              |
| 4.3.8 Ha      |                                                                       |              |             |              |
| Disc          | ussion / justification if 4.3.8 not implemented:                      |              |             |              |
| The prop      | bosed site is a three-story self-storage facility that will present a | low dema     | nd for har  | vested       |
| Attachm       | n. The low demand does not justify implementing harvesting at         | iu use oi p  | recipitatio | n, see       |
| / tetacinin   |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
|               |                                                                       |              |             |              |
| 8-1           | Are rain barrels implemented in accordance with design                | Yes          | No          | <b>√</b> N/A |
|               | criteria in 4.3.8 Fact Sheet? If yes, are they shown on the           |              |             |              |
|               | site map?                                                             |              |             |              |
| 8-2           | Is the rain barrel credit volume calculated using Appendix            | Yes          | No No       | ✓N/A         |
|               | B.2.2.2 and 4.3.8 Fact Sheet in Appendix E?                           |              |             |              |



| Form I-5B Page 4 of 4                                 |
|-------------------------------------------------------|
| Insert Site Map with all site design BMPs identified: |
| SEE DMA MAP FOR ALL SITE DESIGN BMPS                  |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |



| Summary of PDP Structural BMPs Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rm I-6                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| PDP Structural BMPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |
| All PDPs must implement structural BMPs for storm water pollutant control (see<br>BMP Design Manual, Part 1 of Storm Water Standards). Selection of PDP structura<br>water pollutant control must be based on the selection process described in<br>subject to hydromodification management requirements must also implement stu<br>flow control for hydromodification management (see Chapter 6 of the BMP Desi<br>storm water pollutant control and flow control for hydromodification management<br>within the same structural BMP(s). | Chapter 5 of the<br>al BMPs for storm<br>Chapter 5. PDPs<br>ructural BMPs for<br>gn Manual). Both<br>t can be achieved |
| PDP structural BMPs must be verified by the City at the completion of construct requiring the project owner or project owner's representative to certify constructural BMPs (complete Form DS-563). PDP structural BMPs must be maintained (see Chapter 7 of the BMP Design Manual).                                                                                                                                                                                                                                                      | ion. This includes<br>nstruction of the<br>ed into perpetuity                                                          |
| Use this form to provide narrative description of the general strategy for<br>implementation at the project site in the box below. Then complete the PDI<br>summary information sheet (page 3 of this form) for each structural BMP within<br>the BMP summary information page as many times as needed to provide summar<br>each individual structural BMP).                                                                                                                                                                              | structural BMP<br>structural BMP<br>the project (copy<br>ry information for                                            |
| Describe the general strategy for structural BMP implementation at the site. This describe how the steps for selecting and designing storm water pollutant control B Section 5.1 of the BMP Design Manual were followed, and the results (type of BM projects requiring hydromodification flow control BMPs, indicate whether pollutant control BMPs are integrated or separate.                                                                                                                                                          | information must<br>MPs presented in<br>/IPs selected). For<br>t control and flow                                      |
| The steps of the BMP design manual were followed to select and design the                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pollutant BMPs.                                                                                                        |
| The DMAs were delineated based on the proposed site design resulting in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ree areas that                                                                                                         |

The DMAs were delineated based on the proposed site design resulting in three areas that require calculations of a design capture volume. The design capture volume is calculated using the method in Appendix B of the BMP design manual.

The first consideration was the feasibility of Harvest and Reuse. Using the calculated DCV and the City of San Diego Worksheet B.3-1, harvest and reuse was considered infeasible due to demand being less than the required DCV.

The second consideration is the feasibility of infiltration. The Soil Hydrologic Group for the site was selected as Group D per the County of San Diego Hydrology Manual. Additionally, the site was the location of an underground tank leak remediation and is shown on the map of contaminated sites in the BMP Design Manual. In addition, the geotechnical investigation does not recommend infiltration due to the historic use and proposed use as a fuel facility. This rules out the use of infiltration.

(Continue on page 2 as necessary.)



## Form I-6 Page 2 of 4

(Continued from page 1)

With infiltration and harvest and reuse both infeasible, a 900-sf subsurface detention facility with 8 StormTech arches (BMP-1) and a Modular Wetland System (BMP-2) were chosen for DMA-1. The project will store the DCV in the subsurface detention facility and treat the low flow with the Modular Wetland System.

DMA- 2 and DMA-3 will be treated with 15' diameter tree wells.


| Form I-6 Page $^{1}$ of $^{4}$ (Copy as many as needed) |                                                  |  |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| Structural BMP Su                                       | mmary Information                                |  |  |  |  |  |
| Structural BMP ID No. BMP-1                             |                                                  |  |  |  |  |  |
| Construction Plan Sheet No. Sheet C-3                   | Construction Plan Sheet No. Sheet C-3            |  |  |  |  |  |
| Type of Structural BMP:                                 |                                                  |  |  |  |  |  |
| Retention by harvest and use (e.g. HU-1, cistern)       |                                                  |  |  |  |  |  |
| Retention by infiltration basin (INF-1)                 |                                                  |  |  |  |  |  |
| Retention by bioretention (INF-2)                       |                                                  |  |  |  |  |  |
| Retention by permeable pavement (INF-3)                 |                                                  |  |  |  |  |  |
| Partial retention by biofiltration with partial rete    | ntion (PR-1)                                     |  |  |  |  |  |
| Biofiltration (BF-1)                                    |                                                  |  |  |  |  |  |
| Flow-thru treatment control with prior lawful ap        | proval to meet earlier PDP requirements (provide |  |  |  |  |  |
| BMP type/description in discussion section belo         | w)                                               |  |  |  |  |  |
| Flow-thru treatment control included as pre-trea        | tment/forebay for an onsite retention or         |  |  |  |  |  |
| biofiltration BMP (provide BMP type/description         | and indicate which onsite retention or           |  |  |  |  |  |
| biofiltration BMP it serves in discussion section b     | pelow)                                           |  |  |  |  |  |
| Flow-thru treatment control with alternative con        | npliance (provide BMP type/description in        |  |  |  |  |  |
| discussion section below)                               |                                                  |  |  |  |  |  |
| Detention pond or vault for hydromodification n         | nanagement                                       |  |  |  |  |  |
| Other (describe in discussion section below)            |                                                  |  |  |  |  |  |
| Purpose:                                                |                                                  |  |  |  |  |  |
| Pollutant control only                                  |                                                  |  |  |  |  |  |
| Hydromodification control only                          |                                                  |  |  |  |  |  |
| Combined pollutant control and hydromodificat           | ion control                                      |  |  |  |  |  |
| Pre-treatment/forebay for another structural BM         | 1P                                               |  |  |  |  |  |
| Other (describe in discussion section below)            |                                                  |  |  |  |  |  |
| Who will certify construction of this BMP?              | Androw Kann                                      |  |  |  |  |  |
| Provide name and contact information for the            | Andrew J. Kann<br>Omega Engineering Consultants  |  |  |  |  |  |
| party responsible to sign BMP verification form         | (858) 634-8620                                   |  |  |  |  |  |
| DS-563                                                  | (858) 054-8020                                   |  |  |  |  |  |
| Who will be the final owner of this BMP?                | KA Enterprises                                   |  |  |  |  |  |
| (858) 404-6091                                          |                                                  |  |  |  |  |  |
| KA Entorprises                                          |                                                  |  |  |  |  |  |
| Who will maintain this BMP into perpetuity?             |                                                  |  |  |  |  |  |
|                                                         |                                                  |  |  |  |  |  |
| What is the funding mechanism for                       | KA Enterprises                                   |  |  |  |  |  |
| maintenance?                                            | (858) 404-6091                                   |  |  |  |  |  |



<sup>32</sup> The City of San Diego | Storm Water Standards Form I-6 | January 2018 Edition

## Form I-6 Page 2 of 4 (Copy as many as needed)

Structural BMP ID No. BMP-1

Construction Plan Sheet No. Sheet C-3

Discussion (as needed; must include worksheets showing BMP sizing calculations in the SWQMPs):

BMP-1 consists of a 900-sf gravel filled, detention facility with a row of 8 StormTech SC-740 storage arches. BMP-1 will store the entire DCV (931 CF) of DMA-1.

BMP-1 will discharge via a low flow orifice to the Modular Wetland system for treatment.

See attached StormTech Manufacturer Spreadsheet for sizing of detention facility.



| Project:                   | 3060 Carmel Valley | Rd.                | _       |                 |                               |
|----------------------------|--------------------|--------------------|---------|-----------------|-------------------------------|
| Chamber Model -<br>Units - |                    | SC-740<br>Imperial | Click   | Here for Metric | A division of                 |
| Number of cham             | pers -             | 8                  | -       |                 |                               |
| Voids in the stone         | (porosity) -       | 40                 | %       |                 |                               |
| Base of Stone Ele          | vation -           | 29.00              | ft      | Include Pe      | rimeter Stone in Calculations |
| Amount of Stone            | Above Chambers -   | 6                  | in      |                 |                               |
| Amount of Stone            | Below Chambers -   | 6                  | in      |                 |                               |
| Area of system -           |                    | 900                | sf Min. | Area -          | 270 sf min. area              |

# StormTech SC-740 Cumulative Storage Volumes

| Height of | Incremental Single | Incremental Total | Incremental  |                     | Cumulative   |                |
|-----------|--------------------|-------------------|--------------|---------------------|--------------|----------------|
| System    | Chamber            | Chamber           | Stone        | Incremental Ch & St | Chamber      | Elevation      |
| (inches)  | (cubic feet)       | (cubic feet)      | (cubic feet) | (cubic feet)        | (cubic feet) | (feet)         |
| 42        | 0.00               | 0.00              | 30.00        | 30.00               | 1480.56      | 32.50          |
| 41        | 0.00               | 0.00              | 30.00        | 30.00               | 1450.56      | 32.42          |
| 40        | 0.00               | 0.00              | 30.00        | 30.00               | 1420.56      | 32.33          |
| 39        | 0.00               | 0.00              | 30.00        | 30.00               | 1390.56      | 32.25          |
| 38        | 0.00               | 0.00              | 30.00        | 30.00               | 1360.56      | 32.17          |
| 37        | 0.00               | 0.00              | 30.00        | 30.00               | 1330.56      | 32.08          |
| 36        | 0.05               | 0.44              | 29.82        | 30.26               | 1300.56      | 32.00          |
| 35        | 0.16               | 1.30              | 29.48        | 30.78               | 1270.30      | 31.92          |
| 34        | 0.28               | 2.26              | 29.10        | 31.35               | 1239.52      | 31.83          |
| 33        | 0.60               | 4.83              | 28.07        | 32.90               | 1208.16      | 31.75          |
| 32        | 0.80               | 6.41              | 27.43        | 33.85               | 1175.27      | 31.67          |
| 31        | 0.95               | 7.61              | 26.96        | 34.56               | 1141.42      | 31.58          |
| 30        | 1.07               | 8.60              | 26.56        | 35.16               | 1106.85      | 31.50          |
| 29        | 1.18               | 9.44              | 26.22        | 35.67               | 1071.70      | 31.42          |
| 28        | 1.27               | 10.13             | 25.95        | 36.08               | 1036.03      | 31.33          |
| 27        | 1.36               | 10.84             | 25.66        | 36.50               | 999.96       | 31.25          |
| 26        | 1.45               | 11.63             | 25.35        | 36.98               | 963.45       | 31.17          |
| 25        | 1.52               | 12.20             | 25.12        | 37.32               | 926.47       | 31.08          |
| 24        | 1.58               | 12.66             | 24.94        | 37.60               | 889.15       | 31.00          |
| 23        | 1.64               | 13.14             | 24.74        | 37.88               | 851.56       | 30.92          |
| 22        | 1.70               | 13.60             | 24.56        | 38.16               | 813.67       | 30.83          |
| 21        | 1.75               | 14.02             | 24.39        | 38.41               | 775.52       | 30.75          |
| 20        | 1.80               | 14.42             | 24.23        | 38.65               | /3/.10       | 30.67          |
| 19        | 1.85               | 14.84             | 24.06        | 38.90               | 698.45       | 30.58          |
| 18        | 1.89               | 15.14             | 23.94        | 39.09               | 659.55       | 30.50          |
| 17        | 1.93               | 15.47             | 23.81        | 39.28               | 02U.40       | 30.42          |
| 10        | 1.97               | 15.80             | 23.08        | 39.48               | 581.18       | 30.33          |
| 13        | 2.01               | 10.06             | 23.37        | 20.02               | 541.70       | 50.25<br>20.17 |
| 14        | 2.04               | 16.60             | 23.40        | 39.82               | J02.0J       | 30.17          |
| 13        | 2.07               | 16.84             | 23.30        | 40.10               | 402.23       | 30.00          |
| 12        | 2.10               | 17.05             | 23.20        | 40.10               | 382 17       | 29.92          |
| 10        | 2.15               | 17.05             | 23.10        | 40.25               | 341 94       | 29.92          |
| 9         | 2.18               | 17.42             | 23.03        | 40.45               | 301.60       | 29.75          |
| 8         | 2.20               | 17.59             | 22.97        | 40.55               | 261.15       | 29.67          |
| 7         | 2.21               | 17.66             | 22.94        | 40.60               | 220.60       | 29.58          |
| 6         | 0.00               | 0.00              | 30.00        | 30.00               | 180.00       | 29.50          |
| 5         | 0.00               | 0.00              | 30.00        | 30.00               | 150.00       | 29.42          |
| 4         | 0.00               | 0.00              | 30.00        | 30.00               | 120.00       | 29.33          |
| 3         | 0.00               | 0.00              | 30.00        | 30.00               | 90.00        | 29.25          |
| 2         | 0.00               | 0.00              | 30.00        | 30.00               | 60.00        | 29.17          |
| 1         | 0.00               | 0.00              | 30.00        | 30.00               | 30.00        | 29.08          |

| Form I-6 Page $^3$ of $^4$ (Copy as many as needed)        |                                                   |  |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|
| Structural BMP Summary Information                         |                                                   |  |  |  |  |  |
| Structural BMP ID No. BMP-2                                |                                                   |  |  |  |  |  |
| Construction Plan Sheet No. Sheet C-3                      |                                                   |  |  |  |  |  |
| Type of Structural BMP:                                    |                                                   |  |  |  |  |  |
| Retention by harvest and use (e.g. HU-1, cistern)          |                                                   |  |  |  |  |  |
| Retention by infiltration basin (INF-1)                    |                                                   |  |  |  |  |  |
| Retention by bioretention (INF-2)                          |                                                   |  |  |  |  |  |
| Retention by permeable pavement (INF-3)                    |                                                   |  |  |  |  |  |
| Partial retention by biofiltration with partial reten      | ntion (PR-1)                                      |  |  |  |  |  |
| Biofiltration (BF-1)                                       |                                                   |  |  |  |  |  |
| Flow-thru treatment control with prior lawful ap           | proval to meet earlier PDP requirements (provide  |  |  |  |  |  |
| BMP type/description in discussion section belo            | w)                                                |  |  |  |  |  |
| Flow-thru treatment control included as pre-trea           | tment/forebay for an onsite retention or          |  |  |  |  |  |
| biofiltration BMP (provide BMP type/description            | and indicate which onsite retention or            |  |  |  |  |  |
| biofiltration BMP it serves in discussion section b        | pelow)                                            |  |  |  |  |  |
| Flow-thru treatment control with alternative con           | npliance (provide BMP type/description in         |  |  |  |  |  |
| discussion section below)                                  |                                                   |  |  |  |  |  |
| Detention pond or vault for hydromodification n            | nanagement                                        |  |  |  |  |  |
| $\Box$ Other (describe in discussion section below) B      | F-3                                               |  |  |  |  |  |
| Purpose:                                                   |                                                   |  |  |  |  |  |
| Pollutant control only                                     |                                                   |  |  |  |  |  |
| Hydromodification control only                             |                                                   |  |  |  |  |  |
| Combined pollutant control and hydromodificat              | ion control                                       |  |  |  |  |  |
| Pre-treatment/forebay for another structural BM            | 1P                                                |  |  |  |  |  |
| Other (describe in discussion section below)               |                                                   |  |  |  |  |  |
| Who will certify construction of this BMP?                 | Androw L Kann                                     |  |  |  |  |  |
| Provide name and contact information for the               | And ew J. Nation<br>Amega Engineering Consultants |  |  |  |  |  |
| party responsible to sign BMP verification form            | (858) 634-8620                                    |  |  |  |  |  |
| DS-563 (856) 054-8020                                      |                                                   |  |  |  |  |  |
| Who will be the final owner of this BMP?                   | KA Enterprises                                    |  |  |  |  |  |
| (858) 404-6091                                             |                                                   |  |  |  |  |  |
|                                                            | KA Enterprises                                    |  |  |  |  |  |
| Who will maintain this BMP into perpetuity? (858) 404-6091 |                                                   |  |  |  |  |  |
|                                                            |                                                   |  |  |  |  |  |
| What is the funding mechanism for                          | KA Enterprises                                    |  |  |  |  |  |
|                                                            | (858) 404-6091                                    |  |  |  |  |  |



## Form I-6 Page 4 of 4 (Copy as many as needed)

Structural BMP ID No. BMP-2

Construction Plan Sheet No. Sheet C-3

Discussion (as needed; must include worksheets showing BMP sizing calculations in the SWQMPs):

BMP-2 consists of a Modular Wetland System model # MWS-L-4-4-C that will treat the detained stormwater on BMP-1 via flow-thru requirements of the Modular Wetland System. The stormdrain system will discharge via a 23/32" low flow orifice to the MWS. This will provide a flow rate of 0.033 CFS which is lower than the treatment flow rate of 0.052 CFS of the model MWS-L-4-4-C.

Drawdown Calcs based on treatment volume = 931 CF / [2\*0.033 CFS\*(3600 sec/hr)] = 3.91 hours

See Attached orifice size spreadsheet and MWS-L-4-4-C Standard Detail.



#### **Orifice Sizing Calculation**

| TOTAL PONDING HEIGHT | DIAMETER (in) | Area (sf) | PONDING HEIGHT-RADIUS | Q <sub>ORIFICE</sub> | Q <sub>INTENDED</sub> |
|----------------------|---------------|-----------|-----------------------|----------------------|-----------------------|
| 5.5                  | 0.710         | 0.003     | 5.470                 | 0.033                | 0.052                 |

#### Directions:

Enter Intended Outflow (for reference only) Enter total ponding height Modify Diameter of orifice until  $Q_{ORIFICE} = Q_{INTENDED}$ 

| SITE SPECIFIC DATA                       |                  |               |            |  |  |  |
|------------------------------------------|------------------|---------------|------------|--|--|--|
| PROJECT NUMBE                            | R                |               |            |  |  |  |
| ORDER NUMBER                             |                  |               |            |  |  |  |
| PROJECT NAME                             |                  |               |            |  |  |  |
| PROJECT LOCATI                           | 'ON              |               |            |  |  |  |
| STRUCTURE ID                             |                  |               |            |  |  |  |
|                                          | TREATMENT        | REQUIRED      |            |  |  |  |
| VOLUME B                                 | ASED (CF)        | FLOW BAS      | SED (CFS)  |  |  |  |
|                                          |                  |               |            |  |  |  |
| TREATMENT HGL                            | AVAILABLE (FT)   |               |            |  |  |  |
| PEAK BYPASS R                            | PEQUIRED (CFS) - | IF APPLICABLE |            |  |  |  |
| PIPE DATA                                | <i>I.E.</i>      | MATERIAL      | DIAMETER   |  |  |  |
| INLET PIPE 1                             |                  |               |            |  |  |  |
| INLET PIPE 2                             |                  |               |            |  |  |  |
| OUTLET PIPE                              |                  |               |            |  |  |  |
|                                          | PRETREATMENT     | BIOFILTRATION | DISCHARGE  |  |  |  |
| RIM ELEVATION                            |                  |               |            |  |  |  |
| SURFACE LOAD                             | PEDESTRIAN       | OPEN PLANTER  | PEDESTRIAN |  |  |  |
| FRAME & COVER                            | 24" X 42"        | N/A           | N/A        |  |  |  |
| WETLANDMEDIA V                           | IOLUME (CY)      |               | TBD        |  |  |  |
| ORIFICE SIZE (D                          | NA. INCHES)      |               | TBD        |  |  |  |
| NOTES: PRELIMINARY NOT FOR CONSTRUCTION. |                  |               |            |  |  |  |

### INSTALLATION NOTES

- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- 3. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL GAPS AROUND PIPES SHALL BE SEALED WATER TIGHT WITH A NON-SHRINK GROUT PER MANUFACTURERS STANDARD CONNECTION DETAIL AND SHALL MEET OR EXCEED REGIONAL PIPE CONNECTION STANDARDS.
- 4. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES.
- 5. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- 6. DRIP OR SPRAY IRRIGATION REQUIRED ON ALL UNITS WITH VEGETATION.
- 7. CONTRACTOR RESPONSIBLE FOR CONTACTING MODULAR WETLANDS FOR ACTIVATION OF UNIT. MANUFACTURES WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A MODULAR WETLANDS REPRESENTATIVE.

#### **GENERAL NOTES**

- 1. MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
- 2. ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT MANUFACTURER.



LEFT END VIEW



## **ELEVATION VIEW**



PROPRIETARY AND CONFIDENTIAL:

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF FORTERRA AND ITS COMPANIES. THIS DOCUMENT, NOR ANY PART THEREOF, MAY BE USED, REPRODUCED OR MODIFIED IN ANY MANNER WITH OUT THE WRITTEN CONSENT OF FORTERRA.











**City of San Diego Development Services** 1222 First Ave., MS-501 San Diego, CA 92101

# Permanent BMP Construction Self Certification Form

December 2016

FORM

**DS-563** 

| Date Prepared:                                                                                                                                                                                                                                                                           | Project No./Drawing No.:                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10/06/2022                                                                                                                                                                                                                                                                               | PRJ-1054862                                                                                                                                                                                                                                                                                                                |
| Project Applicant:                                                                                                                                                                                                                                                                       | Phone:                                                                                                                                                                                                                                                                                                                     |
| Patric de Boer                                                                                                                                                                                                                                                                           | (858) 634-8620                                                                                                                                                                                                                                                                                                             |
| Project Address:                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |
| 3060 Carmel Valley Rd., San Diego, CA 92130                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                            |
| Project Name:                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                            |
| KA Enterprises C-Store and Car Wash                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                            |
| The purpose of this form is to verify that the site imp<br>structed in conformance with the approved Stor                                                                                                                                                                                | rovements for the project, identified above, have been con-<br>m Water Standards Manual documents and drawings.                                                                                                                                                                                                            |
| This form must be completed by the engineer and su<br>Completion and submittal of this form is required fo<br>City's Storm Water ordinances and applicable San Die<br>or release of grading or public improvement bonds m<br>the City of San Diego.                                      | bmitted prior to final inspection of the construction permit.<br>r Priority Development Projects in order to comply with the<br>go Regional MS4 Permit. Final inspection for occupancy and/<br>ay be delayed if this form is not submitted and approved by                                                                 |
| Certification:                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                            |
| As the professional in responsible charge for the desig<br>structed Low Impact Development (LID) site design,<br>BMP's required per the Storm Water Standards Manu-<br>with the approved plans and all applicable specificatio<br>I understand that this BMP certification statement doe | gn of the above project, I certify that I have inspected all con-<br>source control, hydromodification, and treatment control<br>al; and that said BMP's have been constructed in compliance<br>ns, permits, ordinances and San Diego Regional MS4 Permit.<br>es not constitute an operation and maintenance verification. |
| Signature:                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                            |
| Date of Signature:                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |
| Printed Name: Patric de Boer                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                            |
| Title: Project Engineer                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                            |
| Phone No. <u>(858) 634-8620</u>                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                          | Engineer's Stamp                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |

Printed on recycled paper. Visit our web site at <u>www.sandiego.gov/development-services</u>. Upon request, this information is available in alternative formats for persons with disabilities.

## THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING



# Attachment 1 Backup For PDP Pollutant Control BMPs

This is the cover sheet for Attachment 1.



## THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING



## Indicate which Items are Included:

| Attachment<br>Sequence | Contents                                                                                                                                                                                                                                          | Checklist                                                                   |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Attachment 1a          | DMA Exhibit (Required) See<br>DMA Exhibit Checklist.                                                                                                                                                                                              | Included                                                                    |
| Attachment 1h          | Tabular Summary of DMAs Showing DMA<br>ID matching DMA Exhibit, DMA Area, and<br>DMA Type (Required)*                                                                                                                                             | Included on DMA Exhibit in Attachment 1a                                    |
|                        | *Provide table in this Attachment OR on DMA Exhibit in Attachment 1a                                                                                                                                                                              | Included as Attachment 1b, separate from DMA Exhibit                        |
|                        | Form I-7, Harvest and Use Feasibility<br>Screening Checklist (Required unless the<br>entire project will use infiltration BMPs)                                                                                                                   | Included                                                                    |
| Attachment 1c          | Refer to Appendix B.3-1 of the BMP<br>Design Manual to complete Form I-7.                                                                                                                                                                         | entire project will use<br>infiltration BMPs                                |
|                        | Infiltration Feasibility Information.<br>Contents of Attachment 1d depend on the<br>infiltration condition:                                                                                                                                       |                                                                             |
|                        | <ul> <li>No Infiltration Condition:         <ul> <li>Infiltration Feasibility Condition<br/>Letter (Note: must be stamped and<br/>signed by licensed geotechnical<br/>engineer)</li> </ul> </li> </ul>                                            |                                                                             |
|                        | <ul> <li>Form I-8A (optional)</li> <li>Form I-8B (optional)</li> </ul>                                                                                                                                                                            | Included                                                                    |
| Attachment 1d          | <ul> <li>Partial Infiltration Condition:         <ul> <li>Infiltration Feasibility Condition<br/>Letter (Note: must be stamped and<br/>signed by licensed geotechnical<br/>engineer)</li> <li>Form I-8A</li> <li>Form I-8B</li> </ul> </li> </ul> | Not included because the<br>entire project will use<br>harvest and use BMPs |
|                        | <ul> <li>Full Infiltration Condition:         <ul> <li>Form I-8A</li> <li>Form I-8B</li> <li>Worksheet C.4-3</li> <li>Form I-9</li> </ul> </li> <li>Refer to Appendices C and D of the BMP Design Manual for guidance.</li> </ul>                 |                                                                             |
| Attachment 1e          | Pollutant Control BMP Design<br>Worksheets / Calculations (Required)                                                                                                                                                                              | Included                                                                    |
|                        | Refer to Appendices B and E of the BMP<br>Design Manual for structural pollutant<br>control BMP design guidelines and site<br>design credit calculations                                                                                          |                                                                             |



# Use this checklist to ensure the required information has been included on the DMA Exhibit:

The DMA Exhibit must identify:

- ✓ Underlying hydrologic soil group
- Approximate depth to groundwater
- Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
  - Critical coarse sediment yield areas to be protected
- $\checkmark$  Existing topography and impervious areas
- Existing and proposed site drainage network and connections to drainage offsite
   Proposed grading
- ✓ Proposed impervious features
- Proposed design features and surface treatments used to minimize imperviousness
- ✓ Drainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square footage or acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)
  - Potential pollutant source areas and corresponding required source controls (see Chapter 4, Appendix E.1, and Form I-3B)
- Structural BMPs (identify location, type of BMP, size/detail, and include crosssection)





| DMA DATA TABLE |                   |                   |                    |                                             |  |  |
|----------------|-------------------|-------------------|--------------------|---------------------------------------------|--|--|
| DMA-NO.        | TOT. AREA<br>(SF) | IMPERVIOUS<br>(%) | DESIGN<br>DCV (CF) | TYPE/TREATED BY                             |  |  |
| DMA-1          | 32,508            | 75                | 931                | BMP-1 / BMP-2                               |  |  |
| DMA-2          | 3,624             | 86                | 71                 | TREE WELL #2 (15' DIA)<br>(SITE DESIGN BMP) |  |  |
| DMA-3          | 745               | 83                | 23                 | TREE WELL #1 (15' DIA)<br>(SITE DESIGN BMP) |  |  |
| DMA-4          | 2,264             | 0                 | -                  | SELF-MITIGATING                             |  |  |
| DMA-5          | 195               | 100               | -                  | DEMINIMIS                                   |  |  |
| 7              | OTAL DCV OF SI    | TE                | 1,025              |                                             |  |  |

| TREATMENT BMP DATA TABLE |           |                       |                    |                                                                   |  |  |
|--------------------------|-----------|-----------------------|--------------------|-------------------------------------------------------------------|--|--|
| BMP-#                    | TREA TING | PROPOSED<br>FOOTPRINT | PROPOSED<br>VOLUME | DESCRIP TION                                                      |  |  |
| BMP-1                    | DMA-1     | 900 SF                | 1,480 CF           | GRAVEL FILLED, DETENTION FACILITY<br>W/ 8 SC-740 STORAGE ARCHES   |  |  |
| BMP-2                    | DMA-1     | 4'x4'                 | N/A                | PROPRIETARY BIOFILTRATION FACILITY<br>MODULAR WETLAND MWS-L-4-4-C |  |  |

| SIDE                                                        | DESIG              | N BN          | (IP – T               | REE WE                                  | LL DATA                                      | TABLE                                      |  |
|-------------------------------------------------------------|--------------------|---------------|-----------------------|-----------------------------------------|----------------------------------------------|--------------------------------------------|--|
| TRIBUTARY<br>BASIN                                          | CANOPY<br>DIAMETER | # OF<br>TREES | AMENDED<br>SOIL DEPTH | PROPOSED<br>AMENDED SOIL<br>VOLUME (CF) | REQUIRED MIN.<br>AMENDED SOIL<br>VOLUME (CF) | TREE WEL<br>VOLUME<br>REDUCTIO<br>(CF/TREL |  |
| DMA-2                                                       | 15 FT              | 1 (*)         | 2.5 FT                | 400 CF                                  | 353 CF                                       | 200 CF                                     |  |
| DMA-3                                                       | 15 FT              | 1 (*)         | 2.5 FT                | 400 CF                                  | 353 CF                                       | 200 CF                                     |  |
| (*) SITE DESIGN BMP TREE WELLS TO BE INSTALLED PER SDL-101. |                    |               |                       |                                         |                                              |                                            |  |
| TOUT DANNIENS FEN SULTIUD TO DE ADUED WITERE TREE           |                    |               |                       |                                         |                                              |                                            |  |



Figure B.1-1: 85th Percentile 24-hour Isopluvial Map

B-9 The City of San Diego | Storm Water Standards | October 2018 Edition Part 1: BMP Design Manual

## Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods





United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for San Diego County Area, California



# Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# Contents

| Preface                           | 2  |
|-----------------------------------|----|
| How Soil Surveys Are Made         | 5  |
| Soil Map                          |    |
| Soil Map                          | 9  |
| Legend                            | 10 |
| Map Unit Legend                   | 11 |
| Map Unit Descriptions             | 11 |
| San Diego County Area, California |    |
| Md—Made land                      |    |
| References                        | 14 |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



Γ

| MAP INFORMATION | The soil surveys that comprise your AOI were mapped at 1:24,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Warning: Soil Map may not be valid at this scale.<br>Enlargement of maps beyond the scale of mapping can cause<br>misunderstanding of the detail of mapping and accuracy of soil<br>line placement. The maps do not show the small areas of<br>contrasting soils that could have been shown at a more detailed<br>scale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Please rely on the bar scale on each map sheet for map measurements.                                                         | Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857) | Maps from the Web Soil Survey are based on the Web Mercator<br>projection, which preserves direction and shape but distorts<br>distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more<br>accurate calculations of distance or area are required. | This product is generated from the USDA-NRCS certified data as<br>of the version date(s) listed below.<br>Soil Survey Area: San Diego County Area, California<br>Survey Area: Vorcion 16, Son 13, 2003 | Soil map units are labeled (as space allows) for map scales<br>1:50,000 or larger. | Date(s) aerial images were photographed: Mar 24, 2022—Apr<br>29, 2022 | The orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident. |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAP LEGEND      | Area of Interest (AOI)<br>Area of Interest (AOI)<br> | Soils     Soil Map Unit Polygons     A     Very Stony Spot <ul> <li>Soil Map Unit Lines</li> <li>Soil Map Unit Lines</li> <li>Soil Map Unit Points</li> <li>Sointervite Points</li> <li>Soil Map Unit Points</li></ul> | <ul> <li>Borrow Pit</li> <li>Transportation</li> <li>Clay Spot</li> <li>Transportation</li> <li>Closed Depression</li> </ul> | Gravel Pit US Routes<br>Gravely Spot                                                                                         | <ul> <li>Landfill</li> <li>Lava Flow</li> <li>Background</li> <li>Marsh or swamp</li> <li>Aerial Photography</li> <li>Mine or Quarry</li> </ul>                                                                                                                                                                          | <ul> <li>Miscellaneous Water</li> <li>Perennial Water</li> <li>Rock Outcrop</li> </ul>                                                                                                                 | <ul> <li>Saline Spot</li> <li>Sandy Spot</li> <li>Severely Eroded Spot</li> </ul>  | <ul> <li>Sinkhole</li> <li>Slide or Slip</li> </ul>                   | Ø Sodic Spot                                                                                                                                                                                                                                |

## **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name | Acres in AOI | Percent of AOI |
|-----------------------------|---------------|--------------|----------------|
| Md                          | Made land     | 1.3          | 100.0%         |
| Totals for Area of Interest |               | 1.3          | 100.0%         |

## **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## San Diego County Area, California

### Md—Made land

#### **Map Unit Composition**

*Made land:* 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Made Land**

#### Typical profile

H1 - 0 to 6 inches: variable

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydric soil rating: No

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf



| Tabular Summary of DMAs  |                              |                                        |           |         |                                           |                              | Worksheet B-1                 |                |                        |                |                        |  |                           |                       |
|--------------------------|------------------------------|----------------------------------------|-----------|---------|-------------------------------------------|------------------------------|-------------------------------|----------------|------------------------|----------------|------------------------|--|---------------------------|-----------------------|
| DMA Unique<br>Identifier | Area<br>(acres)              | Impervious<br>Area<br>(acres)          | % Imp     | HSG     | Area<br>Weighted<br>Runoff<br>Coefficient | DCV<br>(cubic<br>feet)       | Treated By (BMP<br>ID)        |                | Treated By (BMP<br>ID) |                | Treated By (BMP<br>ID) |  | Pollutant Control<br>Type | Drains to<br>(POC ID) |
| DMA-1                    | 0.746                        | 0.561                                  | 75        | D       | 0.70                                      | 931                          | BMP-1                         |                | MWS                    | POC-1          |                        |  |                           |                       |
| DMA-2                    | 0.083                        | 0.071                                  | 86        | D       | 0.79                                      | 71                           |                               | N/A            | Tree Well              | POC-1          |                        |  |                           |                       |
| DMA-3                    | 0.017                        | 0.014                                  | 86        | D       | 0.76                                      | 23                           |                               | N/A            | Tree Well              | POC-1          |                        |  |                           |                       |
| DMA-4                    | 0.052                        | 0                                      | 0         | D       | 0.10                                      | -                            |                               | N/A Self Mitig |                        | POC-1          |                        |  |                           |                       |
| DMA-5                    | 0.004                        | 0.004                                  | 100       | D       | 0.90                                      | _                            | N/A                           |                | N/A Deminimis          |                |                        |  |                           |                       |
|                          |                              |                                        |           |         |                                           |                              |                               |                |                        |                |                        |  |                           |                       |
|                          |                              |                                        |           |         |                                           |                              |                               |                |                        |                |                        |  |                           |                       |
|                          |                              |                                        |           |         |                                           |                              |                               |                |                        |                |                        |  |                           |                       |
|                          |                              |                                        |           |         |                                           |                              |                               |                |                        |                |                        |  |                           |                       |
|                          |                              |                                        |           |         |                                           |                              |                               |                |                        |                |                        |  |                           |                       |
|                          | Sumn                         | nary of DMA                            | Informati | ion (Mu | st match proj                             | ject descript                | tion and                      | SWQMP Na       | arrative)              |                |                        |  |                           |                       |
| No. of DMAs              | Total DMA<br>Area<br>(acres) | Total<br>Impervious<br>Area<br>(acres) | % Imp     |         | Area<br>Weighted<br>Runoff<br>Coefficient | Total DCV<br>(cubic<br>feet) | Total Area<br>Treated (acres) |                |                        | No. of<br>POCs |                        |  |                           |                       |
| 1                        | 0.90                         | 0.651                                  | 69        |         | 0.65                                      | 1,024                        | 0.90                          | 0.90           |                        | 1              |                        |  |                           |                       |

**Where**: DMA = Drainage Management Area; Imp = Imperviousness; HSG = Hydrologic Soil Group; DCV= Design Capture Volume; BMP = Best Management Practice; POC = Point of Compliance; ID = identifier; No. = Number

## Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

#### Worksheet B.3-1: Harvest and Use Feasibility Screening

| Harvest and Use Feas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ibility Screening                                                                                                                                                                                                                                                                                | Worsksheet B.3-1                                                                                                |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>1. Is there a demand for harvested water (check all that apply) at the project site that is reliably present during the wet season?</li> <li> X Toilet and urinal flushing X Landscape irrigation Other:</li></ul>                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                  |                                                                                                                 |  |  |  |  |  |
| <ul> <li>2. If there is a demand; estimate the anticipated average wet season demand over a period of 36 hours. Guidance for planning level demand calculations for toilet/urinal flushing and landscape irrigation is provided in Section B.3.2.</li> <li>[Provide a summary of calculations here]</li> <li>Office: 7 gallons per day * 1.5 days per 36 hours</li> <li>Demand = 10.5 Gal/36 hours</li> <li>Landscaping: 390 Gal*(0.09 Ac*36 hours).</li> <li>Demand = 35 Gal/36 hours</li> <li>Total Demand (Gal): 45.5 Gal/36 hours</li> <li>Total Demand (CF): 6.08 CF/36 hours</li> </ul> |                                                                                                                                                                                                                                                                                                  |                                                                                                                 |  |  |  |  |  |
| 3. Calculate the DCV using works<br>[Provide a results here]<br>DCV = 931 (cubic feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet B-2.1.                                                                                                                                                                                                                                                                                      |                                                                                                                 |  |  |  |  |  |
| 3a. Is the 36-hour demand<br>greater than or equal to the<br>DCV?<br>Yes / No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3b. Is the 36-hour demand g<br>than 0.25DCV but less than the<br>DCV?<br>Yes / No                                                                                                                                                                                                                | reater<br>he full<br>0.25DCV?<br>Yes                                                                            |  |  |  |  |  |
| Harvest and use appears to be<br>feasible. Conduct more detailed<br>evaluation and sizing<br>calculations to confirm that<br>DCV can be used at an adequate<br>rate to meet drawdown criteria.                                                                                                                                                                                                                                                                                                                                                                                                | Harvest and use may be feasi<br>Conduct more detailed evalua<br>sizing calculations to determ<br>feasibility. Harvest and use n<br>be able to be used for a portio<br>site, or (optionally) the stora<br>need to be upsized to meet lo<br>capture targets while drainin<br>longer than 36 hours. | ible. Harvest and use is<br>ation and<br>ine infeasible.<br>nay only<br>on of the<br>ge may<br>ong term<br>g in |  |  |  |  |  |

**Note**: 36-hour demand calculations are for feasibility analysis only, once the feasibility analysis is complete the applicant may be allowed to use a different drawdown time provided they meet the 80 percent of average annual (long term) runoff volume performance standard.





|   | Design Capture Volume                                                                                                                                                                                                     | Worksheet B.2–1 |       |            |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------------|--|
| 1 | 85 <sup>th</sup> percentile 24-hr storm depth from Figure B.1-1                                                                                                                                                           | d=              | 0.49  | inches     |  |
| 2 | Area tributary to BMP (s)                                                                                                                                                                                                 | A=              | 0.746 | acres      |  |
| 3 | Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1)                                                                                                                                                     | C=              | 0.70  | unitless   |  |
| 4 | Trees Credit Volume<br>Note: In the SWQMP list the number of trees, size of each tree,<br>amount of soil volume installed for each tree, contributing area to<br>each tree and the inlet opening dimension for each tree. | TCV=            | 0     | cubic-feet |  |
| 5 | Rain barrels Credit Volume<br>Note: In the SWQMP list the number of rain barrels, size of each<br>rain barrel and the use of the captured storm water runoff.                                                             | RCV=            | 0     | cubic-feet |  |
| 6 | Calculate DCV = (3630 x C x d x A) – TCV – RCV                                                                                                                                                                            | DCV=            | 931   | cubic-feet |  |





|   | Design Capture Volume                                                                                                                                                                                                     | Worksheet B.2-1 |       |            |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------------|--|
| 1 | 85 <sup>th</sup> percentile 24-hr storm depth from Figure B.1-1                                                                                                                                                           | d=              | 0.49  | inches     |  |
| 2 | Area tributary to BMP (s)                                                                                                                                                                                                 | A=              | 0.083 | acres      |  |
| 3 | Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1)                                                                                                                                                     | C=              | 0.79  | unitless   |  |
| 4 | Trees Credit Volume<br>Note: In the SWQMP list the number of trees, size of each tree,<br>amount of soil volume installed for each tree, contributing area to<br>each tree and the inlet opening dimension for each tree. | TCV=            | 200   | cubic-feet |  |
| 5 | Rain barrels Credit Volume<br>Note: In the SWQMP list the number of rain barrels, size of each<br>rain barrel and the use of the captured storm water runoff.                                                             | RCV=            | 0     | cubic-feet |  |
| 6 | Calculate DCV = (3630 x C x d x A) – TCV – RCV                                                                                                                                                                            | DCV=            | 116   | cubic-feet |  |

The DCV is reduced to 0 CF after the Tree Credit Volume.





|   | Design Capture Volume                                                                                                                                                                                                     | Worksheet B.2-1 |       |            |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------------|--|
| 1 | 85 <sup>th</sup> percentile 24-hr storm depth from Figure B.1-1                                                                                                                                                           | d=              | 0.49  | inches     |  |
| 2 | Area tributary to BMP (s)                                                                                                                                                                                                 | A=              | 0.017 | acres      |  |
| 3 | Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1)                                                                                                                                                     | C=              | 0.76  | unitless   |  |
| 4 | Trees Credit Volume<br>Note: In the SWQMP list the number of trees, size of each tree,<br>amount of soil volume installed for each tree, contributing area to<br>each tree and the inlet opening dimension for each tree. | TCV=            | 200   | cubic-feet |  |
| 5 | Rain barrels Credit Volume<br>Note: In the SWQMP list the number of rain barrels, size of each<br>rain barrel and the use of the captured storm water runoff.                                                             | RCV=            | 0     | cubic-feet |  |
| 6 | Calculate DCV = (3630 x C x d x A) – TCV – RCV                                                                                                                                                                            | DCV=            | 23    | cubic-feet |  |

The DCV is reduced to 0 CF after the Tree Credit Volume.


| Sizing Method for Volume Retention Criteria |                                                                                                                                                                                                    | Worksh | eet B.5-2 |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1                                           | Area draining to the BMP                                                                                                                                                                           | 32,508 | sq. ft.   |
| 2                                           | Adjusted runoff factor for drainage area (Refer to Appendix B.1 and B.2)                                                                                                                           | 0.70   |           |
| 3                                           | 85 <sup>th</sup> percentile 24-hour rainfall depth                                                                                                                                                 | 0.49   | inches    |
| 4                                           | Design capture volume [Line 1 x Line 2 x (Line 3/12)]                                                                                                                                              | 931    | cu. ft.   |
| Volu                                        | ume Retention Requirement                                                                                                                                                                          |        |           |
|                                             | Measured infiltration rate in the DMA                                                                                                                                                              |        |           |
|                                             | Note:                                                                                                                                                                                              |        |           |
| 5                                           | When mapped hydrologic soil groups are used enter 0.10 for NRCS Type D soils and for NRCS Type C soils enter 0.30                                                                                  | 0.0    | in/hr.    |
|                                             | When in no infiltration condition and the actual measured infiltration rate<br>is unknown enter 0.0 if there are geotechnical and/or groundwater<br>hazards identified in Appendix C or enter 0.05 |        |           |
| 6                                           | Factor of safety                                                                                                                                                                                   | 2      |           |
| 7                                           | Reliable infiltration rate, for biofiltration BMP sizing [Line 5/ Line 6]                                                                                                                          | 0.0    | in/hr.    |
|                                             | Average annual volume reduction target (Figure B.5-2)                                                                                                                                              |        |           |
| 8                                           | When Line 7 > 0.01 in/hr. = Minimum (40, 166.9 x Line 7 +6.62)                                                                                                                                     | 3.5    | %         |
|                                             | When Line 7 ≤ 0.01 in/hr. = 3.5%                                                                                                                                                                   |        |           |
|                                             | Fraction of DCV to be retained (Figure B.5-3)                                                                                                                                                      |        |           |
| 9                                           | When Line 8 > 8% =<br>0.0000013 x Line 8 <sup>3</sup> - 0.000057 x Line 8 <sup>2</sup> + 0.0086 x Line 8 - 0.014                                                                                   | 0.023  |           |
|                                             | When Line 8 ≤ 8% = 0.023                                                                                                                                                                           |        |           |
| 10                                          | Target volume retention [Line 9 x Line 4]                                                                                                                                                          | 21.41  | cu. ft.   |

|          | Volume Retention for No Infiltration Condition Work                                                                                                                |                                                                                                 |                            | ksheet B.5         | -6                          |         |         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------|--------------------|-----------------------------|---------|---------|
| 1        | Area draining to the biofiltration BMP                                                                                                                             |                                                                                                 |                            |                    | 32508                       | sq. ft. |         |
| 2        | 2 Adjusted runoff factor for drainage area (Refer to Appendix B.1 and B.2)                                                                                         |                                                                                                 |                            |                    | nd B.2)                     | 0.7     |         |
| 3        | Effective imperv                                                                                                                                                   | vious area draining to the BMP [                                                                | Line 1 x Li                | ine 2]             |                             | 22756   | sq. ft. |
| 4        | Required area fo                                                                                                                                                   | or Evapotranspiration [Line 3 x o                                                               | 0.03]                      |                    |                             | 683     | sq. ft. |
| 5        | Biofiltration BN                                                                                                                                                   | IP Footprint                                                                                    |                            |                    |                             | 900     | sq. ft. |
| Lan      | dscape Area (mu                                                                                                                                                    | st be identified on DS-3247)                                                                    |                            |                    |                             |         |         |
|          |                                                                                                                                                                    | Identification                                                                                  | Α                          | B                  | C                           | D       | E       |
| 6        | Landscape area<br>in SD-B and SD                                                                                                                                   | that meet the requirements<br>-F Fact Sheet (sq. ft.)                                           |                            |                    |                             |         |         |
| 7        | Impervious area                                                                                                                                                    | a draining to the landscape                                                                     |                            |                    |                             |         |         |
| <u> </u> | area (sq. ft.)                                                                                                                                                     | Auge notio                                                                                      |                            |                    |                             |         |         |
| 8        | [Line 7/Line 6]                                                                                                                                                    | ervious Area ratio                                                                              |                            |                    |                             |         |         |
|          | Effective Credit                                                                                                                                                   | Area                                                                                            |                            |                    |                             |         |         |
| 9        | If Line 8 >1.5, u                                                                                                                                                  | se Line 6; if not use Line 7/1.5                                                                |                            |                    |                             |         |         |
| 10       | Sum of Landsca                                                                                                                                                     | pe area [sum of Lines 9A-9E]                                                                    |                            |                    |                             |         | sq. ft. |
| 11       | Provided footpr                                                                                                                                                    | int for evapotranspiration [Line                                                                | 5 + Line 1                 | 0]                 | 90                          | 0       | sq. ft. |
| Volu     | ume Retention Pe                                                                                                                                                   | erformance Standard                                                                             |                            |                    |                             | 1       |         |
| 12       | Is Line 11 ≥ Line 4?<br>If yes, then volume retention performance standard for no infiltration<br>condition is met. If no, proceed to Line 13                      |                                                                                                 |                            |                    | OYes                        | ⊙ No    |         |
| 13       | Fraction of the performance standard met through the BMP footprint<br>and/or landscaping [Line 11/Line 4]                                                          |                                                                                                 |                            | 1.32               |                             |         |         |
| 14       | Target Volume Retention [Line 10 from Worksheet B.5.2]                                                                                                             |                                                                                                 |                            |                    | 21.41                       | cu. ft. |         |
| 15       | Volume retention required from other site design BMPs<br>[(1-Line 13) x Line 14]                                                                                   |                                                                                                 |                            |                    | -6.85                       | cu. ft. |         |
| Site     | Design BMP                                                                                                                                                         |                                                                                                 |                            |                    |                             | •       | •       |
|          | Identification                                                                                                                                                     | Site Desig                                                                                      | gn Type                    |                    |                             | Credit  |         |
|          | Α                                                                                                                                                                  |                                                                                                 |                            |                    |                             |         | cu. ft. |
|          | В                                                                                                                                                                  |                                                                                                 |                            |                    |                             |         | cu. ft. |
|          | С                                                                                                                                                                  |                                                                                                 |                            |                    |                             |         | cu. ft. |
|          | D                                                                                                                                                                  |                                                                                                 |                            |                    |                             |         | cu. ft. |
| 16       | Е                                                                                                                                                                  |                                                                                                 |                            |                    |                             |         | cu. ft. |
|          | Sum of volume<br>rain barrels etc.<br>Provide docume<br>PDP SWQMP.                                                                                                 | retention benefits from other s<br>). [sum of Lines 16A-16E]<br>entation of how the site design | site desigr<br>n credit is | n BMPs<br>s calcul | (e.g. trees;<br>ated in the | 0       | cu. ft. |
| 17       | Is Line 16 ≥ Line 15?<br>If yes, then volume retention performance standard for no infiltration<br>condition is met. If no, implement additional site design BMPs. |                                                                                                 |                            | ⊙ Yes              | <b>O</b> No                 |         |         |



| Categori                              | ization of Infiltration Feasibility Condition based<br>on Geotechnical Conditions <sup>1</sup>                                                                           | Worksheet C.4-1: Form I-8A <sup>2</sup>                               |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
|                                       | Part 1 - Full Infiltration Feasibility Screen                                                                                                                            | ing Criteria                                                          |  |  |
| DMA(s) Being Analyzed: Project Phase: |                                                                                                                                                                          |                                                                       |  |  |
| All DMA's                             |                                                                                                                                                                          | Preliminary                                                           |  |  |
| Criteria 1:                           | Infiltration Rate Screening                                                                                                                                              |                                                                       |  |  |
|                                       | Is the mapped hydrologic soil group according to the NR<br>Web Mapper Type A or B and corroborated by available s                                                        | CS Web Soil Survey or UC Davis Soil<br>ite soil data³?                |  |  |
|                                       | • Yes; the DMA may feasibly support full infiltration. Answer "Yes" to Criteria 1 Result or continue to Step 1B if the applicant elects to perform infiltration testing. |                                                                       |  |  |
| 1A                                    | ♥No; the mapped soil types are A or B but is not corroborated by available site soil data (continue to Step 1B).                                                         |                                                                       |  |  |
|                                       | • No; the mapped soil types are C, D, or "urban/unclassified" and is corroborated by available site soil data. Answer "No" to Criteria 1 Result.                         |                                                                       |  |  |
|                                       | <b>O</b> No; the mapped soil types are C, D, or "urban/unclass<br>available site soil data (continue to Step 1B).                                                        | sified" but is not corroborated by                                    |  |  |
|                                       | Is the reliable infiltration rate calculated using planning<br>OYes: Continue to Step 1C.                                                                                | phase methods from Table D.3-1?                                       |  |  |
| 1B                                    | □ No; Skip to Step 1D.                                                                                                                                                   |                                                                       |  |  |
|                                       | Is the reliable infiltration rate calculated using planning greater than 0.5 inches per hour?                                                                            | phase methods from Table D.3-1                                        |  |  |
| 1C                                    | • Yes; the DMA may feasibly support full infiltration. Answer "Yes" to Criteria 1 Result.                                                                                |                                                                       |  |  |
|                                       | □ No; full infiltration is not required. Answer "No" to Criteria 1 Result.                                                                                               |                                                                       |  |  |
|                                       | <b>Infiltration Testing Method.</b> Is the selected infiltration t design phase (see Appendix D.3)? Note: Alternative testin                                             | esting method suitable during the<br>ng standards may be allowed with |  |  |
| 1D                                    | appropriate rationales and documentation.<br>• Yes: continue to Step 1E.                                                                                                 |                                                                       |  |  |
|                                       | □ No; select an appropriate infiltration testing method.                                                                                                                 |                                                                       |  |  |



<sup>&</sup>lt;sup>1</sup> Note that it is not required to investigate each and every criterion in the worksheet, a single "no" answer in Part 1, Part 2, Part 3, or Part 4 determines a full, partial, or no infiltration condition.

 $<sup>^2</sup>$  This form must be completed each time there is a change to the site layout that would affect the infiltration feasibility condition. Previously completed forms shall be retained to document the evolution of the site storm water design.

<sup>&</sup>lt;sup>3</sup> Available data includes site-specific sampling or observation of soil types or texture classes, such as obtained from borings or test pits necessary to support other design elements.

| Categor                               | ization of Infiltration Feasibility Condition based<br>on Geotechnical Conditions                                                                                                                                                                                                                       | Worksheet C.4-1: Form I-8A <sup>2</sup>                                                         |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| 1E                                    | <ul> <li><sup>1E</sup> Number of Percolation/Infiltration Tests. Does the infiltration testing method performed satisfy the minimum number of tests specified in Table D.3-2?</li> <li><sup>O</sup> Yes; continue to Step 1F.</li> <li><sup>D</sup> No; conduct appropriate number of tests.</li> </ul> |                                                                                                 |  |  |  |  |
| IF                                    | IFFactor of Safety. Is the suitable Factor of Safety selected for full infiltration design? See<br>guidance in D.5; Tables D.5-1 and D.5-2; and Worksheet D.5-1 (Form I-9).IFIf Yes; continue to Step 1G.If No; select appropriate factor of safety.                                                    |                                                                                                 |  |  |  |  |
| 1G                                    | IGFull Infiltration Feasibility. Is the average measured infiltration rate divided by the Factor of<br>Safety greater than 0.5 inches per hour?<br>                                                                                                                                                     |                                                                                                 |  |  |  |  |
| Critoria 1                            | Is the estimated reliable infiltration rate greater than 0.5<br>where runoff can reasonably be routed to a BMP?                                                                                                                                                                                         | 5 inches per hour within the DMA                                                                |  |  |  |  |
| Result                                | • Yes; the DMA may feasibly support full infiltration. Continue to Criteria 2.                                                                                                                                                                                                                          |                                                                                                 |  |  |  |  |
| Summariz<br>estimates<br>included in  | e infiltration testing methods, testing locations, replicates<br>of reliable infiltration rates according to procedures outlin<br>n project geotechnical report.                                                                                                                                        | s, and results and summarize<br>and in D.5. Documentation should be                             |  |  |  |  |
| Project is<br>historic s<br>surface v | s located in type D soil. Per the Preliminary Geotechr<br>site use and proposed continued use as a fuel facility<br>vaters is not a recommendation." Infiltration testing                                                                                                                               | nical Investigation, "due to the<br>(Hydrocarbon) infiltration of<br>has not yet been perfomed. |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                 |  |  |  |  |



| Categorization of Infiltration Feasibility Condition based<br>on Geotechnical Conditions                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Worksheet                                    | C.4–1: Forn   | n I-8A²     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|-------------|--|
| Criteria 2:                                                                                                                                       | Geologic/Geotechnical Screening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |               |             |  |
|                                                                                                                                                   | If all questions in Step 2A are answered "Yes," continue to Step 2B.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |               |             |  |
| 2A                                                                                                                                                | For any "No" answer in Step 2A answer "No" to Criteria 2, and submit an "Infiltration<br>Feasibility Condition Letter" that meets the requirements in Appendix C.1.1. The<br>geologic/geotechnical analyses listed in Appendix C.2.1 do not apply to the DMA because one<br>of the following setbacks cannot be avoided and therefore result in the DMA being in a<br>no infiltration condition. The setbacks must be the closest horizontal radial distance from<br>the surface edge (at the overflow elevation) of the BMP. |                                              |               |             |  |
| 2A-1                                                                                                                                              | Can the proposed full infiltration BMP(s) avoid areas wit<br>materials greater than 5 feet thick below the infiltrating                                                                                                                                                                                                                                                                                                                                                                                                       | h existing fill<br>surface?                  | ⊖Yes          | ⊙No         |  |
| 2A-2                                                                                                                                              | Can the proposed full infiltration BMP(s) avoid placement within 10 feet of existing underground utilities, structures, or retaining walls?                                                                                                                                                                                                                                                                                                                                                                                   |                                              | ⊙ Yes         | <b>O</b> No |  |
| 2A-3                                                                                                                                              | Can the proposed full infiltration BMP(s) avoid placement within 50 feet of a natural slope (>25%) or within a distance of 1.5H from fill slopes where H is the height of the fill slope?                                                                                                                                                                                                                                                                                                                                     |                                              | ⊙Yes          | ONo         |  |
|                                                                                                                                                   | When full infiltration is determined to be feasible, a geotechnical investigation report must be prepared that considers the relevant factors identified in Appendix C.2.1.                                                                                                                                                                                                                                                                                                                                                   |                                              |               |             |  |
| <sup>2B</sup> If all questions in Step 2B are answered "Yes," then answer "Yes" to Criteria 2 R<br>If there are "No" answers continue to Step 2C. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | teria 2 Resul | lt.         |  |
| 2B-1                                                                                                                                              | -1<br>-1<br>-1<br>Hydroconsolidation. Analyze hydroconsolidation potential per<br>approved ASTM standard due to a proposed full infiltration BMP.<br>Can full infiltration BMPs be proposed within the DMA without<br>increasing hydroconsolidation risks?                                                                                                                                                                                                                                                                    |                                              | <b>O</b> Yes  | ⊙No         |  |
| 2B-2                                                                                                                                              | <b>Expansive Soils.</b> Identify expansive soils (soils with index greater than 20) and the extent of such soils due to infiltration BMPs.<br>Can full infiltration BMPs be proposed within the increasing expansive soil risks?                                                                                                                                                                                                                                                                                              | an expansion<br>proposed full<br>DMA without | <b>⊙</b> Yes  | ONo         |  |



| Categorization of Infiltration Feasibility Condition based<br>on Geotechnical Conditions Worksheet C. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C.4-1: Forn                                                                                                                                | n I-8A <sup>2</sup> |      |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|
| 2B-3                                                                                                  | Liquefaction. If applicable, identify mapped lique<br>Evaluate liquefaction hazards in accordance with Section<br>City of San Diego's Guidelines for Geotechnical Reports<br>recent edition). Liquefaction hazard assessment sh<br>account any increase in groundwater elevation or<br>mounding that could occur as a result of proposed<br>percolation facilities.<br>Can full infiltration BMPs be proposed within the<br>increasing liquefaction risks?                                                                       | faction areas.<br>on 6.4.2 of the<br>(2011 or most<br>hall take into<br>groundwater<br>infiltration or<br>DMA without                      | ⊙Yes                | O No |
| 2B-4                                                                                                  | <b>Slope Stability</b> . If applicable, perform a slope stabili<br>accordance with the ASCE and Southern California Eart<br>(2002) Recommended Procedures for Implementation of<br>Publication 117, Guidelines for Analyzing and Mitigat<br>Hazards in California to determine minimum slope se<br>infiltration BMPs. See the City of San Diego's C<br>Geotechnical Reports (2011) to determine which type of<br>analysis is required.<br>Can full infiltration BMPs be proposed within the<br>increasing slope stability risks? | ty analysis in<br>hquake Center<br>of DMG Special<br>ting Landslide<br>tbacks for full<br>Guidelines for<br>slope stability<br>DMA without | ⊙Yes                | O No |
| 2B-5                                                                                                  | <b>Other Geotechnical Hazards.</b> Identify site-specific<br>hazards not already mentioned (refer to Appendix C.2.1).<br>Can full infiltration BMPs be proposed within the<br>increasing risk of geologic or geotechnical hazards<br>mentioned?                                                                                                                                                                                                                                                                                  | geotechnical<br>DMA without<br>s not already                                                                                               | ⊖Yes                | ⊙ No |
| 2B-6                                                                                                  | Setbacks. Establish setbacks from underground utiliti<br>and/or retaining walls. Reference applicable ASTM or ot<br>standard in the geotechnical report.<br>Can full infiltration BMPs be proposed within the<br>established setbacks from underground utilities, stru-<br>retaining walls?                                                                                                                                                                                                                                      | es, structures,<br>her recognized<br>e DMA using<br>ctures, and/or                                                                         | OYes                | ⊙ No |



| Categori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zation of Infiltration Feasibility Condition based<br>on Geotechnical Conditions                                                                                                                            | Worksheet                                                   | C.4-1: Forn | n I-8A <sup>2</sup> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|---------------------|
| Mitigation Measures. Propose mitigation measures for each geologic/geotechnical hazard identified in Step 2B. Provide a discussion of geologic/geotechnical hazards that would prevent full infiltration BMPs that cannot be reasonably mitigated in the geotechnical report. See Appendix C.2.1.8 for a list of typically reasonable and typically unreasonable mitigation measures. Can mitigation measures be proposed to allow for full infiltration BMPs? If the question in Step 2 is answered "Yes," then answer "Yes" to Criteria 2 Result. If the question in Step 2C is answered "No," then answer "No" to Criteria 2 Result. |                                                                                                                                                                                                             | () Yes                                                      | ⊙No         |                     |
| Criteria 2<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Can infiltration greater than 0.5 inches per hour be al<br>increasing risk of geologic or geotechnical hazards t<br>reasonably mitigated to an acceptable level?                                            | llowed without<br>hat cannot be                             | OYes        | 🗿 No                |
| Summarize findings and basis; provide references to related reports or exhibits.<br>Per the Preliminary Geotechnical Investigation, "due to the historic site use and proposed continued use as a fuel facility (Hydrocarbon) infiltration of surface waters is not a recommendation." Infiltration testing has not yet been perfomed.                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |                                                             |             |                     |
| Part 1 Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Part 1 Result – Full Infiltration Geotechnical Screening <sup>4</sup>                                                                                                                                       |                                                             |             |                     |
| If answers<br>infiltration<br>conditions<br>If either ar<br>design is n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s to both Criteria 1 and Criteria 2 are "Yes", a full<br>a design is potentially feasible based on Geotechnical<br>only.<br>Inswer to Criteria 1 or Criteria 2 is "No", a full infiltration<br>ot required. | Il<br>al OFull infiltration Condition<br>n OComplete Part 2 |             |                     |

<sup>&</sup>lt;sup>4</sup> To be completed using gathered site information and best professional judgement considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.



| Categorization of Infiltration Feasibility Condition based<br>on Geotechnical Conditions                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                    | Worksheet C.4-1: Form I-8A <sup>2</sup>                                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                   | Part 2 – Partial vs. No Infiltration Feasibility Screening Criteria                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |  |  |  |
| DMA(s) B                                                                                                                                                          | DMA(s) Being Analyzed: Project Phase:                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |  |  |  |
| All DMA's                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    | Preliminary                                                                                 |  |  |  |
| Criteria 3                                                                                                                                                        | : Infiltration Rate Screening                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |  |  |  |
| 3A                                                                                                                                                                | <ul> <li>NRCS Type C, D, or "urban/unclassified": Is the mapped hydrologic soil group according to the NRCS Web Soil Survey or UC Davis Soil Web Mapper is Type C, D, or "urban/unclassified" and corroborated by available site soil data?</li> <li>O Yes; the site is mapped as C soils and a reliable infiltration rate of 0.15 in/hr. is used to size partial infiltration BMPS. Answer "Yes" to Criteria 3 Result.</li> </ul> |                                                                                             |  |  |  |
|                                                                                                                                                                   | O Yes; the site is mapped as D soils or "urban/unclass<br>of 0.05 in/hr. is used to size partial infiltration BM                                                                                                                                                                                                                                                                                                                   | ified" and a reliable infiltration rate<br>PS. Answer "Yes" to Criteria 3 Result.           |  |  |  |
|                                                                                                                                                                   | O No; infiltration testing is conducted (refer to Table D.3-1), continue to Step 3B.                                                                                                                                                                                                                                                                                                                                               |                                                                                             |  |  |  |
| 3B                                                                                                                                                                | Infiltration Testing Result: Is the reliable infiltration rate (i.e. average measured infiltration rate/2) greater than 0.05 in/hr. and less than or equal to 0.5 in/hr?<br>• Yes; the site may support partial infiltration. Answer "Yes" to Criteria 3 Result.                                                                                                                                                                   |                                                                                             |  |  |  |
|                                                                                                                                                                   | • No; the reliable infiltration rate (i.e. average measured rate/2) is less than 0.05 in/hr., partial infiltration is not required. Answer "No" to Criteria 3 Result.                                                                                                                                                                                                                                                              |                                                                                             |  |  |  |
| Criteria 3<br>Result                                                                                                                                              | Is the estimated reliable infiltration rate (i.e., average<br>than or equal to 0.05 inches/hour and less than or equ<br>within each DMA where runoff can reasonably be routed                                                                                                                                                                                                                                                      | measured infiltration rate/2) greater<br>al to 0.5 inches/hour at any location<br>to a BMP? |  |  |  |
| Rebuit                                                                                                                                                            | <ul> <li>Yes; Continue to Criteria 4.</li> <li>No: Skip to Part 2 Result.</li> </ul>                                                                                                                                                                                                                                                                                                                                               |                                                                                             |  |  |  |
| Summariz<br>infiltratior                                                                                                                                          | e infiltration testing and/or mapping results (i.e. soil map<br>1 rate).                                                                                                                                                                                                                                                                                                                                                           | s and series description used for                                                           |  |  |  |
| Project is located in type D soil. Infiltration testing was not performed on the site due to numerous items classifying the site as "No infiltration conditions." |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |  |  |  |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |  |  |  |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |  |  |  |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |  |  |  |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |  |  |  |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |  |  |  |



Categorization of Infiltration Feasibility Condition based on Geotechnical Conditions

| Criteria 4: | Geologic/Geotechnical Screening                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                                            |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------|
| 4A          | If all questions in Step 4A are answered "Yes," continue to Step 2B.<br>For any "No" answer in Step 4A answer "No" to Criteria 4 Result, and<br>Feasibility Condition Letter" that meets the requirements in<br>geologic/geotechnical analyses listed in Appendix C.2.1 do not apply t<br>of the following setbacks cannot be avoided and therefore result i<br>no infiltration condition. The setbacks must be the closest horizont<br>the surface edge (at the overflow elevation) of the BMP.        | submit an "In<br>Appendix C.<br>o the DMA bec<br>n the DMA be<br>al radial distar | filtration<br>1.1. The<br>ause one<br>ing in a<br>nce from |
| 4A-1        | Can the proposed partial infiltration BMP(s) avoid areas with existing fill materials greater than 5 feet thick?                                                                                                                                                                                                                                                                                                                                                                                        | OYes                                                                              | ⊙No                                                        |
| 4A-2        | Can the proposed partial infiltration BMP(s) avoid placement within<br>10 feet of existing underground utilities, structures, or retaining<br>walls?                                                                                                                                                                                                                                                                                                                                                    | ⊙ Yes                                                                             | <b>O</b> No                                                |
| 4A-3        | Can the proposed partial infiltration BMP(s) avoid placement within 50 feet of a natural slope (>25%) or within a distance of 1.5H from fill slopes where H is the height of the fill slope?                                                                                                                                                                                                                                                                                                            | 🖸 Yes                                                                             | <b>O</b> No                                                |
| 4B          | When full infiltration is determined to be feasible, a geotechnical investigation report<br>must be prepared that considers the relevant factors identified in Appendix C.2.1.If all questions in Step 4B are answered "Yes," then answer "Yes" to Criteria 4 Result.<br>If there are any "No" answers continue to Step 4C.                                                                                                                                                                             |                                                                                   |                                                            |
| 4B-1        | <b>Hydroconsolidation.</b> Analyze hydroconsolidation potential per<br>approved ASTM standard due to a proposed full infiltration BMP.<br>Can partial infiltration BMPs be proposed within the DMA without<br>increasing hydroconsolidation risks?                                                                                                                                                                                                                                                      | () Yes                                                                            | ⊙ No                                                       |
| 4B-2        | <ul><li>Expansive Soils. Identify expansive soils (soils with an expansion index greater than 20) and the extent of such soils due to proposed full infiltration BMPs.</li><li>Can partial infiltration BMPs be proposed within the DMA without increasing expansive soil risks?</li></ul>                                                                                                                                                                                                              | • Yes                                                                             | <b>O</b> No                                                |
| 4B-3        | <b>Liquefaction</b> . If applicable, identify mapped liquefaction areas.<br>Evaluate liquefaction hazards in accordance with Section 6.4.2 of the<br>City of San Diego's Guidelines for Geotechnical Reports (2011).<br>Liquefaction hazard assessment shall take into account any increase<br>in groundwater elevation or groundwater mounding that could occur<br>as a result of proposed infiltration or percolation facilities.<br>Can partial infiltration BMPs be proposed within the DMA without | <b>⊙</b> Yes                                                                      | <b>O</b> No                                                |
|             | increasing liquefaction risks?                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   |                                                            |



| Categor              | ization of Infiltration Feasibility Condition based<br>on Geotechnical Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Workshee                                                 | et C.4–1: Form | I-8A <sup>2</sup> |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|-------------------|
| 4B-4                 | <ul> <li>Slope Stability. If applicable, perform a slope stability analysis in accordance with the ASCE and Southern California Earthquake Center (2002) Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Landslide Hazards in California to determine minimum slope setbacks for full infiltration BMPs. See the City of San Diego's Guidelines for Geotechnical Reports (2011) to determine which type of slope stability analysis is required.</li> <li>Can partial infiltration BMPs be proposed within the DMA without increasing slope stability risks?</li> </ul>                                 |                                                          | ⊙ Yes          | ONo               |
| 4B-5                 | Other Geotechnical Hazards. Identify site-specific geotechnical<br>hazards not already mentioned (refer to Appendix C.2.1).5Can partial infiltration BMPs be proposed within the DMA without<br>increasing risk of geologic or geotechnical hazards not already<br>mentioned?                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | () Yes         | <b>⊘</b> No       |
| 4B-6                 | Setbacks. Establish setbacks from underground utilities<br>and/or retaining walls. Reference applicable ASTM<br>recognized standard in the geotechnical report.<br>Can partial infiltration BMPs be proposed within the<br>recommended setbacks from underground utilities,<br>and/or retaining walls?                                                                                                                                                                                                                                                                                                                                                                    | s, structures,<br>A or other<br>DMA using<br>structures, | ⊙ Yes          | ONo               |
| 4C                   | Mitigation Measures.Propose mitigation measures for each<br>geologic/geotechnical hazard identified in Step 4B. Provide a<br>discussion on geologic/geotechnical hazards that would prevent<br>partial infiltration BMPs that cannot be reasonably mitigated in the<br>geotechnical report. See Appendix C.2.1.8 for a list of<br>typically reasonable and typically unreasonable mitigation measures.4CCan mitigation measures be proposed to allow for partial infiltration<br>BMPs? If the question in Step 4C is answered "Yes," then answer<br>"Yes" to Criteria 4 Result.<br>If the question in Step 4C is answered "No," then answer "No" to<br>Criteria 4 Result. |                                                          | ⊖ Yes          | ⊙No               |
| Criteria<br>4 Result | Can infiltration of greater than or equal to 0.05 inches/h<br>than or equal to 0.5 inches/hour be allowed without in<br>risk of geologic or geotechnical hazards that cannot be<br>mitigated to an acceptable level?                                                                                                                                                                                                                                                                                                                                                                                                                                                      | our and less<br>creasing the<br>e reasonably             | <b>O</b> Yes   | ⊙No               |



| <b>Categorization of Infiltration Feasibility Condition based</b> |
|-------------------------------------------------------------------|
| on Geotechnical Conditions                                        |

Summarize findings and basis; provide references to related reports or exhibits.

Project is located in type D soil. Per the Preliminary Geotechnical Investigation, "due to the historic site use and proposed continued use as a fuel facility (Hydrocarbon) infiltration of surface waters is not a recommendation." Infiltration testing has not yet been perfomed.

| Part 2 – Partial Infiltration Geotechnical Screening Result <sup>5</sup>                                                                                                                                                                                                                             | Result                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| If answers to both Criteria 3 and Criteria 4 are "Yes", a partial infiltration<br>design is potentially feasible based on geotechnical conditions only.<br>If answers to either Criteria 3 or Criteria 4 is "No", then infiltration of any<br>volume is considered to be infeasible within the site. | <ul> <li>○ Partial Infiltration</li> <li>Condition</li> <li>O No Infiltration</li> <li>Condition</li> </ul> |



<sup>&</sup>lt;sup>5</sup> To be completed using gathered site information and best professional judgement considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

#### Compact (high rate) Biofiltration BMP Checklist

Form I-10

Compact (high rate) biofiltration BMPs have a media filtration rate greater than 5 in/hr. and a media surface area smaller than 3% of contributing area times adjusted runoff factor. Compact biofiltration BMPs are typically proprietary BMPs that may qualify as biofiltration.

A compact biofiltration BMP may satisfy the pollutant control requirements for a DMA onsite in some cases. This depends on the characteristics of the DMA <u>and</u> the performance certification/data of the BMP. If the pollutant control requirements for a DMA are met onsite, then the DMA is not required to participate in an offsite storm water alternative compliance program to meet its pollutant control obligations.

An applicant using a compact biofiltration BMP to meet the pollutant control requirements onsite must complete Section 1 of this form and include it in the PDP SWQMP. A separate form must be completed for each DMA. In instances where the City Engineer does not agree with the applicant's determination, Section 2 of this form will be completed by the City and returned to the applicant.

Section 1: Biofiltration Criteria Checklist (Appendix F)

Refer to Part 1 of the Storm Water Standards to complete this section. When separate forms/worksheets are referenced below, the applicant must also complete these separate forms/worksheets (as applicable) and include in the PDP SWQMP. The criteria numbers below correspond to the criteria numbers in Appendix F.

| Criteria                                                                                                                                                                                                                                                               |                                      | Answer                         | Progression                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b><u>Criteria 1 and 3</u></b> :<br>What is the infiltration condition of                                                                                                                                                                                              | 0                                    | Full Infiltration<br>Condition | <b>Stop</b> . Compact biofiltration BMP is not allowed.                                                                                                                                                                                                                                                                                                                                                                                                 |
| the DMA?<br>Refer to Section 5.4.2 and<br>Appendix C of the BMP Design<br>Manual (Part 1 of Storm Water<br>Standards) for guidance.<br>Applicant must complete and<br>include the following in the PDP<br>SWQMP submittal to support the<br>feasibility determination: | Partial<br>Infiltration<br>Condition |                                | Compact biofiltration BMP is only allowed, if the target volume retention is met onsite (Refer to Table B.5-1 in Appendix B.5). Use Worksheet B.5-2 in Appendix B.5 to estimate the target volume retention (Note: retention in this context means reduction).<br>If the required volume reduction is achieved <b>proceed to Criteria 2</b> .<br>If the required volume reduction is not achieved, compact biofiltration BMP is not allowed <b>Stop</b> |
| <ul> <li>Infiltration Feasibility<br/>Condition Letter; or</li> <li>Worksheet C.4-1: Form I-8A<br/>and Worksheet C.4-2: Form I-<br/>8B.</li> <li>Applicant must complete and<br/>include all applicable sizing<br/>worksheets in the SWQMP<br/>submittal</li> </ul>    | o                                    | No Infiltration<br>Condition   | Compact biofiltration BMP is allowed if volume<br>retention criteria in Table B.5-1 in Appendix B.5<br>for the no infiltration condition is met.<br>Compliance with this criterion must be<br>documented in the PDP SWQMP.<br>If the criteria in Table B.5-1 is met <b>proceed to</b><br><b>Criteria 2</b> .<br>If the criteria in Table B.5-1 is not met, compact<br>biofiltration BMP is not allowed. <b>Stop</b> .                                   |



Compact (high rate) Biofiltration BMP Checklist Provide basis for Criteria 1 and 3:

#### Feasibility Analysis:

Summarize findings and include either infiltration feasibility condition letter or Worksheet C.4-1: Form I-8A and Worksheet C.4-2: Form I-8B in the PDP SWQMP submittal.

#### If Partial Infiltration Condition:

Provide documentation that target volume retention is met (include Worksheet B.5-2 in the PDP SWQMP submittal). Worksheet B.5-7 in Appendix B.5 can be used to estimate volume retention benefits from landscape areas.

#### If No Infiltration Condition:

Provide documentation that the volume retention performance standard is met (include Worksheet B.5-2 in the PDP SWQMP submittal) in the PDP SWQMP submittal. Worksheet B.5-6 in Appendix B.5 can be used to document that the performance standard is met.

| Criteria                                                                                                                                                                                                                                      | Answer                          | Progression                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria 2:<br>Is the compact biofiltration BMP<br>sized to meet the performance<br>standard from the MS4 Permit?<br>Refer to Appendix B.5 and<br>Appendix F.2 of the BMP Design<br>Manual (Part 1 of Storm Water<br>Standards) for guidance. | O Meets Flow<br>based Criteria  | Use guidance from <b>Appendix F.2.2</b> to size the compact biofiltration BMP to meet the flow based criteria. Include the calculations in the PDP SWQMP.<br>Use parameters for sizing consistent with manufacturer guidelines and conditions of its third party certifications (i.e. a BMP certified at a loading rate of 1 gpm/sq. ft. cannot be designed using a loading rate of 1.5 gpm/sq. ft.)<br><b>Proceed to Criteria 4.</b> |
|                                                                                                                                                                                                                                               | Meets Volume<br>based Criteria  | Provide documentation that the compact<br>biofiltration BMP has a total static (i.e. non-<br>routed) storage volume, including pore-spaces<br>and pre-filter detention volume (Refer to<br>Appendix B.5 for a schematic) of at least 0.75<br>times the portion of the DCV not reliably retained<br>onsite.<br><b>Proceed to Criteria 4.</b>                                                                                           |
|                                                                                                                                                                                                                                               | O Does not Meet either criteria | <b>Stop</b> . Compact biofiltration BMP is not allowed.                                                                                                                                                                                                                                                                                                                                                                               |



Form I-10

#### **Compact (high rate) Biofiltration BMP Checklist**

#### Provide basis for Criteria 2:

Provide documentation that the BMP meets the numeric criteria and is designed consistent with the manufacturer guidelines and conditions of its third-party certification (i.e., loading rate, etc., as applicable).

The entire DCV generated from the site will be detained in a proposed detention facility. The DCV will then drain via a low flow orifice to proprietary Modular Wetland System.

| Criteria                                                                                                                                                                        |   | Answer                                             | Progression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria 4:<br>Does the compact biofiltration<br>BMP meet the pollutant treatment<br>performance standard for the                                                               | O | Yes, meets the<br>TAPE<br>certification.           | Provide documentation that the compact BMP has an appropriate TAPE certification for the projects most significant pollutants of concern.<br><b>Proceed to Criteria 5.</b>                                                                                                                                                                                                                                                                                                                                             |
| projects most significant<br>pollutants of concern?<br>Refer to Appendix B.6 and<br>Appendix F.1 of the BMP Design<br>Manual (Part 1 of Storm Water<br>Standards) for guidance. | 0 | Yes, through<br>other third-party<br>documentation | Acceptance of third-party documentation is at<br>the discretion of the City Engineer. The City<br>engineer will consider, (a) the data submitted; (b)<br>representativeness of the data submitted; and (c)<br>consistency of the BMP performance claims with<br>pollutant control objectives in Table F.1-2 and<br>Table F.1-1 while making this determination. If a<br>compact biofiltration BMP is not accepted, a<br>written explanation/ reason will be provided in<br>Section 2.<br><b>Proceed to Criteria 5.</b> |
|                                                                                                                                                                                 | 0 | No                                                 | <b>Stop</b> . Compact biofiltration BMP is not allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Provide basis for Criteria 4:

Provide documentation that identifies the projects most significant pollutants of concern and TAPE certification or other third party documentation that shows that the compact biofiltration BMP meets the pollutant treatment performance standard for the projects most significant pollutants of concern.

See Attached Tape Certification for the proposed proprietary Modular Wetland System.



| Compact (high rate) Biofiltration BMP Checklist Form I-10                                                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                               |                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Criteria                                                                                                                                                                                                                                                                                                                                                                                                                       | Answer                                                    | Pr                                                                                                                            | ogression                                                                                                    |  |
| Criteria 5:<br>Is the compact biofiltration BMP<br>designed to promote appropriate<br>biological activity to support and                                                                                                                                                                                                                                                                                                       | ⊙ Yes                                                     | Provide documentat<br>biofiltration BMP su<br>activity. Refer to App<br><b>Proceed to Criteria</b>                            | ion that the compact<br>pport appropriate biological<br>pendix F for guidance.<br><b>6.</b>                  |  |
| maintain treatment process?<br>Refer to Appendix F of the BMP<br>Design Manual (Part 1 of Storm<br>Water Standards) for guidance.                                                                                                                                                                                                                                                                                              | O No                                                      | <b>Stop</b> . Compact biofil                                                                                                  | ltration BMP is not allowed.                                                                                 |  |
| Provide documentation that app<br>BMP to maintain treatment proc<br>See attached information for Mo                                                                                                                                                                                                                                                                                                                            | propriate biological act<br>ess.<br>dular Wetland Perform | ivity is supported by<br>nance document.                                                                                      | the compact biofiltration                                                                                    |  |
| Criteria                                                                                                                                                                                                                                                                                                                                                                                                                       | Answer                                                    | Pr                                                                                                                            | ogression                                                                                                    |  |
| <b><u>Criteria 6</u>:</b><br>Is the compact biofiltration BMP<br>designed with a hydraulic loading<br>rate to prevent erosion, scour and<br>channeling within the BMP?                                                                                                                                                                                                                                                         | ⊙ Yes                                                     | Provide documentat<br>biofiltration BMP is u<br>with manufacturer g<br>its third-party certific<br><b>Proceed to Criteria</b> | tion that the compact<br>used in a manner consistent<br>guidelines and conditions of<br>cation.<br><b>7.</b> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                | O No                                                      | <b>Stop</b> . Compact biofil                                                                                                  | tration BMP is not allowed.                                                                                  |  |
| Provide basis for Criteria 6:         Provide documentation that the BMP meets the numeric criteria and is designed consistent with the manufacturer guidelines and conditions of its third-party certification (i.e., maximum tributary area, maximum inflow velocities, etc., as applicable).         Yes. The MWS Linear has a tested hydraulic rate of no greater than 1 gpm per square foot of WetLandMedia surface area. |                                                           |                                                                                                                               |                                                                                                              |  |



| Compact (high rate) Biofiltration BMP                                                                                                                                                                                              |                                                                                                          |                                                                                                           | Checklist                                                                                                                                                                                                                                                 | Form I-10                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                                                                                                                                                                                           |                                                                                                          | Answer                                                                                                    | Pr                                                                                                                                                                                                                                                        | ogression                                                                                                                                                                                                                                                                             |
| <b><u>Criteria 7:</u></b><br>Is the compact biofiltration BMP<br>maintenance plan consistent with<br>manufacturer guidelines and<br>conditions of its third-party<br>certification (i.e., maintenance<br>activities, frequencies)? | Yes, and the<br>compact BMP is<br>privately owned,<br>operated and<br>not in the public<br>right of way. |                                                                                                           | Submit a maintenar<br>include a stateme<br>maintained in acco<br>guidelines and<br>certification.<br><b>Stop</b> . The compact<br>required criteria.                                                                                                      | nce agreement that will also<br>ont that the BMP will be<br>ordance with manufacturer<br>conditions of third-party<br>biofiltration BMP meets the                                                                                                                                     |
| activities, irequencies)?                                                                                                                                                                                                          | 0                                                                                                        | Yes, and the<br>BMP is either<br>owned or<br>operated by the<br>City or in the<br>public right of<br>way. | Approval is at the di<br>The city engineer<br>requirements, cost<br>relevant previous<br>operation and main<br>ability to continue to<br>that the vending cor<br>as a business or o<br>making the determin<br><b>Stop</b> . Consult the<br>determination. | scretion of the City Engineer.<br>will consider maintenance<br>of maintenance activities,<br>local experience with<br>ntenance of the BMP type,<br>o operate the system in event<br>mpany is no longer operating<br>other relevant factors while<br>nation.<br>Me City Engineer for a |
|                                                                                                                                                                                                                                    | 0                                                                                                        | No                                                                                                        | <b>Stop</b> . Compact biofil                                                                                                                                                                                                                              | ltration BMP is not allowed.                                                                                                                                                                                                                                                          |

#### Provide basis for Criteria 7:

Include copy of manufacturer guidelines and conditions of third-party certification in the maintenance agreement. PDP SWQMP must include a statement that the compact BMP will be maintained in accordance with manufacturer guidelines and conditions of third-party certification. A maintenance agreement will provided in ministerial review.



| Compact (high rate) Biofiltration BMP                                                                                                   | Form I-10 |                     |                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|-----------------------|--|
| Section 2: Verification (For City Use Only)                                                                                             |           |                     |                       |  |
| Is the proposed compact BMP accepted by the City<br>Engineer for onsite pollutant control compliance for<br>the DMA?                    | 0         | Yes<br>No, See expl | anation below         |  |
| Engineer for onsite pollutant control compliance for<br>the DMA?<br>Explanation/reason if the compact BMP is not accepte<br>compliance: | d by t    | No, See expl        | ite pollutant control |  |
|                                                                                                                                         |           |                     |                       |  |





#### July 2017

## GENERAL USE LEVEL DESIGNATION FOR BASIC, ENHANCED, AND PHOSPHORUS TREATMENT

#### For the

#### **MWS-Linear Modular Wetland**

#### **Ecology's Decision:**

Based on Modular Wetland Systems, Inc. application submissions, including the Technical Evaluation Report, dated April 1, 2014, Ecology hereby issues the following use level designation:

- 1. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Basic treatment
  - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 2. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Phosphorus treatment
  - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 3. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Enhanced treatment
  - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.

- 4. Ecology approves the MWS Linear Modular Wetland Stormwater Treatment System units for Basic, Phosphorus, and Enhanced treatment at the hydraulic loading rate listed above. Designers shall calculate the water quality design flow rates using the following procedures:
  - Western Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using the latest version of the Western Washington Hydrology Model or other Ecology-approved continuous runoff model.
  - Eastern Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using one of the three methods described in Chapter 2.2.5 of the Stormwater Management Manual for Eastern Washington (SWMMEW) or local manual.
  - Entire State: For treatment installed downstream of detention, the water quality design flow rate is the full 2-year release rate of the detention facility.
- 5. These use level designations have no expiration date but may be revoked or amended by Ecology, and are subject to the conditions specified below.

#### **Ecology's Conditions of Use:**

Applicants shall comply with the following conditions:

- 1. Design, assemble, install, operate, and maintain the MWS Linear Modular Wetland Stormwater Treatment System units, in accordance with Modular Wetland Systems, Inc. applicable manuals and documents and the Ecology Decision.
- Each site plan must undergo Modular Wetland Systems, Inc. review and approval before site installation. This ensures that site grading and slope are appropriate for use of a MWS – Linear Modular Wetland Stormwater Treatment System unit.
- 3. MWS Linear Modular Wetland Stormwater Treatment System media shall conform to the specifications submitted to, and approved by, Ecology.
- 4. The applicant tested the MWS Linear Modular Wetland Stormwater Treatment System with an external bypass weir. This weir limited the depth of water flowing through the media, and therefore the active treatment area, to below the root zone of the plants. This GULD applies to MWS Linear Modular Wetland Stormwater Treatment Systems whether plants are included in the final product or not.
- 5. Maintenance: The required maintenance interval for stormwater treatment devices is often dependent upon the degree of pollutant loading from a particular drainage basin. Therefore, Ecology does not endorse or recommend a "one size fits all" maintenance cycle for a particular model/size of manufactured filter treatment device.
  - Typically, Modular Wetland Systems, Inc. designs MWS Linear Modular Wetland systems for a target prefilter media life of 6 to 12 months.
  - Indications of the need for maintenance include effluent flow decreasing to below the design flow rate or decrease in treatment below required levels.
  - Owners/operators must inspect MWS Linear Modular Wetland systems for a minimum of twelve months from the start of post-construction operation to determine site-specific

maintenance schedules and requirements. You must conduct inspections monthly during the wet season, and every other month during the dry season. (According to the SWMMWW, the wet season in western Washington is October 1 to April 30. According to SWMMEW, the wet season in eastern Washington is October 1 to June 30). After the first year of operation, owners/operators must conduct inspections based on the findings during the first year of inspections.

- Conduct inspections by qualified personnel, follow manufacturer's guidelines, and use methods capable of determining either a decrease in treated effluent flowrate and/or a decrease in pollutant removal ability.
- When inspections are performed, the following findings typically serve as maintenance triggers:
  - Standing water remains in the vault between rain events, or
  - Bypass occurs during storms smaller than the design storm.
  - If excessive floatables (trash and debris) are present (but no standing water or excessive sedimentation), perform a minor maintenance consisting of gross solids removal, not prefilter media replacement.
  - Additional data collection will be used to create a correlation between pretreatment chamber sediment depth and pre-filter clogging (see *Issues to be Addressed by the Company* section below)
- 6. Discharges from the MWS Linear Modular Wetland Stormwater Treatment System units shall not cause or contribute to water quality standards violations in receiving waters.

| Applicant:           | Modular Wetland Systems, Inc. |
|----------------------|-------------------------------|
| Applicant's Address: | PO. Box 869                   |
|                      | Oceanside, CA 92054           |

#### **Application Documents:**

- Original Application for Conditional Use Level Designation, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., January 2011
- *Quality Assurance Project Plan*: Modular Wetland system Linear Treatment System performance Monitoring Project, draft, January 2011.
- *Revised Application for Conditional Use Level Designation*, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., May 2011
- Memorandum: Modular Wetland System-Linear GULD Application Supplementary Data, April 2014
- Technical Evaluation Report: Modular Wetland System Stormwater Treatment System Performance Monitoring, April 2014.

#### **Applicant's Use Level Request:**

General use level designation as a Basic, Enhanced, and Phosphorus treatment device in accordance with Ecology's Guidance for Evaluating Emerging Stormwater Treatment Technologies Technology Assessment Protocol – Ecology (TAPE) January 2011 Revision.

#### **Applicant's Performance Claims:**

- The MWS Linear Modular wetland is capable of removing a minimum of 80-percent of TSS from stormwater with influent concentrations between 100 and 200 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 50-percent of Total Phosphorus from stormwater with influent concentrations between 0.1 and 0.5 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 30-percent of dissolved Copper from stormwater with influent concentrations between 0.005 and 0.020 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 60-percent of dissolved Zinc from stormwater with influent concentrations between 0.02 and 0.30 mg/l.

#### **Ecology Recommendations:**

• Modular Wetland Systems, Inc. has shown Ecology, through laboratory and fieldtesting, that the MWS - Linear Modular Wetland Stormwater Treatment System filter system is capable of attaining Ecology's Basic, Total phosphorus, and Enhanced treatment goals.

#### **Findings of Fact:**

#### Laboratory Testing

The MWS-Linear Modular wetland has the:

- Capability to remove 99 percent of total suspended solids (using Sil-Co-Sil 106) in a quarter-scale model with influent concentrations of 270 mg/L.
- Capability to remove 91 percent of total suspended solids (using Sil-Co-Sil 106) in laboratory conditions with influent concentrations of 84.6 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 93 percent of dissolved Copper in a quarter-scale model with influent concentrations of 0.757 mg/L.
- Capability to remove 79 percent of dissolved Copper in laboratory conditions with influent concentrations of 0.567 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 80.5-percent of dissolved Zinc in a quarter-scale model with influent concentrations of 0.95 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 78-percent of dissolved Zinc in laboratory conditions with influent concentrations of 0.75 mg/L at a flow rate of 3.0 gpm per square foot of media.

#### Field Testing

- Modular Wetland Systems, Inc. conducted monitoring of an MWS-Linear (Model # MWS-L-4-13) from April 2012 through May 2013, at a transportation maintenance facility in Portland, Oregon. The manufacturer collected flow-weighted composite samples of the system's influent and effluent during 28 separate storm events. The system treated approximately 75 percent of the runoff from 53.5 inches of rainfall during the monitoring period. The applicant sized the system at 1 gpm/sq ft. (wetland media) and 3gpm/sq ft. (prefilter).
- Influent TSS concentrations for qualifying sampled storm events ranged from 20 to 339 mg/L. Average TSS removal for influent concentrations greater than 100 mg/L (n=7) averaged 85 percent. For influent concentrations in the range of 20-100 mg/L (n=18), the upper 95 percent confidence interval about the mean effluent concentration was 12.8 mg/L.
- Total phosphorus removal for 17 events with influent TP concentrations in the range of 0.1 to 0.5 mg/L averaged 65 percent. A bootstrap estimate of the lower 95 percent confidence limit (LCL95) of the mean total phosphorus reduction was 58 percent.
- The lower 95 percent confidence limit of the mean percent removal was 60.5 percent for dissolved zinc for influent concentrations in the range of 0.02 to 0.3 mg/L (n=11). The lower 95 percent confidence limit of the mean percent removal was 32.5 percent for dissolved copper for influent concentrations in the range of 0.005 to 0.02 mg/L (n=14) at flow rates up to 28 gpm (design flow rate 41 gpm). Laboratory test data augmented the data set, showing dissolved copper removal at the design flow rate of 41 gpm (93 percent reduction in influent dissolved copper of 0.757 mg/L).

#### Issues to be addressed by the Company:

- 1. Modular Wetland Systems, Inc. should collect maintenance and inspection data for the first year on all installations in the Northwest in order to assess standard maintenance requirements for various land uses in the region. Modular Wetland Systems, Inc. should use these data to establish required maintenance cycles.
- 2. Modular Wetland Systems, Inc. should collect pre-treatment chamber sediment depth data for the first year of operation for all installations in the Northwest. Modular Wetland Systems, Inc. will use these data to create a correlation between sediment depth and pre-filter clogging.

#### **Technology Description**:

Download at http://www.modularwetlands.com/

**Contact Information**:

Applicant:

Zach Kent BioClean A Forterra Company. 398 Vi9a El Centro Oceanside, CA 92058 <u>zach.kent@forterrabp.com</u> Applicant website: <u>http://www.modularwetlands.com/</u>

Ecology web link: <u>http://www.ecy.wa.gov/programs/wg/stormwater/newtech/index.html</u>

Ecology:

| Douglas C. Howie, P.E.   |
|--------------------------|
| Department of Ecology    |
| Water Quality Program    |
| (360) 407-6444           |
| douglas.howie@ecy.wa.gov |

#### **Revision History**

| Date           | Revision                                                                                                                                         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| June 2011      | Original use-level-designation document                                                                                                          |
| September 2012 | Revised dates for TER and expiration                                                                                                             |
| January 2013   | Modified Design Storm Description, added Revision Table, added<br>maintenance discussion, modified format in accordance with Ecology<br>standard |
| December 2013  | Updated name of Applicant                                                                                                                        |
| April 2014     | Approved GULD designation for Basic, Phosphorus, and Enhanced treatment                                                                          |
| December 2015  | Updated GULD to document the acceptance of MWS-Linear<br>Modular Wetland installations with or without the inclusion of plants                   |
| July 2017      | Revised Manufacturer Contact Information (name, address, and email)                                                                              |



# Modular Wetlands<sup>®</sup> Linear Stormwater Biofiltration



# The experts you need to solve your stormwater challenges

Contech is the leader in stormwater solutions, helping engineers, contractors and owners with infrastructure and land development projects throughout North America.

With our responsive team of stormwater experts, local regulatory expertise and flexible solutions, Contech is the trusted partner you can count on for stormwater management solutions.

## **Your Contech Team**









#### STORMWATER CONSULTANT

It's my job to recommend the best solution to meet permitting requirements.

#### STORMWATER DESIGN ENGINEER

I work with consultants to design the best approved solution to meet your project's needs.

#### **REGULATORY MANAGER**

I understand the local stormwater regulations and what solutions will be approved.

SALES ENGINEER

I make sure our solutions meet the needs of the contractor during construction.

## Contech is your partner in stormwater management solutions



## Restoring Nature's Presence in Urban Areas – Modular Wetlands<sup>®</sup> Linear

The Modular Wetlands<sup>®</sup> Linear is the only biofiltration system to utilize patented horizontal flow, allowing for a small footprint, high treatment capacity, and design versatility. It is also the only biofiltration system that can be routinely installed downstream of storage for additional volume control and treatment.

With numerous regulatory approvals, the system's aesthetic appeal and superior pollutant removal make it the ideal solution for a wide range of stormwater applications, including urban development projects, commercial parking lots, residential streets, mixed-use developments, streetscapes, and more.

As cities grow, there is less space for natural solutions to treat stormwater. Contech understands this and is committed to providing compact, Low Impact Development (LID) solutions like the Modular Wetlands Linear to protect our nation's waterways.





## How the Modular Wetlands® Linear Works



- **PRETREATMENT** | Stormwater enters the pretreatment chamber where total suspended solids settle, and trash and debris are contained within the chamber. Stormwater then travels through the pretreatment filter boxes that provide additional treatment.
- 2 **BIOFILTRATION** | As water enters the biofiltration chamber, it fills the void space in the chamber's perimeter. Horizontal forces push the water inward through the biofiltration media, where nutrients and metals are captured. The water then enters the drain pipe to be discharged.
- 3 **DISCHARGE** | The specially designed vertical drain pipe and orifice control plate control the flow of water through the media to a level lower than the media's capacity, ensuring media effectiveness. The water then enters the horizontal drain pipe to be discharged.
- 4 **BYPASS** | During peak flows, an internal weir in the side-by-side configuration allows high flows to bypass treatment, eliminating flooding and the need for a separate bypass structure. Bypass is not provided in the end-to end configuration.

## Using horizontal flow to improve performance

| Modular Wetlands <sup>®</sup> Linear F             | eatures and Benefits                                             |
|----------------------------------------------------|------------------------------------------------------------------|
| FEATURE                                            | BENEFITS                                                         |
| Pretreatment chamber                               | Enhanced pollutant removal, faster maintenance                   |
| Horizontal flow biofiltration                      | Greater filter surface area                                      |
| Performance verified by both the WA DOE and NJ DEP | Superior pollutant capture with confidence                       |
| Built-in high flow bypass                          | Eliminates flooding and the need for a separate bypass structure |
| Available in multiple configurations and sizes     | Flexibility to meet site-specific needs                          |



The Modular Wetlands system offers many different configurations.

## Select Modular Wetlands® Linear Approvals

Modular Wetlands Linear is approved through numerous local, state and federal programs, including but not limited to:

- Washington State Department of Ecology TAPE
- California Water Resources Control Board, Full Capture Certification
- Virginia Department of Environmental Quality (VA DEQ)
- New Jersey Department of Environmental Protection (NJDEP)
- Maryland Department of the Environment Environmental Site Design (ESD)
- Rhode Island Department of Environmental Management BMP
- Texas Commission on Environmental Quality (TCEQ)
- Atlanta Regional Commission Certification





## Modular Wetlands® Performance

The Modular Wetlands<sup>®</sup> Linear continues to outperform other treatment methods with superior pollutant removal for TSS, heavy metals, nutrients, and hydrocarbons. The Modular Wetlands<sup>®</sup> Linear is field-tested on numerous sites across the country and is proven to effectively remove pollutants through accombination of physical, chemical, and biological filtration processes.

| POLLUTANT OF<br>CONCERN      | MEDIAN REMOVAL<br>EFFICIENCY | MEDIAN EFFLUENT<br>CONCENTRATION (MG/L) |
|------------------------------|------------------------------|-----------------------------------------|
| Total Suspended Solids (TSS) | 89%                          | 12                                      |
| Total Phosphorus - TAPE (TP) | 61%                          | 0.041                                   |
| Nitrogen (TN)                | 23%                          | 1                                       |
| Total Copper (TCu)           | 50%                          | 0.006                                   |
| Total Dissolved Copper       | 37%                          | 0.006                                   |
| Total Zinc (TZn)             | 66%                          | 0.019                                   |
| Dissolved Zinc               | 60%                          | 0.0148                                  |
| Motor Oil                    | 79%                          | 0.8                                     |

Sources: TAPE Field Study - 2012 TAPE Field Study - 2013

Note: Some jurisdictions recognize higher removal rates. Contact your Contech Stormwater Consultant for performance expectations.

## Modular Wetlands® Linear Maintenance

The Modular Wetlands<sup>®</sup> Linear is a self-contained treatment train. Maintenance requirements for the unit consist of five simple steps that can be completed using a vacuum truck. The system can also be cleaned by hand.

- Remove trash from the screening device
- Remove sediment from the separation chamber
- Periodically replace the pretreatment cartridge filter media
- Replace the drain down filter media
- Trim vegetation



Most Modular Wetland Linear systems can be cleaned in about thirty minutes.

## Multiple configurations allow for easy site integration





#### Curb Inlet

The Curb Inlet configuration accepts sheet flow through a curb opening and is commonly used along roadways and parking lots. It can be used in sump or flow-by conditions.



#### Vault

The Vault configuration can be used in end-of-the-line installations. Another benefit of the "pipe-in" design is the ability to install the system downstream of underground detention systems to meet water quality volume requirements, or for traffic-rated designs (no plants).



#### Downspout

The Downspout configuration is designed to accept a vertical downspout pipe from rooftop and podium areas. Some models have the option of utilizing an internal bypass, simplifying the overall design. The system can be installed as a raised planter, and the exterior can be stuccoed or covered with other finishes to match the look of adjacent buildings.







STORMWATER SOLUTIONS



Few companies offer the wide range of highquality stormwater resources you can find with us — state-of-the-art products, decades of expertise, and all the maintenance support you need to operate your system cost-effectively.



#### THE CONTECH WAY

Contech® Engineered Solutions provides innovative, cost-effective site solutions to engineers, contractors, and developers on projects across North America. Our portfolio includes bridges, drainage, erosion control, retaining wall, sanitary sewer and stormwater management products.

#### TAKE THE NEXT STEP

For more information: www.ContechES.com

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTIES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.





#### THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Project Name: KA Enteprises C-Store and Car Wash

# Attachment 2 Backup for PDP Hydromodification Control Measures

This is the cover sheet for Attachment 2.

Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.



### Project Name: KA Enteprises C-Store and Car Wash

#### Indicate which Items are Included:

| Attachment<br>Sequence | Contents                                                                                                                                                                                                 | Checklist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attachment 2a          | Hydromodification Management<br>Exhibit (Required)                                                                                                                                                       | ✓ Included<br>See Hydromodification<br>Management Exhibit<br>Checklist.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Attachment 2b          | Management of Critical Coarse<br>Sediment Yield Areas (WMAA Exhibit<br>is required, additional analyses are<br>optional)<br>See Section 6.2 of the BMP Design<br>Manual.                                 | <ul> <li>Exhibit showing project<br/>drainage boundaries marked<br/>on WMAA Critical Coarse<br/>Sediment Yield Area Map<br/>(Required)</li> <li>Optional analyses for Critical Coarse<br/>Sediment Yield Area Determination         <ul> <li>6.2.1 Verification of<br/>Geomorphic Landscape<br/>Units Onsite</li> <li>6.2.2 Downstream Systems<br/>Sensitivity to Coarse<br/>Sediment</li> <li>6.2.3 Optional Additional<br/>Analysis of Potential<br/>Critical Coarse Sediment<br/>Yield Areas Onsite</li> </ul> </li> </ul> |
| Attachment 2c          | Geomorphic Assessment of Receiving<br>Channels (Optional)<br>See Section 6.3.4 of the BMP Design<br>Manual.                                                                                              | <ul> <li>Not Performed</li> <li>Included</li> <li>Submitted as separate stand-<br/>alone document</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Attachment 2d          | Flow Control Facility Design and<br>Structural BMP Drawdown<br>Calculations (Required)<br>Overflow Design Summary for each<br>structural BMP<br>See Chapter 6 and Appendix G of the<br>BMP Design Manual | <ul> <li>✓ Included</li> <li>☐ Submitted as separate stand-<br/>alone document</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Project Name: KA Enteprises C-Store and Car Wash

# Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

The Hydromodification Management Exhibit must identify:

- ✓ Underlying hydrologic soil group
- Approximate depth to groundwater
- Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
- Critical coarse sediment yield areas to be protected OR provide a separate map showing that the project site is outside of any critical coarse sediment yield areas
- **V** Existing topography
- **V** Existing and proposed site drainage network and connections to drainage offsite
- ✓ Proposed grading
- ✓ Proposed impervious features
- ✓ Proposed design features and surface treatments used to minimize imperviousness
- Point(s) of Compliance (POC) for Hydromodification Management

Existing and proposed drainage boundary and drainage area to each POC (when necessary, create separate exhibits for pre-development and post-project conditions)

Structural BMPs for hydromodification management (identify location, type of BMP, and size/detail).





| DMA-NO. | TOT. AREA<br>(SF) | IMPERVIOUS<br>(%) | DESIGN<br>DCV (CF) | TYPE/TREATED BY |
|---------|-------------------|-------------------|--------------------|-----------------|
| DMA-1   | 32,508            | 75                | 931                | BMP-1 / BMP-2   |
| DMA-2   | 3,624             | 86                | 71                 | 15' TREE WELL   |
| DMA-3   | 745               | 83                | 23                 | 15' TREE WELL   |
| DMA-4   | 2,264             | 0                 | -                  | SELF-MITIGATING |
| DMA-5   | 195               | 100               | -                  | DEMINIMIS       |

| TREA  | TMENT     | BMP                   | DATA '             | <b>FABLE</b>                                                      |
|-------|-----------|-----------------------|--------------------|-------------------------------------------------------------------|
| BMP-# | TREA TING | PROPOSED<br>FOOTPRINT | PROPOSED<br>VOLUME | DESCRIP TION                                                      |
| BMP-1 | DMA-1     | 900 SF                | 1,480 CF           | GRAVEL FILLED, DETENTION FACILITY<br>W/ 8 SC-740 STORAGE ARCHES   |
| BMP-2 | DMA-1     | 4'x4'                 | N/A                | PROPRIETARY BIOFILTRATION FACILITY<br>MODULAR WETLAND MWS-L-4-4-C |

| STRUC | CTURAL            | <b>BMP DATA TABLE</b>                                                                                   |           |
|-------|-------------------|---------------------------------------------------------------------------------------------------------|-----------|
| BMP#  | TRIBUTARY<br>AREA | DESCRIPTION                                                                                             |           |
| BMP-2 | DMA-1             | BIOCLEAN MODULAR WETLANDS SYSTEM MODEL: MWS-L-4-4<br>REQ'D FLOWRATE= 0.033 CFS PROVIDED FLOWRATE= 0.052 | –L<br>CFS |

| TRIBUTARY<br>BASIN | CANOPY<br>DIAMETER | ∦ OF<br>TREES | AMENDED<br>SOIL DEPTH | TREE WELL<br>VOLUME<br>REDUCTION<br>(CF/TREE) | TOTAL D<br>REDUCTIO |
|--------------------|--------------------|---------------|-----------------------|-----------------------------------------------|---------------------|
| DMA-2              | 15 FT              | 1             | 2.5 FT                | 200 CF                                        | 71                  |
| DMA-3              | 15 FT              | 1             | 2.5 FT                | 200 CF                                        | 23                  |
|                    |                    |               |                       | TOTAL DCV OF SITE                             | 1,025               |
|                    |                    |               |                       | PERCENT OF DCV<br>TREATED BY TREES            | 9.1%                |
| RMP                | INSPE              | стіо          | N NOTI                | 75                                            |                     |

| ORDER NUMBER           |              |               |            |
|------------------------|--------------|---------------|------------|
| ORDER NUMBER           |              |               |            |
|                        |              |               |            |
| PROJECT NAME           |              |               |            |
| PROJECT LOCATION       |              |               |            |
| STRUCTURE ID           |              |               |            |
|                        | TREATMENT    | REQUIRED      |            |
| VOLUME BASED (         | (CF)         | FLOW BAS      | ED (CFS)   |
|                        |              |               |            |
| TREATMENT HGL AVAILA   | BLE (FT)     |               |            |
| PEAK BYPASS REQUIRE    |              | IF APPLICABLE |            |
| PIPE DATA              | <i>I.E</i> . | MATERIAL      | DIAMETER   |
| INLET PIPE 1           |              |               |            |
| INLET PIPE 2           |              |               |            |
| OUTLET PIPE            |              |               |            |
| PRET                   | REATMENT     | BIOFILTRATION | DISCHARGE  |
| RIM ELEVATION          |              |               |            |
| SURFACE LOAD PEL       | DESTRIAN     | OPEN PLANTER  | PEDESTRIAN |
| RAME & COVER 24        | "X 42"       | N/A           | N/A        |
| WETLANDMEDIA VOLUME    | : (CY)       |               | TBD        |
| ORIFICE SIZE (DIA. INC | HES)         |               | TBD        |
| NOTES: PRELIMINARY N   | IOT FOR CO   | NSTRUCTION.   |            |
|                        |              |               |            |








# KA Enterprises C-Store and Car Wash Hydromodification Analysis

3060 Carmel Valley Rd. San Diego, CA 92130

**Date Prepared:** February 1, 2022

Prepared for: KA Enterprises 5820 Orbelin Drive, Suite 201 San Diego, CA 92121

Prepared By:



# FOR PLAN CHECK REVIEW ONLY

| Patric T. de Boer    | RCE 83583 |
|----------------------|-----------|
| Registration Expires | 3-31-2023 |

# Introduction

This hydromodification report summarizes the approach and tools used to model the pre and postdevelopment conditions at the project site to determine if the proposed project complies with the hydromodification flow control requirements set forth in the County of San Diego BMP Design Manual dated February 2016, and the San Diego Hydromodification Management Plan dated March 2011.

The analysis was performed using Stormwater Management Model 5.1 (SWMM) provided by the Environmental Protection Agency (EPA). SWMM was used to model the pre and postdevelopment surface conditions as well as the proposed BMPs that will be used for post development flow control.

# SWMM Model Development

The predeveloped site drains to a single Point of Compliance (POC). POC-1 is located at the public storm drain system on Carmel Valley Road. Both the pre and post-developed conditions were modeled side by side, within a single SWMM model.

The model uses the Encinitas Rain Gauge data available on ProjectCleanwater.org. This gauge was chosen as it is the closest one to the site, and is located in an area with a similar elevation. The other atmospheric data that the model takes into account is the average evaporation rates in inches per day. Per the California Irrigation Management Information System (CIMIS) ETo map, the site is located in Reference Zone 4.

# **Catchment Modeling**

For the pre-developed conditions, the underlying soil is modeled as Type 'D' soil. This determination is based off the County of San Diego Hydrology Manual Soil Hydrologic Groups Exhibit.

The pre-developed catchment condition was modeled by estimating the slope conditions prior to the construction of the existing development. The slope was estimated by determining the slope of a line drawn from the highest point in the northerly portion of the project to the lowest point being the southerly driveway facing Carmel Valley Road.

The post-developed catchment condition was modeled based on the project design that is proposed. The proposed catchment is modeled as being underlain by hydrologic group 'C' soil. This is in accordance with section G.1.4.3 of the BMP design manual, which allows re-tilled/landscaped areas to be modeled as group 'C'. This accounts for the additional retention provided by landscaping that will be used on the pervious portions of the site.

| IIIIItiatioII  | values nom 1 abi | e 0.1-4 of City Divit | Design Manual   |
|----------------|------------------|-----------------------|-----------------|
| Condition      | Suction Head     | Conductivity          | Initial Deficit |
| Pre-developed  | 9.0              | 0.025                 | 0.33            |
| Post-developed | 6.0              | 0.10                  | 0.32            |

# Infiltration Values from Table G.1-4 of City BMP Design Manual

|      | Surface Pa | arameters | Irom 1a | ble G.I | -4 01 City  | ly DMP Design Manual |            |                  |               |  |  |
|------|------------|-----------|---------|---------|-------------|----------------------|------------|------------------|---------------|--|--|
|      | Catchment  | Area      | Width   | Slope   | %<br>Imperv | N-<br>Imperv         | N-<br>Perv | Dstore<br>Imperv | Dstor<br>Perv |  |  |
| Pre  | EX-1       | 0.90      | 95      | 4.5%    | 0           | 0.012                | 0.10       | 0.05             | 0.10          |  |  |
|      | DMA-1      | 0.75      | 66      | 2.4%    | 75          | 0.012                | 0.10       | 0.05             | 0.10          |  |  |
|      | DMA-2      | 0.08      | 51      | 1.4%    | 86          | 0.012                | 0.10       | 0.05             | 0.10          |  |  |
| Post | DMA-3      | 0.02      | 12      | 3.3%    | 83          | 0.012                | 0.10       | 0.05             | 0.10          |  |  |
|      | DMA-4      | 0.05      | 15      | 2.0%    | 0           | 0.012                | 0.10       | 0.05             | 0.10          |  |  |
|      | DMA-5      | 0.01      | 210     | 10%     | 100         | 0.012                | 0.10       | 0.05             | 0.10          |  |  |

# Surface Parameters from Table G.1-4 of City BMP Design Manual

The area, width, slope, and % impervious were all determined from the site-specific conditions. N-Impervious and N-Pervious values are taken from the County approved "Improving Accuracy in Continuous Hydrologic Modeling: Guidance for Selecting Pervious Overland Flow Manning's n Values in the San Diego Region", TRWE, 2016. Dstor Imperv and Dstor Perv were taken from table G.1-4 of the San Diego BMP Design Manual.

The N-Perv value of 0.10 for the pre-developed conditions corresponds with the assumed chaparral natural landscape that consists of "shrubs and bushes."

The N-Perv value of 0.10 for the post developed conditions was chosen, as the pervious area will be landscaped and mulched.

The width of the catchments is determined by dividing the catchment area by the flow path length.

# **Detention Facility Modeling**

In the post developed conditions, a 900-sf gravel filles, detention facility with 8 StormTech arches will be utilized for hydromodification purposes. A low flow and overflow orifice will be implemented on the outlet structure. The low flow orifice will drain to a Modular Wetland System for treatment purposes.

# Flow Duration Curve Comparison

The Flow Duration Curves (FDCs) for the pre and post-developed conditions were compared at the POC. The FDCs were compared for flows within the flow thresholds. No erosion susceptibility analysis has been performed for the receiving waterway (Los Penasquitos Lagoon). No accepted analyses are known to exist for the portion of Los Penasquitos Lagoon that this project drains to.

The default flow thresholds of 0.1Q2-Q10 were used for this analysis. As can be seen in the plotted FDCs in Attachment 1, the post-developed FDC does not exceed the pre-developed FDC by more than 10% at any point for the peak flows within the flow threshold.

# Summary

This analysis has found that the proposed underground storage facility will provide sufficient storage and flow attenuation properties to ensure that the proposed project will meet the current HMP requirements.

# Attachments

- 1. Flow Frequency Curve Summary
- 2. Flow Duration Curve
- 3. Flow Duration Curve Summary
- 4. SWMM Model Layout
- 5. SWMM input file

| Pre    | e-developed Flow Frequency     |          |       |            |        |  |  |  |  |  |  |  |
|--------|--------------------------------|----------|-------|------------|--------|--|--|--|--|--|--|--|
|        |                                |          |       |            |        |  |  |  |  |  |  |  |
|        | 10-year Q:                     | 0.569    | cfs   |            |        |  |  |  |  |  |  |  |
|        | 2-year Q:                      | 0.360    | cfs   |            |        |  |  |  |  |  |  |  |
|        | Lower Flow Threshold:          | 10%      |       |            |        |  |  |  |  |  |  |  |
|        | 0.1xQ2 (Pre):                  | 0.036    |       |            |        |  |  |  |  |  |  |  |
|        |                                |          |       |            |        |  |  |  |  |  |  |  |
| Statis | tics - Node E-POC Total Inflow |          |       |            |        |  |  |  |  |  |  |  |
|        |                                | Event    | Event | Exceedance | Return |  |  |  |  |  |  |  |
|        |                                | Duration | Peak  | Frequency  | Period |  |  |  |  |  |  |  |
| 1      | 1/9/1978                       | 34       | 0.709 | 0.44       | 46     |  |  |  |  |  |  |  |
| 2      | 3/11/1995                      | 9        | 0.602 | 0.89       | 23     |  |  |  |  |  |  |  |
| 3      | 10/27/2004                     | 8        | 0.601 | 1.33       | 15.33  |  |  |  |  |  |  |  |
| 4      | 2/24/1998                      | 4        | 0.574 | 1.78       | 11.5   |  |  |  |  |  |  |  |
| 5      | 1/9/2005                       | 53       | 0.567 | 2.22       | 9.2    |  |  |  |  |  |  |  |
| 6      | 11/25/1983                     | 2        | 0.525 | 2.67       | 7.67   |  |  |  |  |  |  |  |
| 7      | 1/21/1964                      | 3        | 0.517 | 3.11       | 6.57   |  |  |  |  |  |  |  |
| 8      | 1/6/1979                       | 4        | 0.514 | 3.56       | 5.75   |  |  |  |  |  |  |  |
| 9      | 3/1/1983                       | 65       | 0.5   | 4          | 5.11   |  |  |  |  |  |  |  |
| 10     | 12/18/1967                     | 23       | 0.482 | 4.44       | 4.6    |  |  |  |  |  |  |  |
| 11     | 1/31/1979                      | 3        | 0.473 | 4.89       | 4.18   |  |  |  |  |  |  |  |
| 12     | 10/28/1974                     | 20       | 0.463 | 5.33       | 3.83   |  |  |  |  |  |  |  |
| 13     | 1/3/2005                       | 24       | 0.438 | 5.78       | 3.54   |  |  |  |  |  |  |  |
| 14     | 2/12/1992                      | 16       | 0.436 | 6.22       | 3.29   |  |  |  |  |  |  |  |
| 15     | 2/19/2005                      | 2        | 0.434 | 6.67       | 3.07   |  |  |  |  |  |  |  |
| 16     | 3/8/1968                       | 3        | 0.434 | 7.11       | 2.88   |  |  |  |  |  |  |  |
| 17     | 8/17/1977                      | 2        | 0.43  | 7.56       | 2.71   |  |  |  |  |  |  |  |
| 18     | 2/15/1986                      | 7        | 0.422 | 8          | 2.56   |  |  |  |  |  |  |  |
| 19     | 3/7/1974                       | 12       | 0.417 | 8.44       | 2.42   |  |  |  |  |  |  |  |
| 20     | 2/6/1976                       | 3        | 0.409 | 8.89       | 2.3    |  |  |  |  |  |  |  |
| 21     | 1/4/1995                       | 6        | 0.401 | 9.33       | 2.19   |  |  |  |  |  |  |  |
| 22     | 2/18/1980                      | 70       | 0.392 | 9.78       | 2.09   |  |  |  |  |  |  |  |
| 23     | 1/16/1978                      | 10       | 0.36  | 10.22      | 2      |  |  |  |  |  |  |  |
| 24     | 2/8/1993                       | 3        | 0.354 | 10.67      | 1.92   |  |  |  |  |  |  |  |





| The      | PASSED |
|----------|--------|
| proposed |        |
| BMP:     |        |

| (cfs)" | Pre-project Hours | Pre-project<br>% Time<br>Exceeding | Post-project<br>Hours | Post-<br>project %<br>Time<br>Exceeding | Percentage | Pass/Fail |      |
|--------|-------------------|------------------------------------|-----------------------|-----------------------------------------|------------|-----------|------|
| 0      | 0.036             | 575                                | 1.47E-03              | 610                                     | 1.56E-03   | 106%      | Pass |
| 1      | 0.041             | 527                                | 1.34E-03              | 491                                     | 1.25E-03   | 93%       | Pass |
| 2      | 0.047             | 493                                | 1.26E-03              | 437                                     | 1.11E-03   | 89%       | Pass |
| 3      | 0.052             | 465                                | 1.19E-03              | 387                                     | 9.87E-04   | 83%       | Pass |
| 4      | 0.057             | 427                                | 1.09E-03              | 329                                     | 8.39E-04   | 77%       | Pass |
| 5      | 0.063             | 394                                | 1.00E-03              | 303                                     | 7.73E-04   | 77%       | Pass |
| 6      | 0.068             | 366                                | 9.34E-04              | 278                                     | 7.09E-04   | 76%       | Pass |
| 7      | 0.073             | 341                                | 8.70E-04              | 254                                     | 6.48E-04   | 74%       | Pass |
| 8      | 0.079             | 318                                | 8.11E-04              | 229                                     | 5.84E-04   | 72%       | Pass |
| 9      | 0.084             | 300                                | 7.65E-04              | 216                                     | 5.51E-04   | 72%       | Pass |
| 10     | 0.089             | 285                                | 7.27E-04              | 207                                     | 5.28E-04   | 73%       | Pass |
| 11     | 0.095             | 263                                | 6.71E-04              | 200                                     | 5.10E-04   | 76%       | Pass |
| 12     | 0.100             | 249                                | 6.35E-04              | 190                                     | 4.85E-04   | 76%       | Pass |
| 13     | 0.105             | 231                                | 5.89E-04              | 173                                     | 4.41E-04   | 75%       | Pass |
| 14     | 0.111             | 216                                | 5.51E-04              | 165                                     | 4.21E-04   | 76%       | Pass |
| 15     | 0.116             | 210                                | 5.36E-04              | 155                                     | 3.95E-04   | 74%       | Pass |
| 16     | 0.121             | 196                                | 5.00E-04              | 147                                     | 3.75E-04   | 75%       | Pass |
| 17     | 0.127             | 187                                | 4.77E-04              | 142                                     | 3.62E-04   | 76%       | Pass |
| 18     | 0.132             | 179                                | 4.57E-04              | 130                                     | 3.32E-04   | 73%       | Pass |
| 19     | 0.137             | 171                                | 4.36E-04              | 120                                     | 3.06E-04   | 70%       | Pass |
| 20     | 0.143             | 164                                | 4.18E-04              | 118                                     | 3.01E-04   | 72%       | Pass |
| 21     | 0.148             | 160                                | 4.08E-04              | 115                                     | 2.93E-04   | 72%       | Pass |
| 22     | 0.153             | 155                                | 3.95E-04              | 110                                     | 2.81E-04   | 71%       | Pass |
| 23     | 0.159             | 149                                | 3.80E-04              | 103                                     | 2.63E-04   | 69%       | Pass |
| 24     | 0.164             | 141                                | 3.60E-04              | 99                                      | 2.53E-04   | 70%       | Pass |
| 25     | 0.169             | 133                                | 3.39E-04              | 92                                      | 2.35E-04   | 69%       | Pass |
| 26     | 0.175             | 127                                | 3.24E-04              | 90                                      | 2.30E-04   | 71%       | Pass |
| 27     | 0.180             | 122                                | 3.11E-04              | 86                                      | 2.19E-04   | 70%       | Pass |
| 28     | 0.185             | 116                                | 2.96E-04              | 80                                      | 2.04E-04   | 69%       | Pass |
| 29     | 0.191             | 112                                | 2.86E-04              | 77                                      | 1.96E-04   | 69%       | Pass |
| 30     | 0.196             | 109                                | 2.78E-04              | 75                                      | 1.91E-04   | 69%       | Pass |

Omega Engineering Consultants

| 31 | 0 201 | 105 | 2 68F-04 | 74 | 1 89F-04 | 70% | Pass |
|----|-------|-----|----------|----|----------|-----|------|
| 32 | 0.207 | 98  | 2.50E-04 | 68 | 1.73E-04 | 69% | Pass |
| 33 | 0.212 | 89  | 2.27E-04 | 66 | 1.68E-04 | 74% | Pass |
| 34 | 0.217 | 88  | 2.24E-04 | 65 | 1.66E-04 | 74% | Pass |
| 35 | 0.223 | 82  | 2.09E-04 | 61 | 1.56E-04 | 74% | Pass |
| 36 | 0.228 | 78  | 1.99E-04 | 58 | 1.48F-04 | 74% | Pass |
| 37 | 0.233 | 75  | 1.91E-04 | 56 | 1.43E-04 | 75% | Pass |
| 38 | 0.239 | 72  | 1.84E-04 | 54 | 1.38E-04 | 75% | Pass |
| 39 | 0.244 | 70  | 1.79E-04 | 52 | 1.33E-04 | 74% | Pass |
| 40 | 0.249 | 66  | 1.68E-04 | 51 | 1.30E-04 | 77% | Pass |
| 41 | 0.255 | 61  | 1.56E-04 | 51 | 1.30E-04 | 84% | Pass |
| 42 | 0.260 | 59  | 1.50E-04 | 50 | 1.28E-04 | 85% | Pass |
| 43 | 0.265 | 55  | 1.40E-04 | 49 | 1.25E-04 | 89% | Pass |
| 44 | 0.271 | 53  | 1.35E-04 | 48 | 1.22E-04 | 91% | Pass |
| 45 | 0.276 | 50  | 1.28E-04 | 46 | 1.17E-04 | 92% | Pass |
| 46 | 0.281 | 49  | 1.25E-04 | 44 | 1.12E-04 | 90% | Pass |
| 47 | 0.287 | 44  | 1.12E-04 | 41 | 1.05E-04 | 93% | Pass |
| 48 | 0.292 | 43  | 1.10E-04 | 38 | 9.69E-05 | 88% | Pass |
| 49 | 0.297 | 40  | 1.02E-04 | 36 | 9.18E-05 | 90% | Pass |
| 50 | 0.303 | 37  | 9.44E-05 | 35 | 8.93E-05 | 95% | Pass |
| 51 | 0.308 | 37  | 9.44E-05 | 33 | 8.42E-05 | 89% | Pass |
| 52 | 0.313 | 36  | 9.18E-05 | 30 | 7.65E-05 | 83% | Pass |
| 53 | 0.319 | 34  | 8.67E-05 | 27 | 6.89E-05 | 79% | Pass |
| 54 | 0.324 | 33  | 8.42E-05 | 24 | 6.12E-05 | 73% | Pass |
| 55 | 0.329 | 30  | 7.65E-05 | 23 | 5.87E-05 | 77% | Pass |
| 56 | 0.335 | 28  | 7.14E-05 | 21 | 5.36E-05 | 75% | Pass |
| 57 | 0.340 | 26  | 6.63E-05 | 20 | 5.10E-05 | 77% | Pass |
| 58 | 0.345 | 26  | 6.63E-05 | 20 | 5.10E-05 | 77% | Pass |
| 59 | 0.351 | 24  | 6.12E-05 | 18 | 4.59E-05 | 75% | Pass |
| 60 | 0.356 | 24  | 6.12E-05 | 17 | 4.34E-05 | 71% | Pass |
| 61 | 0.361 | 23  | 5.87E-05 | 15 | 3.83E-05 | 65% | Pass |
| 62 | 0.367 | 23  | 5.87E-05 | 12 | 3.06E-05 | 52% | Pass |
| 63 | 0.372 | 23  | 5.87E-05 | 12 | 3.06E-05 | 52% | Pass |
| 64 | 0.377 | 23  | 5.87E-05 | 11 | 2.81E-05 | 48% | Pass |
| 65 | 0.383 | 23  | 5.87E-05 | 11 | 2.81E-05 | 48% | Pass |
| 66 | 0.388 | 23  | 5.87E-05 | 11 | 2.81E-05 | 48% | Pass |
| 67 | 0.393 | 21  | 5.36E-05 | 10 | 2.55E-05 | 48% | Pass |
| 68 | 0.399 | 21  | 5.36E-05 | 10 | 2.55E-05 | 48% | Pass |
| 69 | 0.404 | 19  | 4.85E-05 | 10 | 2.55E-05 | 53% | Pass |
| 70 | 0.409 | 18  | 4.59E-05 | 10 | 2.55E-05 | 56% | Pass |
| 71 | 0.415 | 17  | 4.34E-05 | 8  | 2.04E-05 | 47% | Pass |
| 72 | 0.420 | 17  | 4.34E-05 | 6  | 1.53E-05 | 35% | Pass |
| 73 | 0.425 | 16  | 4.08E-05 | 6  | 1.53E-05 | 38% | Pass |

Omega Engineering Consultants

| 74  | 0.431 | 15 | 3.83E-05 | 6 | 1.53E-05 | 40%  | Pass |
|-----|-------|----|----------|---|----------|------|------|
| 75  | 0.436 | 13 | 3.32E-05 | 6 | 1.53E-05 | 46%  | Pass |
| 76  | 0.441 | 12 | 3.06E-05 | 6 | 1.53E-05 | 50%  | Pass |
| 77  | 0.447 | 12 | 3.06E-05 | 6 | 1.53E-05 | 50%  | Pass |
| 78  | 0.452 | 12 | 3.06E-05 | 6 | 1.53E-05 | 50%  | Pass |
| 79  | 0.457 | 12 | 3.06E-05 | 6 | 1.53E-05 | 50%  | Pass |
| 80  | 0.463 | 12 | 3.06E-05 | 6 | 1.53E-05 | 50%  | Pass |
| 81  | 0.468 | 11 | 2.81E-05 | 6 | 1.53E-05 | 55%  | Pass |
| 82  | 0.473 | 11 | 2.81E-05 | 5 | 1.28E-05 | 45%  | Pass |
| 83  | 0.479 | 10 | 2.55E-05 | 5 | 1.28E-05 | 50%  | Pass |
| 84  | 0.484 | 9  | 2.30E-05 | 4 | 1.02E-05 | 44%  | Pass |
| 85  | 0.489 | 9  | 2.30E-05 | 4 | 1.02E-05 | 44%  | Pass |
| 86  | 0.495 | 9  | 2.30E-05 | 4 | 1.02E-05 | 44%  | Pass |
| 87  | 0.500 | 8  | 2.04E-05 | 4 | 1.02E-05 | 50%  | Pass |
| 88  | 0.505 | 8  | 2.04E-05 | 4 | 1.02E-05 | 50%  | Pass |
| 89  | 0.511 | 8  | 2.04E-05 | 4 | 1.02E-05 | 50%  | Pass |
| 90  | 0.516 | 8  | 2.04E-05 | 4 | 1.02E-05 | 50%  | Pass |
| 91  | 0.521 | 7  | 1.79E-05 | 4 | 1.02E-05 | 57%  | Pass |
| 92  | 0.527 | 6  | 1.53E-05 | 4 | 1.02E-05 | 67%  | Pass |
| 93  | 0.532 | 5  | 1.28E-05 | 4 | 1.02E-05 | 80%  | Pass |
| 94  | 0.537 | 5  | 1.28E-05 | 4 | 1.02E-05 | 80%  | Pass |
| 95  | 0.543 | 5  | 1.28E-05 | 4 | 1.02E-05 | 80%  | Pass |
| 96  | 0.548 | 5  | 1.28E-05 | 4 | 1.02E-05 | 80%  | Pass |
| 97  | 0.553 | 5  | 1.28E-05 | 4 | 1.02E-05 | 80%  | Pass |
| 98  | 0.559 | 5  | 1.28E-05 | 4 | 1.02E-05 | 80%  | Pass |
| 99  | 0.564 | 5  | 1.28E-05 | 4 | 1.02E-05 | 80%  | Pass |
| 100 | 0.569 | 4  | 1.02E-05 | 4 | 1.02E-05 | 100% | Pass |





.13 .11 .08 .04 .02

.15 .15 .11 .13 

 START\_DATE
 09/04/1963

 START\_TIME
 04:00:00

 REPORT\_START\_DATE
 04:00:00

 REPORT\_START\_TIME
 04:00:00

 REPORT\_START\_TIME
 09/04/1963

 REPORT\_START\_DATE
 05/26/2008

 END\_DATE
 05/26/2008

 END\_TIME
 00:00:00

 SWEEP\_START
 01/01

 SWEEP\_END
 12/31

 DRY\_DAYS
 0

 ORY\_DAYS
 0

 WET\_STEP
 01:00:00

 WET\_STEP
 01:00:00

 WET\_STEP
 01:00:00

 WET\_STEP
 01:00:00

 RULE\_STEP
 0:01:00

 RULE\_STEP
 0:00:00:00

GREEN AMPT NORMAL FLOW LIMITED BOTH INERTIAL DAMPING PARTIAL FORCE MAIN EQUATION H-W VARIABLE STEP 0.75 LENGTHENING STEP 0 KINWAVE FLOW\_ROUTING KINWAV LINK\_OFFSETS DEPTH MIN\_SLOPE 0 ALLOW\_PONDING NO SKIP\_STEADY\_STATE YES 0.005 .08 12.557 .03 .05 NO 0.5 CFS ;;Data Source Parameters S Ś  $\infty$ MIN\_SURFAREA 1 MAX\_TRIALS 8 HEAD\_TOLERANCE SYS\_FLOW\_TOL 5 LAT\_FLOW\_TOL 5 MINIMUM\_STEP 0 THREADS 1 Value ;;Project Title/Notes [EVAPORATION] INFILTRATION FLOW UNITS DRY\_ONLY MONTHLY [OPTIONS] ;;Option

[TITLE]

[RAINGAGES]

bLen SnowPack

| ;;Name                                                           | Forma                                                       | at Inte                                              | erval S                               | SCF                                          | Sourc                                                                                            | G                                                                            |                                   |                                                            |                                    |                                  |      |
|------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|---------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|------------------------------------|----------------------------------|------|
|                                                                  | ge IN                                                       | TENSI                                                | <br>ITY 1:                            | :00                                          | 1.0                                                                                              | <b>LIMESE</b>                                                                | ERIES                             | Encinit                                                    | aGaug                              | ge                               |      |
| [SUBCATCH<br>;;Name                                              | MENT<br>Rain (                                              | [S]<br>Jage                                          | Ou                                    | tlet                                         | Are                                                                                              | a %lı                                                                        | mperv                             | Width                                                      | %Sl                                | ope C                            | urbl |
| ;;                                                               | Encini<br>Encin<br>Enci<br>Enci<br>Enci<br>Enci             | nitasGua<br>nitasGu<br>nitasGu<br>nitasGu<br>nitasGu | ge P(<br>lage<br>lage<br>lage<br>lage | P-PO                                         | X<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | $\begin{array}{c} 0.90\\ 0.75\\ 0.75\\ 0.08\\ 0.05\\ 0.01\\ 0.07\end{array}$ | 0<br>75<br>86<br>0.0<br>100<br>83 | 95<br>66<br>51<br>15<br>210                                | 4.5<br>2.4<br>1.4<br>10<br>2<br>33 | 0 <sup>0</sup> 00 <sup>0</sup> 0 |      |
| [SUBAREAS<br>;;Subcatchme                                        | nt N-J                                                      | Imperv                                               | -o                                    | erv                                          | S-Impe                                                                                           | stv S-P                                                                      | erv                               | PctZerc                                                    | , Ro                               | uteTo                            | Pci  |
| ;;<br>EX-1<br>DMA-1<br>DMA-2<br>DMA-2<br>DMA-5<br>DMA-5<br>DMA-3 | 0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012 | 0.1<br>0.1<br>2 0.1<br>2 0.1<br>2 0.1                | 0.                                    | 05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05   | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                                             | 25<br>25<br>25<br>25<br>25<br>25<br>25                                       |                                   | TLET<br>JTLET<br>RVIOU<br>RVIOU<br>RVIOU<br>JTLET<br>RVIOU | JS 10<br>JS 11<br>JS 11<br>JS 11   | 000 00                           |      |
| [INFILTRAT]<br>;;Subcatchme                                      | ION]<br>nt Sue                                              | ction                                                | Ksat                                  | 4                                            | (D                                                                                               |                                                                              |                                   |                                                            |                                    |                                  |      |
| ;;<br>EX-1<br>DMA-1<br>DMA-2<br>DMA-4<br>DMA-5<br>DMA-3<br>DMA-3 | 9<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0                        |                                                      |                                       | ).32<br>).32<br>).32<br>).32<br>).32<br>).32 | 1                                                                                                |                                                                              |                                   |                                                            |                                    |                                  |      |
| [OUTFALLS<br>;;Name                                              | ]<br>Elevat                                                 | tion Ty                                              | /pe                                   | Stag                                         | e Data                                                                                           | Gate                                                                         | od Ro                             | ute To                                                     |                                    |                                  |      |
| POC-1-EX<br>P-POC                                                | 0 0                                                         | FREI                                                 | EE                                    |                                              | NC                                                                                               | 0                                                                            |                                   |                                                            |                                    |                                  |      |
| [STORAGE]<br>;;Name                                              | Elev.                                                       | MaxI                                                 | Jepth                                 | InitI                                        | Jepth S                                                                                          | hape                                                                         | Curve                             | Name/                                                      | Paran                              | SD                               | Z    |
| STOR-1                                                           | 0                                                           | 9                                                    | 0                                     | Τ                                            | ABULA                                                                                            | R BIC                                                                        | )-1                               |                                                            | 0                                  | 0                                |      |
| [ORIFICES]<br>;;Name<br>;;                                       | From                                                        | Node                                                 | To                                    | Node                                         |                                                                                                  | .ype                                                                         | Offse                             | at Qe                                                      | oeff<br>                           | Gated                            | 0    |

ctRouted

V/A Fevap Psi Ksat IMD

CloseTime

0.0 0.6 NO 0 3.25 0.65 NO 0 3 Geom4 Barrels Culvert

0 0

THE FULL TIME SERIES IS NOT INCLUDED HERE, AS THE FULL SET IS 150+ PAGES LONG. THE FULL DATA SET CAN BE FOUND ON PROJECTCLEANWATER.ORG

| IDE          | Geom         | 0 0          |                          |                              |          |       |                |       |                |              |       |                  |       |                |       |       |                |       |       |            |       |               |       |       |
|--------------|--------------|--------------|--------------------------|------------------------------|----------|-------|----------------|-------|----------------|--------------|-------|------------------|-------|----------------|-------|-------|----------------|-------|-------|------------|-------|---------------|-------|-------|
| ΝN           | m2           | 0 0          |                          |                              |          |       |                |       |                |              |       |                  |       |                |       |       |                |       |       |            |       |               |       | V     |
| oc<br>oc     | Geol         |              | /-Value                  |                              | lue      | 0.01  | $0.12 \\ 0.15$ | 0.01  | 0.07<br>0.07   | 0.03         | 0.02  | 0.02<br>0.09     | 0.05  | 0.03<br>0.02   | 0.01  | 0.04  | 0.02           | 0.1   | 0.1   | 0.07       | 0.02  | 0.01<br>0.07  | 0.01  | 0.03  |
| Р-Р          | -            | 0.0          | e 7                      | 360                          | Va       | 00    | 000            | 00    | 00:            | 9. S         | 00    | 88               | 00    | 88             | 00:00 | 2:00  | 3:00           | 2:00  | 2:00  | 00:6       | 00:00 | 00            | 00    | 00    |
|              | eom          | AR           | Valu                     | 0 <sup>0</sup> m             | ne       | 4:(   |                | 0:0   |                | "<br>∏<br>?  |       | 0<br>0<br>0<br>0 | 3.7   | 0 0<br>20 00   | 1 10  |       | 0 0<br>1 1     | 2 C   | 1 - C |            | 3 50  | 2 0<br>7 0    | 3 5:  | 3 6:  |
| R-1<br>R-1   | G            |              | X                        | 0 0<br>3.5<br>3.5<br>5.5     | Tir      | 1963  | 1963<br>1963   | 1963  | 1963<br>1963   | 1963         | /196  | //196<br>//196   | //196 | //196<br>//196 | 7/196 | //196 | 7/196<br>7/196 | //196 | 7/196 | 1/196      | //196 | 07196<br>1196 | 3/196 | 3/196 |
| STO<br>STO   | ape          | CIR          | /pe                      | orage                        | ate      |       | 9/4/<br>9/4/   | 9/4/  | 9/4/<br>9/4/   | 9/4/<br>9/17 | 9/17  | 9/17             | 9/17  | 9/17           | 9/17  | 9/17  | 9/17           | 9/17  | 9/17  | 9/17       | 9/17  | 9/18          | 9/18  | 9/18  |
|              | NS]<br>Sha   |              | Ţ                        | St                           | D<br>D   | uge   | uge<br>uge     | uge   | uge<br>uge     | uge          | nge   | uge<br>uge       | uge   | uge<br>uge     | uge   | uge   | uge            | uge   | uge   | uge<br>Uge | uge   | uge<br>uge    | nge   | uge   |
| CE-1<br>CE-2 | OITO         | CE-1<br>CE-2 | /ES]<br>e                |                              | SER<br>e | taGa  | taGa<br>taGa   | taGa  | taGa<br>taGa   | taGa         | taGa  | taGa<br>taGa     | taGa  | taGa<br>taGa   | taGa  | taGa  | taGa           | taGa  | taGa  | taGa       | taGa  | taUa<br>taGa  | taGa  | taGa  |
| RIFI         | KSEC<br>Link | RIFI         | CUR <sup>v</sup><br>Namo | IO-1<br>IO-1<br>IO-1<br>IO-1 | [] Namo  | ncini | ncini<br>ncini | ncini | ncini<br>ncini | ncini        | ncini | ncini            | ncini | ncini          | ncini | ncini | ncini          | ncini | ncini | ncini      | ncini | ncini         | ncini | ncini |
| 00           |              | ::00         | $\Sigma$ :::             |                              |          | ::П   | ЩЩ             | Ц     | цЩ             | ЩЩ           | ШЦ    | цП               | Щ     | цП             | ЩЦ    | ЦЩ    | ЩЦ             | ЦШ    | Ц     | цЩ         | Цľ    | цЩ            | Щ     | Щ     |

Project Name: 3060 Carmel Valley Rd.

# THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING



Project Name: KA Enteprises C-Store and Car Wash

# Attachment 3 Structural BMP Maintenance Information

This is the cover sheet for Attachment 3.



Project Name: KA Enteprises C-Store and Car Wash

# THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING



# Indicate which Items are Included:

| Attachment<br>Sequence | Contents                    | Checklist      |
|------------------------|-----------------------------|----------------|
| Attachmont 2           | Maintenance Agreement (Form | Included       |
| Attachiment 3          | DS-3247) (when applicable)  | Not applicable |

# WILL BE PROVIDED IN MINISTERIAL REVIEW



# Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

**Attachment 3**: For private entity operation and maintenance, Attachment 3 must include a Storm Water Management and Discharge Control Maintenance Agreement (Form DS-3247). The following information must be included in the exhibits attached to the maintenance agreement:

- Vicinity map
  - Site design BMPs for which DCV reduction is claimed for meeting the pollutant control obligations.
- BMP and HMP location and dimensions
- BMP and HMP specifications/cross section/model
- Maintenance recommendations and frequency
- LID features such as (permeable paver and LS location, dim, SF).



**Project Name:** KA Enteprises C-Store and Car Wash

# Attachment 4 Copy of Plan Sheets Showing Permanent Storm Water BMPs

This is the cover sheet for Attachment 4.



# Use this checklist to ensure the required information has been included on the plans:

The plans must identify:

| Structural BMP(s) with ID numbers matching Form I-6 Summary of PDP Structural BMPs            |
|-----------------------------------------------------------------------------------------------|
| $\mathbf{V}$ The grading and drainage design shown on the plans must be consistent with the   |
| delineation of DMAs shown on the DMA exhibit                                                  |
| $\checkmark$ Details and specifications for construction of structural BMP(s)                 |
| Signage indicating the location and boundary of structural BMP(s) as required by the          |
| City Engineer                                                                                 |
| How to access the structural RMP(s) to inspect and perform maintenance                        |
| Fortures that are provided to facilitate inspection (a.g., observation parts, cleanauts, silt |
| Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, sit  |
| posts, or other features that allow the inspector to view necessary components of             |
| the structural BMP and compare to maintenance thresholds)                                     |
| Manufacturer and part number for proprietary parts of structural BMP(s) when                  |
| applicable                                                                                    |
| Maintenance thresholds specific to the structural BMP(s), with a location-specific frame      |
| of reference (e.g., level of accumulated materials that triggers removal of the               |
| materials, to be identified based on viewing marks on silt posts or measured with a           |
| survey rod with respect to a fixed benchmark within the BMP)                                  |
| Recommended equipment to perform maintenance                                                  |
| When applicable, necessary special training or certification requirements for inspection      |
| and maintenance personnel such as confined space entry or hazardous waste                     |
| management                                                                                    |
| Include landscaping plan sheets showing vegetation requirements for vegetated                 |
| structural BMP(s)                                                                             |
| $\checkmark$ All BMPs must be fully dimensioned on the plans                                  |
| $\checkmark$ When proprietary BMPs are used, site specific cross section with outflow, inflow |
| <br>and model number shall be provided. Broucher photocopies are not allowed.                 |
|                                                                                               |





# TITLE + CONSTRAINTS MAP

# CARMEL VALLEY SHELL

EL CAMINO REAL AS SHOWN ON PM 18484 SAID BEING BEING "N 46103'17" E

| IMPERVIOUS (EXISTING) | 68% |  |
|-----------------------|-----|--|
| WDEDWAUE (DDADACED)   | 769 |  |

| ERNOUS | (PROPUSED | <i>y</i> | 10% |  |
|--------|-----------|----------|-----|--|
|        | ΔΝΙΔΙ     | veie     |     |  |

| GRADED AREA         |  |
|---------------------|--|
| VAX FILL            |  |
| WAX CUT             |  |
| TILL QUANTITIES     |  |
| CUT QUANTITIES      |  |
| UNDERCUT QUANTITIES |  |
| XPORT CONDITION     |  |
| SHEET INDEX:        |  |

## TITLE & CONSTRAINTS MAP CONCEPTUAL GRADING PLAN DMA MAP

| AC   | ASPHALT CONCRETE     | LP         | LIGHT POLE            |
|------|----------------------|------------|-----------------------|
| В    | BOLLARD              | Ρ          | PAVEMENT              |
| BB   | BIO BASIN            | PL         | PROPERTY LINE         |
| B₩   | BOTTOM OF WALL       | PVT        | PRIVATE               |
| CONC | CONCRETE             | R/W        | RIGHT-OF-WAY          |
| ELEC | ELECTRICAL UTILITIES | <i>śco</i> | SEWER CLEAN-OUT       |
| FF   | FINISH FLOOR         | SD         | STORM DRAIN UTILITIES |
| FG   | FINISH GRADE         | SMH        | SEWER MANHOLE         |
| FH   | FIRE HYDRANT         | IC         | TOP OF CURB           |
| FL   | FLOW LINE            | T₩         | TOP OF WALL           |
| GAS  | GAS FACILITIES       | 1181       | WATER METER BOX       |
|      |                      | 467        | WATED VALUE           |







| D AREA          |             |
|-----------------|-------------|
| 7/11            |             |
| CUT             |             |
| DUANTI TIES     |             |
| NANTITES        |             |
| RCUT QUANTITIES |             |
| т сомытом       |             |
| EET INDEX:      |             |
|                 | DESCRIPTION |
|                 |             |

NO

- PROP. CRB & GTR
- CRITERIA ESTABLISHED WITHIN THE CITY OF SAN DIEGO'S CURRENT WATER AND SEWER FACILITY DESIGN GUIDELINES, REGULATIONS, STANDARDS, AND PRACTICES PERTAINING THERETO. ALL WATER SERVICES TO THE SITE MUST PASS THROUGH A PRIVATE ABOVE GROUND BACK FLOW
- NO TREES OR SHRUBS WHOSE HEIGHT WILL BE 3' OR GREATER AT MATURITY SHALL BE INSTALLED OR
- MAINTAINED SEWER FACILITIES. AN ENCROACHMENT MAINTENANCE REMOVAL AGREEMENT (EMRA) WILL BE PREPARED WITH THE MINISTERIAL PERMITTING PROCESS (CONSTRUCTION PLANS) FOR ANY EXISTING OR PROPOSED PRIVATE
- IMPROVEMENTS WITHIN THE PUBLIC RIGHT OF WAY OR PUBLIC UTILITY EASEMENTS (EXISTING OR



# VICINITY MAP:

NO SCALE

## LEGAL DESCRIPTION:

. THAT PORTION OF THE NORTHEAST QUARTER OF THE NORTHEAST QUARTER OF SECTION 25. TOWNSHIP 14 SOUTH. RANGE 4 WEST, SAN BERNARDINO MERIDIAN IN THE CITY OF SAN DIEGO, COUNTY OF SAN DIEGO. STATE OF CALIFORNIA, ACCORDING TO UNITED STATES GOVERNMENT SURVEY APPROVED JANUARY 18, 1876, DESCRIBED AS FOLLOWS

BEGINNING AT THE NORTHEAST CORNER OF SAID SECTION 25, THE EAST LINE OF SAID SECTION BEARING SOUTH 045'08" WEST FROM SAID NORTHEAST CORNER; THENCE SOUTH 31'52'53" WEST 478.54 FEET TO THE TRUE POINT OF BEGINNING, THENCE SOUTH 56:30:31" WEST 175 FEET TO THE BEGINNING OF A NON-TANGENT 25 FOOT RADIUS CURVE CONCAVE NORTHERLY, THE RADIUS OF SAID CURVE BEARING SOUTH 332926" EAST TO SAID POINT, THENCE WESTERLY AND NORTHERLY ALONG SAID CURVE 33.27 FEET THROUGH AN ANGLE OF 8959'56", THENCE NORTH 1419'06" WEST 379.68 FEET; THENCE SOUTH 41'36'36" EAST 128.06 FEET: THENCE SOUTH 46'03'04" EAST 263.13 FEET TO THE TRUE POINT OF 41050 EAST 12200 FEET; INERNE SOUTH 401014 EAST 2000 FEET 10 HE INCE FOUNT OF BEGINNING, AND ALSO KNOWN AS LOT 1, CHIEREN HICHARDA SUBMISSION UNIT NO. 1, NI THE CITY OF SAN BEGO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO THE MAP THEREOF NO. 5837, FILED IN THE OFFICE OF THE COUNTY RECORDER ON FEBRUARY 10, 1967.

EXCEPTING THEREFROM ANY OIL, GAS, AND OTHER MINERALS (INCLUDING, WITHOUT LIMITATION, HELIUM, EXCEPTING THEREFROM ANT OL, CAS, AND UTHER MINERALS (INCLUDING, MITHOUT LAMIATION, TELDOM, LICHTE, SULFUR, PHOSPHATE, AND OTHER SOLL, LIOUD AND CASCIUS SUBSTANCES), RECARDLESS GF THE NATURE THEREOF AND MIETTHER SIMULAR OR DISSIMULR BUT ONLY TO THE DYNERT AND YO THE FORECOME (S IN TIS NATURAL STATE AND NATURAL LOCATION AND NOT SUBJECT TO THE DOMINION AND CONTROL OF ANY ERISON, AND, JPON THIRTY (SU) DAYS PROR WATTEN NOTICE TO GRAVIEE, THE RIGHT TO EXPLORE FOR, DEVELOP AND PRODUCE SAME, AS WELL AS THE RIGHT TO LEASE SUCH FORTION OF THE FORGERITY HEREBY RESERVED FOR SUCH PROPOSE, AND ALL MINERAL AND ROYLLY RETRES MATSOREME OR, MI, MU UNDER AND PERTAINING TO THE PROPOSET, BUT CRAVITOR INS NUCLEASES AND ASSIGNS, SHALL HAVE DURING AND PERTAINING TO THE PROPOSET, BUT CRAVING IS SUCCESSORS AND ASSIGNS, SHALL HAVE NO RIGHT TO USE. OR RIGHT OF INGRESS TO OR EGRESS FROM ANY PART OF THE SURFACE OF THE NO NOME TO GE CAPLORATION AND REDUCING PORTUGATION OF CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACTUAL OR LEASEHOLD RIGHTS GRANTED TO THIRD PARTIES AND (II) ANY ADDITIONAL ACTIVITIES WHICH HAVE BEEN CONSENTED TO IN WRITING BY GRANTEE, WHOSE

CONSENT SHALL NOT BE UNREASONABLY WITHHELD. EXCEPT AS SET FORTH IN THE PRECEDING SENTENCE, ANY OIL AND GAS DRILLING WITHELD. EXCEPT AS SET FORTH IN THE PROCEDUMG SENTENCE, ANY OLI AND GAS DRELING OPERATIONS, SAUL BE CONDUCTED BY MARINS OF WELLS, HE SWERGE LOLATONS OF WHICH ARE ON OTHER LANDS AND WHOCH MAY BE DRELED INTO AND BOTTOMED IN OR UNDER THE PROPERTY, GRANTOR SHALL ELERCISE ITS RIGHTS UNDER THE FOREGOING MINERAL, OLI AND GAS RESERVATION SO AND IT DISTURB, ANY MARROVEMENTS, INSTALLATIONS, PETROLEUM OR OTHER PRODUCES CONTAINED IN SOCH MARROVEMENTS OR INSTALLARIUS, PETROLEUM OR OTHER PRODUCES CONTAINED IN SUCH MARROVEMENTS OR INSTALLARIUS, PETROLEUM OR OTHER PRODUCES CONTAINED IN SUCH MARROVEMENTS OR INSTALLARIUS, PETROLEUM OR OTHER PRODUCES CONTAINED IN SUCH MARROVEMENTS OR INSTALLARIUS, PETROLEUM OR OTHER PRODUCES CONTAINED IN SUCH MARROVEMENTS OR INSTALLARIUS OF SURFACE ACTIVITIES ON THE PROPERTY, GRANTOR IS TO RECEIVE AND RETINA ALL BOUSES, REVITAL AND ROYALTIES ON THE APORTY, ORANTOR IS TO RECEIVE AND REVENT ALLY DONES, REVIEW AND ROYALTIES ON THE APORTY, GRANTOR IS TO RECEIVE AND REVENT ALLY DONESS, REVIEW, ORAPORTY, GRANTOR IS TO RECEIVE AND RECEIVAL DUISES, REVIEW, CORPORTION, CARATURER ANY SUCH MIRERAL, OL AND GAS LEASE OR LEASES, GRANTOR MAY ASSIGN, TRAINSER, SELL OR CONVEY SUCH OUL, GAS AND MINERAL RESERVATION TO ANY PERSON, CORPORTION, DARTINGER OR DURE DITY, SERSEVED IN THE DEED FROM OTHER OL COMPANY RECORDED SEPTEMBER 8, 1988 AS INSTRUMENT NO. 98–570037 OF OFFICIAL RECORDS

## TITLE INFORMATION:

. TILE INFORMATION FOR THIS SURVEY BASED ON A PRELIMINARY REPORT PREPARED BY STEWART TITLE GUARANTY COMPANY COMMERCIAL SERVICES AS ORDER NO. 21000480781, DATED: JULY 16, 2021.

### VERTICAL BENCHMARK:

BRASS PLUG IN TOP OF CURB INLET AT THE NORTHEAST CORNER OF VALLEY CENTRE DESCRIPTION: DRIVE (FORMERLY CARMEL VIEW ROAD) AND EL CAMINO REAL AS LISTED IN THE CITY OF SAN DIEGO VERTICAL CONTROL BENCHBOOK,

ELEVATION: 55.345' (MSL/NGVD29)

## WATER/SEWER UTILITY NOTES:

ALL PROPOSED WATER AND SEWER FACILITIES (PUBLIC AND PRIVATE) WITHIN THE PUBLIC ROW OR PUBLIC FASEMENT MUST BE DESIGNED AND CONSTRUCTED, OR ABANDONED, IN ACCORDANCE WITH THE

- PREVENTION DEVICE (BFPD). BFPDs ARE TO BE LOCATED ABOVE GROUND, ON PRIVATE PROPERTY, IN LINE WITH THE SERVICE, AND IMMEDIATELY ADJACENT TO THE RIGHT-OF-WAY.
- RETAINED WITHIN 5' OF ANY PUBLICLY MAINTAINED WATER FACILITIES OR WITHIN 10' OF ANY PUBLICLY
- THERE ARE NO WATER OR SEWER EASEMENTS ON OR ADJACENT TO THE PROPERTY.





# CONCEPTUAL GRADING PLAN





SECTION B-B HORIZONTAL SCALE 1"=20 VERTICAL SCALE 1"=10'



SECTION C-C HORIZONTAL SCALE 1"=20 VERTICAL SCALE 1"=10"



SECTION D-D HORIZONTAL SCALE 1"=20 VERTICAL SCALE 1"=10"

# LEGEND:

<u>ITEM</u> CENTERLINE ..... RIGHT-OF-WAY.. EX. PROPERTY LIN EX CONTOUR..... EX. SPOT ELEVAT EX SANITARY SEW EX WATER..... EX FIRE HYDRANT EX CURB & GUTT PROPOSED FINISH PROPOSED TOP C PROPOSED PAVEM PROPOSED FLOWL PROPOSED FINISH PROPOSED GRADI PROPOSED CURB PROPOSED CURB PROPOSED PCC S PROPOSED AC PA

PROPOSED PCC P PROPOSED AC (

PROPOSED PCC PROPOSED PCC

PROPOSED LANDS PROPOSED DRIVEW PROPOSED STORM PROPOSED ROOF

PROPOSED MODUL PROPOSED HMP : PROPOSED CMU N

PROPOSED BUILDI PROPOSED STORM PROPOSED MIDE H

PROPOSED BROW PROPOSED RIP R

PROPOSED WATER PROPOSED SEWER PROPOSED WATER PROPOSED SEWER PROPOSED IRRIGA PROPOSED BFP (F







|                                | <u>SYMBOL</u>                                                                                                   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                 |
|                                |                                                                                                                 |
| IE                             |                                                                                                                 |
|                                |                                                                                                                 |
| кгр                            | • 965.8                                                                                                         |
| ⊆л                             | ·s—⊖—s——s                                                                                                       |
| ASSFMRIY                       | WW                                                                                                              |
| ER                             | A                                                                                                               |
| FLOOR ELEVATION                |                                                                                                                 |
| F CURB ELEVATION,              | 374.00TC                                                                                                        |
| ENT ELEVATION                  | 374.00P                                                                                                         |
| NE ELEVATION                   | 374.00FL                                                                                                        |
| ED GRADE ELEVATION             | <u>374.00FG</u>                                                                                                 |
| 1W7                            | 1.75%                                                                                                           |
| (PVT)                          |                                                                                                                 |
| & GUTTER (PVT)                 |                                                                                                                 |
| DEWALK (PVT)                   |                                                                                                                 |
| VEMENT (PVT)                   |                                                                                                                 |
| AVEMENT (PVT)                  |                                                                                                                 |
|                                |                                                                                                                 |
| IND & OVERLAY (PVI)            |                                                                                                                 |
| AVEMENT (PUBLIC)               |                                                                                                                 |
| IDEWALK (PUBLIC)               |                                                                                                                 |
|                                |                                                                                                                 |
| CAPING (PVT)                   |                                                                                                                 |
| MAY (PUBLIC)                   |                                                                                                                 |
| DRAIN (PVT)                    | SIZE & TYPE PER PLAN                                                                                            |
| DRAIN (PVT)                    | . (10)                                                                                                          |
| AR WETLAND SYSTEM (PVT)        |                                                                                                                 |
| TORMWATER STORAGE (PVT)        |                                                                                                                 |
| MLL                            |                                                                                                                 |
| VG FOOTPRINT                   |                                                                                                                 |
| DRAIN STRUCTURE                |                                                                                                                 |
|                                |                                                                                                                 |
| ווסטיאי טעדובא                 |                                                                                                                 |
| 40                             |                                                                                                                 |
| ч <i>г</i>                     | 1977 A |
| (PVT)                          | SIZE & TYPE PER PLAN                                                                                            |
| (PVT)                          | SIZE & TYPE PER PLAN                                                                                            |
| POINT OF CONNECTION (PVT)      |                                                                                                                 |
| POINT OF CONNECTION (PVT)      | • • •<br>• • •                                                                                                  |
| TION POINT OF CONNECTION (PVT) | • • •                                                                                                           |
| 2VT]                           |                                                                                                                 |
|                                |                                                                                                                 |

## STORMWATER NOTE:

THE PROPOSED PROJECT MILL COMPLY WITH ALL THE REQUIREMENTS OF THE CURRENT CITY OF SAN DIEGO STORM WATER STANDARDS MANUAL BEFORE A GRADING OR BUILDING PERMIT IS ISSUED. IT IS THE RESPONSIBILITY OF THE OWNER/DESIGNER/APPLICANT TO ENSURE THAT THE CURRENT STORM WATER PERMANENT 5mp STANDARDS ARE INCORPORATED INTO THE PROJECT.

| TE  | STORM DRAIN DATA TABLE:        |
|-----|--------------------------------|
| TΗ  | REMARKS                        |
| 5'  | 8" PVC SDR-35                  |
| 'g' | 6" PVC SDR-35                  |
| 6'  | 10" PVC SDR-35                 |
| 4'  | 10" PVC SDR-35                 |
| 6   | 12" PVC SDR-35                 |
| 7'  | 12" PVC SDR-35 (EMRA REQUIRED) |
|     |                                |

# INTERSECTION SITE VISIBILITY NOTE:



GA ENGINEERING CONSULTANTS 4340 VIEWRIDGE AVE. SUITE B SAN DIEGO CA 92123

PH:(858) 634-8620 FAX:(858)-634-8627

CONCEPTUAL GRADING PLAN ENTERPRISES C-STORE AND CAR WASH 3060 CARMEL VALLEY RD SAN DIEGO, CALIFORNIA Å E e 5820 Oberlin Dr Sulte 201 8an Diego, CA 92121 Contact: Eugene Marini 858/404-6091 fax 858/404-6081 S Б PRELIMINARY Scale: Horizontal AS NOTED Vertical Barghausen Consulting Engineers, Inc. 18215 72nd Avenue South Kent, WA 98032 425.251.6222 barghausen.com  $\mathbf{m}$ 21895 Ņ Ó





Project Name: KA Enteprises C-Store and Car Wash

# Attachment 5 Drainage Report

Attach project's drainage report. Refer to Drainage Design Manual to determine the reporting requirements.



# KA Enterprises C-Store and Car Wash Drainage Study 3060 Carmel Valley Rd.

San Diego, CA 92130

Date Prepared: August 25, 2023

Prepared for: KA Enterprises 5820 Orbelin Drive, Suite 201 San Diego, CA 92121

Prepared By:



# Declaration of Responsible Charge:

I hereby declare that I am the engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in section 6703 of the business and professions code, and that the design is consistent with current standards. I understand that the check of the project drawings and specifications by the City of San Diego is confined to a review only and does not relieve me, as an engineer of work, of my responsibilities for project design.

Patric T. de BoerRCE83583Registration Expires3-31-2025

# Table of Contents

| Site & Project Description           | 1  |
|--------------------------------------|----|
| Methodology                          | 1  |
| Existing Conditions                  | 2  |
| Proposed Conditions                  | 2  |
| Existing Rational Analysis           | 3  |
| Proposed Rational Analysis           | 3  |
| Results and Conclusions              | 3  |
| Site Vicinity Map                    | 5  |
| Existing Hydrology Exhibit           | 6  |
| Proposed Hydrology Exhibit           | 7  |
| Weighted "C" Values                  | 8  |
| 100-year, 6-hr Rational Calculations | 9  |
| Pipe Sizing                          | 10 |
|                                      |    |

# Appendices

| Soil Hydrologic Group Map          | Appendix 1 |
|------------------------------------|------------|
| 100-yr 6-hr Storm Isopluvial Map   | Appendix 2 |
| 100-yr 24-hr Storm Isopluvial Map  | Appendix 3 |
| Intensity-Duration Design Chart    | Appendix 4 |
| Runoff Coefficient Table           | Appendix 5 |
| Maximum Overland Flow Length Chart | Appendix 6 |
| Nomograph for Natural Watersheds   | Appendix 7 |
| Hydraflow Exhibits                 | Appendix 8 |
|                                    |            |

# Site & Project Description

This drainage study has been prepared for the development located at 3060 Carmel Valley Rd., San Diego, CA 92130. The project site is currently occupied by a convenience store, gas station canopy, and asphalt parking lot. The project will involve the demo of the existing convenience store and construction of a proposed convenience store and a car wash along with its corresponding improvements. The existing gas station canopy, pumps and tanks will remain. The total area of analysis is 0.88 acres.

A gravel filled, detention facility with StormTech arches and a Modular Wetland System will be constructed for HMP and treatment purposes. The HMP and treatment properties of the facility are detailed in a separate Stormwater Quality Report (SWQMP).

The site is located adjacent to the on-ramp to Interstate 5 North. See figure No. 1 for a Vicinity Map. See Figure 2 for the existing drainage limits. See Figure 3 for the proposed drainage limits.

# Methodology

This drainage report has been prepared in accordance with the current City of San Diego regulations and procedures. The Modified Rational Method was used to compute the anticipated runoff.

The proposed storm drain pipes and channels were sized using Manning's Equation in *The Handbook of Hydraulics*, by Brater & King.

The 100-yr, 6-hr storm depth ( $P_6$ ) was determined using the isopluvial map included as Appendix 2 of this report.

The initial time of concentration (Ti) and maximum overland flow length (Lm) were determined using Appendix 6.

The total time of concentration was determined by adding the Ti value to the travel time (Tt). Tt was determined via the Kirpich Formula as described on Appendix 7 on this report. Tt for surface flow on an asphalt swale was determined by modeling the approximate existing grades of the existing parking lot using Hydraflow Express to determine a velocity. Tt for proposed ribbon gutter was also determined modeling the proposed gutter using Hydraflow Express to determine a velocity. See Appendix 8 for Hydraflow Exhibits. Then the length of flow was divided by the flow velocity to determine Tt.

# Tc = Ti+Tt

The Tc and the P<sub>6</sub> values were entered into the peak intensity formula from Appendix 4 to determine the intensity of the rainfall during the peak of the 100-year, 6-hr storm.

# $I = 7.44 \text{ x } P_6 \text{ x } Tc^{-0.645}$

The peak discharge rate was determined using the Rational Method Formula.

# Rational Method

Q=CIA

Where:

Q=peak discharge, in cubic feet per second (cfs)

C=runoff coefficient, proportion of the rainfall that runs off the surface (no units) Table A-1, City of San Diego Drainage Design Manual (Appendix 5) I =average rainfall intensity for a duration equal to the Tc for the area, (in/hr) = 7.44\*P6\*Tc^-0.645 A = drainage area contributing to the design location, in acres Cp= Pervious Coefficient Runoff Value, minimum of 0.35 Tc= <u>1.8 (1.1-C)\*(L)<sup>0.5</sup>\*</u> S<sup>0.33</sup> S= Slope of drainage course

See the attached calculations for particulars. The following references have been used in preparation of this report:

- (1) <u>Handbook of Hydraulics</u>, E.F. Brater & H.W. King, 6<sup>th</sup> Ed., 1976.
- (2) <u>City of San Diego Drainage Design Manual</u>, 2017
- (3) <u>County of San Diego Hydrology Manual</u>, 2003
- (4) <u>Modern Sewer Design</u>, American Iron & Steel Institute, 1<sup>st</sup> Ed., 1980

# Existing Conditions

The existing site is graded and terraced into two tiers being the northerly portion of the lot at the highest elevation and sloping towards Carmel Valley Rd., south of the site. The site is a triangular shaped 0.88-acre lot that consists of an asphalt parking lot on the northerly portion of the site and convenience store with a gas station canopy on the southerly portion of the lot. The site currently does not have an on-site storm drain system.

The northerly portion of the lot drains towards the southerly development via an asphalt swale. The runoff then drains via surface flow to Carmel Valley Road and ultimately to the existing catch basin on the northeasterly corner of the intersection in Carmel Valley Road and the on-ramp to Interstate 5 North. This point is referred to as Discharge Point # 1 in this report.

# Proposed Conditions

The proposed development involves the construction of a convenience store and a car wash along with its corresponding improvements. The project proposes to modify the onsite drainage system with the addition of catch basins, gutters and brow ditches to help convey runoff to the discharge point. The project will increase the impervious footprint of the site by 8%.

The site was analyzed as a single drainage basin. The runoff generated by the majority of the site will drain to a series of catch basins and drain towards the southwesterly corner of the site where it conveys to a subsurface detention facility. The subsurface detention facility will consist of a 900-sf gravel filled, subsurface detention with a row of 8 Stormtech SC-740 storage arches. The detention system is assumed to be full during the peak of the 100-year storm. No attenuation of peak flows is

assumed in this analysis. Following detention and treatment, the flow will drain to an area drain located on the southeasterly landscape area. Finally, a 12" pipe will hard-connect to the existing curb inlet on the public sidewalk. This point is referred to as Discharge Point # 1 in this report.

The southeasterly corner of the site drains to the landscape area located on the southeasterly corner of the site. The runoff then drains to an area drain where it confluences with the runoff discharged from the subsurface detention basin.

# Existing Rational Analysis

The existing area of site was modeled as a single basin. The existing basin is referred to as E-1 in this report. The average slope of the basin is approximately 4.1%. The weighted runoff coefficient is 0.85.

Below is a summary of the input data and the resulting flowrate for the 100-year, 6-hour storm.

# Existing Rational Calculation Summary

| Basin | Impervious % | С    | I <sub>100</sub><br>(in/hr) | Tc<br>(mins) | Area<br>(ac) | $\begin{array}{c} Q_{100} \ (cfs) \end{array}$ |
|-------|--------------|------|-----------------------------|--------------|--------------|------------------------------------------------|
| E-1   | 68%          | 0.85 | 3.80                        | 11.7         | 0.88         | 2.86                                           |

The existing peak runoff flowrate DP-1 is 2.86 cfs. See the attached calculations for details.

# Proposed Rational Analysis

The proposed site is modeled as a single basin. The proposed basin is referred to as P-1 in this report. The average slope of the basin is approximately 3.9%. The weighted runoff coefficient is 0.85.

Below is a summary of the input data and the resulting flowrate for the 100-year, 6-hour storm.

# Proposed Rational Calculation Summary

| Basin | Impervious % | С    | I <sub>100</sub><br>(in/hr) | Tc<br>(mins) | Area<br>(ac) | Q <sub>100</sub><br>(cfs) |
|-------|--------------|------|-----------------------------|--------------|--------------|---------------------------|
| P-1   | 76%          | 0.85 | 3.59                        | 12.8         | 0.88         | 2.70                      |

The proposed peak runoff flowrate DP-1 is 2.70 cfs. See the attached calculations for details.

# Results and Conclusions

The proposed improvements result in a decrease of generated runoff during the peak of the 100year, 6-hr storm. The result is a peak storm water flowrate that is less than the existing conditions by 0.16 cfs. The project is not anticipated to exceed the capacity of the proposed onsite conveyances, as well as the existing offsite storm drain system conveyances.

It is the opinion of Omega Engineering Consultants that the project will not place any structures in the 100-year flood hazard areas or flood plain and is not located in an area that is exposed to the risk of flooding as a result of a dam levee failure, thus the project will not expose people or structured to significant risk of loss, injury or death involving flooding as a result of a failure of a levee or dam.

The redevelopment of the site is not anticipated to create the risk of substantial erosion on or offsite due to the decrease in calculated peak flows and the implementation of hydromodification controls.

Project does not propose to discharge fill or dredged materials to the Waters of the State, therefore no CWA 401 or 404 permit is required. It is the opinion of Omega Engineering Consultants that the project will not create new adverse effects to the downstream facilities or receiving waters as a result of stormwater flowrates produced by the site.

It is the opinion of Omega Engineering Consultants that the project will not cause adverse effects to the downstream facilities or receiving waters. A separate Storm Water Quality Management Plan has been prepared to discuss the water quality impacts for the proposed development.



# **LEGEND**

- BASIN N
- AREA LI
- DRAINA
- BUILDING PAVEMEN
- PERVIOU
- **DR** BASIN # E-1





| NUMBER ·····                                  | (E-#)             |
|-----------------------------------------------|-------------------|
| IMITS · · · · · · · · · · · · · · · · · · ·   |                   |
| GE FLOW PATH                                  | $\longrightarrow$ |
| G AREA ·····                                  |                   |
| NT AREA · · · · · · · · · · · · · · · · · · · |                   |
| US AREA                                       |                   |

| AI | NAGE         | BASIN   |                          |                             |                           |
|----|--------------|---------|--------------------------|-----------------------------|---------------------------|
| V  | AREA<br>(AC) | C-VALUE | T <sub>C</sub><br>(MINS) | l <sub>100</sub><br>(IN/HR) | Q <sub>100</sub><br>(CFS) |
| '  | 0.88         | 0.85    | 11.7                     | 3.80                        | 2.86                      |
|    | _            | _       | I                        | _                           | _                         |

# **LEGEND**



AREA LI

DRAINAG BUILDING

PAVEMEI

PERMOU





| NUMBER       | <b>P-#</b>        |
|--------------|-------------------|
| IMITS        |                   |
| GE FLOW PATH | $\longrightarrow$ |
| G AREA       |                   |
| NT AREA      |                   |
| JS AREA      |                   |

| AI | NAGE         | BASIN   |                          |                             |                           |
|----|--------------|---------|--------------------------|-----------------------------|---------------------------|
| V  | AREA<br>(AC) | C-VALUE | T <sub>C</sub><br>(MINS) | l <sub>100</sub><br>(IN/HR) | Q <sub>100</sub><br>(CFS) |
| ,  | 0.88         | 0.85    | 12.8                     | 3.59                        | 2.70                      |

| PIPE DATA |                      |              |               |                           |                           |  |  |  |  |  |  |  |
|-----------|----------------------|--------------|---------------|---------------------------|---------------------------|--|--|--|--|--|--|--|
| #         | DIAMETER<br>(INCHES) | SLOPE<br>(%) | DEPTH<br>/DIA | V <sub>100</sub><br>(FPS) | Q <sub>100</sub><br>(CFS) |  |  |  |  |  |  |  |
|           | 8                    | 1.0          | 0.69          | <i>3.79</i>               | 1.00                      |  |  |  |  |  |  |  |
|           | 6                    | 0.5          | 0.18          | 1.25                      | 0.03                      |  |  |  |  |  |  |  |
|           | 8                    | <i>1.95</i>  | 0.56          | 5.12                      | 1.03                      |  |  |  |  |  |  |  |
|           | 10                   | 3.9          | 0. <b>48</b>  | 7.96                      | 2.06                      |  |  |  |  |  |  |  |
|           | 8                    | 10.0         | 0.42          | 10.21                     | 1.42                      |  |  |  |  |  |  |  |
|           | 10                   | 6.4          | 0.49          | 10.16                     | 2.70                      |  |  |  |  |  |  |  |
|           | 12                   | 1.0          | 0.65          | 5.00                      | 2.70                      |  |  |  |  |  |  |  |

# KA ENTERPRISES C-STORE AND CAR WASH PROPOSED HYDROLOGY EXHIBIT



PROP. HYDROLOGY EXHIBIT

# KA ENTERPRISES C-STORE AND CAR WASH HYDROLOGY AND HYDRAULICS CALCS

| "C" Value | 0.85   |  |           |  | 0.85   |  |  |            |
|-----------|--------|--|-----------|--|--------|--|--|------------|
| % Imp     | 68.4%  |  |           |  | 75.8%  |  |  |            |
| AREA (AC) | 0.88   |  | 0.88      |  | 0.88   |  |  | 0.88       |
| AREA (SF) | 38,483 |  | 38,483    |  | 38,483 |  |  | 38,483     |
| BASIN     | E-1    |  | EX. TOTAL |  | P-1    |  |  | PROP TOTAL |

| Symbol           |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|
| Basin Confluence |  |  |  |  |  |  |  |

- (A) DP # Existing/Proposed Discharge PointCP # Existing/Proposed Confluence Point
- (B) C value for Commercial, 80% Impervious, is 0.85 (Table A-1 City of San Diego Drainage Design Manual)
  (Type 'D' soil)
KA ENTERPRISES C-STORE AND CAR WASH HYDROLOGY AND HYDRAULICS CALCS

| $\sim$ |
|--------|
| 2      |
| 0      |
| $\sim$ |
| -      |
| Σ      |
| Ñ      |

| NOTES<br>100-year, 6 hr storm       | P(6) 2.5 |                   |       |                   |
|-------------------------------------|----------|-------------------|-------|-------------------|
|                                     |          | Discharge Point-1 |       | Discharge Point-1 |
| Q<br>cfs                            | 2.86     | 2.86              | 2.70  | 2.70              |
| I<br>in/hr                          | 3.80     | 3.80              | 3.59  | 3.59              |
| T <sub>c</sub><br>mins              | 11.7     | 11.7              | 12.8  | 12.8              |
| Tt<br>mins                          | 1.42     |                   | 1.91  |                   |
| Ti<br>mins                          | 10.3     |                   | 10.9  |                   |
| S(%)<br>(avg.)                      | 4.1%     |                   | 3.9%  |                   |
| / Concentrated<br>Flow Length, (ft) | 238.0    |                   | 257.0 |                   |
| )verland flow<br>length             | 100.0    |                   | 100.0 |                   |
| "C" (                               | 0.85     |                   | 0.85  |                   |
| AREA<br>Ac.                         | 0.88     |                   | 0.88  |                   |
| Sub-<br>Basin                       | E-1      |                   | P-1   |                   |

0676-H&H Rational Calculations

|--|

The following chart details the sizing parameters and for conduits that convey runoff on the site.

K'= Discharge factor n= Mannings coefficient d=diameter of conduit (ft) Q= Discharge s=Minimum Pipe Slope (ft/ft) D=depth of flow C<sub>a</sub>= Flow factor A=Cross sectional area of flow V=Velocity

- $= (Q^*n)/(d^{8/3}*s^{1/2})$
- 0.013 for PVC & HDPE =
- per chart =
- based off portions of basins tributary to outlet =
- per chart =
- From table 7-4 See right =
- From table 7-14 See right =
- $C_a * d^2$ =
- = Q/A

#### **Pipe Flow**

| Pipe | Tributary Areas                                                                  | Q (cfs) | S (%) | d (in) | К'     | D/d  | C <sub>a</sub> | A (sf) | V (fps) |
|------|----------------------------------------------------------------------------------|---------|-------|--------|--------|------|----------------|--------|---------|
| 1    | Northwesterly portion of basin P-1 and<br>northerly portion of proposed building | 1.00    | 1     | 8      | 0.3833 | 0.69 | 0.578          | 0.257  | 3.89    |
| 2    | Portion of 4' ribbon gutter on easterly<br>driveway                              | 0.03    | 0.5   | 6      | 0.035  | 0.18 | 0.096          | 0.024  | 1.25    |
| 3    | Confluence Flow Pipes # 1 & 2                                                    | 1.03    | 1.95  | 8      | 0.2827 | 0.56 | 0.453          | 0.201  | 5.12    |
| 4    | Confluence Flow Pipes # 1, 2 & 3                                                 | 2.06    | 3.9   | 10     | 0.2205 | 0.48 | 0.373          | 0.259  | 7.96    |
| 5    | Southwesterly portion of basin P-1                                               | 1.42    | 10    | 8      | 0.1721 | 0.42 | 0.313          | 0.139  | 10.21   |
| 6    | Confluence Flow Pipes # 1, 2, 3, 4, 5 & 6                                        | 2.70    | 6.4   | 10     | 0.2256 | 0.49 | 0.383          | 0.266  | 10.16   |
| 7    | Entire Site                                                                      | 2.70    | 1     | 12     | 0.351  | 0.65 | 0.54           | 0.540  | 5.00    |
|      |                                                                                  |         |       |        |        |      |                |        |         |

| t di          | depth of ameter | of water | $\frac{r}{nel} = \frac{1}{2}$ | $\frac{D}{d}$ and $C$ | $C_a = th$ | e tabul | ated va | lue. T | hen a = | $= C_a d$ |
|---------------|-----------------|----------|-------------------------------|-----------------------|------------|---------|---------|--------|---------|-----------|
| $\frac{D}{d}$ | .00             | .01      | .02                           | .03                   | .04        | .05     | .06     | .07    | .08     | .09       |
| .0            | .0000           | .0013    | .0037                         | .0069                 | .0105      | .0147   | .0192   | .0242  | .0294   | .035      |
| .1            | .0409           | .0470    | .0534                         | .0600                 | .0668      | .0739   | .0811   | .0885  | .0961   | .103      |
| .2            | .1118           | .1199    | .1281                         | .1365                 | .1449      | .1535   | .1623   | .1711  | .1800   | .189      |
| .3            | .1982           | .2074    | .2167                         | .2260                 | .2355      | .2450   | .2546   | .2642  | .2739   | .283      |
| .4            | .2934           | .3032    | .3130                         | .3229                 | .3328      | .3428   | .3527   | .3627  | .3727   | .382      |
| .5            | .393            | .403     | .413                          | .423                  | .433       | .443    | .453    | .462   | .472    | .482      |
| .6            | .492            | .502     | .512                          | .521                  | .531       | .540    | .550    | .559   | .569    | .578      |
| .7            | .587            | .596     | .605                          | .614                  | .623       | .632    | .640    | .649   | .657    | .666      |
| .8            | .674            | .681     | .689                          | .697                  | .704       | .712    | .719    | .725   | .732    | .738      |
| .9            | .745            | .750     | .756                          | .761                  | .766       | .771    | .775    | .779   | .782    | .784      |

| $\frac{D}{d}$ | .00    | .01    | .02    | .03    | .04    | .05    | .06    | .07     | .08     | .09    |
|---------------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|
| .0            | 1.1    | .00007 | .00031 | .00074 | .00138 | .00222 | .00328 | .00455  | .00604  | .00775 |
| .1            | .00967 | .0118  | .0142  | .0167  | .0195  | .0225  | .0257  | .0291   | .0327   | .0366  |
| .2            | .0406  | .0448  | .0492  | .0537  | .0585  | .0634  | .0686  | .0738   | .0793 - | .0849  |
| .3            | .0907  | .0966  | .1027  | .1089  | .1153  | .1218  | .1284  | .1352 - | .1420   | .1490  |
| .4            | .1561  | .1633  | .1705  | .1779  | .1854  | .1929  | .2005  | .2082   | .2160   | .2238  |
| .5            | .232   | .239   | .247   | .255   | .263   | .271   | .279   | .287    | .295    | .303   |
| .6            | .311   | .319   | .327   | .335   | .343   | .350   | .358   | .366    | .373    | .380   |
| .7            | .388   | .395   | .402   | .409   | .416   | .422   | .429   | .435    | .441    | .447   |
| .8            | .453   | .458   | .463   | .468   | .473   | .477   | .481   | .485    | .488    | .491   |
| .9            | .494   | .496   | .497   | .498   | .498   | .498   | .496   | .494    | .489    | .483   |
| 1.0           | .463   |        | 1211   | 1.1.1  |        |        |        |         |         |        |

Table 7-14. Values of K' for Circular Channels in the Formula  $Q = \frac{K'}{n} d^{\frac{5}{5}\frac{1}{2}}$ 

D = depth of water d = diameter of channel







# County of San Diego Hydrology Manual



## Rainfall Isopluvials

#### **<u>100 Year Rainfall Event - 24 Hours</u>**

----- Isopluvial (inches)







This products may contain information from the SANDAG Regional Information System which cannot be reproduced without the written permission of SANDAG.

This product may contain information which has been reproduced with permission granted by Thomas Brothers Maps.

# 3 Miles





#### **Directions for Application:**

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

#### **Application Form:**

(a) Selected frequency <u>100</u> year

(b)  $P_6 = \underline{2.5''}$  in.,  $P_{24} = \underline{4.0''}$ ,  $\frac{P_6}{P_{24}} = \underline{62.5}$  %<sup>(2)</sup> (c) Adjusted  $P_6^{(2)} = \underline{1}$  in.

| (d) t <sub>x</sub> = | _ min.  | see calculations for values of each basin                                         |
|----------------------|---------|-----------------------------------------------------------------------------------|
| (e) I =              | in./hr. | See methodology to see the equations used for Intensity and time of concentration |

# Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6 4.5 1 1.5 2 2.5 3 3.5 4 5 5.5 Duration 1 1 1 1 1 5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 11.86 13.17 14.49 15.81 2.12 3.18 4.24 5.30 6.36 7.42 8.48 9.54 10.60 11.66 12.72 1.68 2.53 3.37 4.21 5.05 5.90 6.74 7.58 10 8.42 9.27 10.1 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46 20 0.93 1.40 1.87 2.33 2.80 3.27 3.73 4.20 5.60 25 4.67 5.13 0.83 1.24 1.66 2.07 2.49 2.90 3.32 3.73 4.15 30 4.56 4.98 40 0.69 1.03 1.38 1.72 2.07 2.41 2.76 3.10 3.45 3.79 4.13 0.90 1.19 1.49 1.79 2.09 2.39 2.69 50 0.60 2.98 3.28 3.58 60 0.53 0.80 1.06 1.33 1.59 1.86 2.12 2.39 2.65 2.92 3.18 90 0.41 0.61 0.82 1.02 1.23 1.43 1.63 1.84 2.04 2.25 2.45 120 0.34 0.51 0.68 0.85 1.02 1.19 1.36 1.53 1.70 1.87 2.04 150 0.29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 1.62 1.76 1.47 180 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.18 1.31 1.44 1.57 0.22 0.33 0.43 0.54 0.65 0.76 0.87 0.98 1.08 240 1.19 1.30 0.19 0.28 0.38 0.47 0.56 0.66 0.75 0.85 0.94 300 1.03 1.13 360 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.84 0.92 1.00



<u>FIGURE</u> **3-1** 

#### APPENDIX A: RATIONAL METHOD AND MODIFIED RATIONAL METHOD

| Lond Hos                         | Runoff Coefficient (C) |  |  |  |  |  |
|----------------------------------|------------------------|--|--|--|--|--|
| Lanu Use                         | Soil Type (1)          |  |  |  |  |  |
| Residential:                     |                        |  |  |  |  |  |
| Single Family                    | 0.55                   |  |  |  |  |  |
| Multi-Units                      | 0.70                   |  |  |  |  |  |
| Mobile Homes                     | 0.65                   |  |  |  |  |  |
| Rural (lots greater than ½ acre) | 0.45                   |  |  |  |  |  |
| Commercial <sup>(2)</sup>        |                        |  |  |  |  |  |
| 80% Impervious                   | 0.85                   |  |  |  |  |  |
| Industrial (2)                   |                        |  |  |  |  |  |
| 90% Impervious                   | 0.95                   |  |  |  |  |  |

#### Table A-1. Runoff Coefficients for Rational Method

#### Note:

<sup>(1)</sup> Type D soil to be used for all areas.

<sup>(2)</sup> Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.

| Actual imperviousness    | =       | 50%  |
|--------------------------|---------|------|
| Tabulated imperviousness | =       | 80%  |
| Revised C = $(50/80)$ x  | (0.85 = | 0.53 |

The values in Table A–1 are typical for urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the City.

### A.1.3. Rainfall Intensity

The rainfall intensity (I) is the rainfall in inches per hour (in/hr.) for a duration equal to the  $T_c$  for a selected storm frequency. Once a particular storm frequency has been selected for design and a  $T_c$  calculated for the drainage area, the rainfall intensity can be determined from the Intensity-Duration-Frequency Design Chart (Figure A-1).



| San Diego County Hydrology Manual | Section: | 3        |
|-----------------------------------|----------|----------|
| Date: June 2003                   | Page:    | 12 of 26 |
| Bute. Vuite 2003                  | 1 480.   | 12 01 20 |

Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres.

Table 3-2 provides limits of the length (Maximum Length  $(L_M)$ ) of sheet flow to be used in hydrology studies. Initial T<sub>i</sub> values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study.

Table 3-2

|       |                                                         |      |                |                |                |                |                |      |                | Basin P | 2-1            |                |                |                |
|-------|---------------------------------------------------------|------|----------------|----------------|----------------|----------------|----------------|------|----------------|---------|----------------|----------------|----------------|----------------|
|       | MAXIMUM OVERLAND FLOW LENGTH (L <sub>M</sub> )Basin E-1 |      |                |                |                |                |                |      |                |         |                |                |                |                |
|       | & INITIAL TIME OF CONCENTRATION (T.)                    |      |                |                |                |                |                |      |                |         |                |                |                |                |
|       | Element*                                                | DU/  |                | 5%             | 1              | %              | 2              | %    | 3              | %       | 59             | %              | 10             | %              |
| % IMP |                                                         | Acre | L <sub>M</sub> | T <sub>i</sub> | L <sub>M</sub> | T <sub>i</sub> | L <sub>M</sub> | Vr   | L <sub>M</sub> | T       | L <sub>M</sub> | T <sub>i</sub> | L <sub>M</sub> | T <sub>i</sub> |
| 0     | Natural                                                 |      | 50             | 13.2           | 70             | 12.5           | 85             | 10.9 | 100            | 10.3    | 100            | 8.7            | 100            | 6.9            |
| 10    | LDR                                                     | 1    | 50             | 12.2           | 70             | 11.5           | 85             | 10.0 | 100            | 9.5     | 100            | 8.0            | 100            | 6.4            |
| 20    | LDR                                                     | 2    | 50             | 11.3           | 70             | 10.5           | 85             | 9.2  | 100            | 8.8     | 100            | 7.4            | 100            | 5.8            |
| 25    | LDR                                                     | 2.9  | 50             | 10.7           | 70             | 10.0           | 85             | 8.8  | 95             | 8.1     | 100            | 7.0            | 100            | 5.6            |
| 30    | MDR                                                     | 4.3  | 50             | 10.2           | 70             | 9.6            | 80             | 8.1  | 95             | 7.8     | 100            | 6.7            | 100            | 5.3            |
| 40    | MDR                                                     | 7.3  | 50             | 9.2            | 65             | 8.4            | 80             | 7.4  | 95             | 7.0     | 100            | 6.0            | 100            | 4.8            |
| 45    | MDR                                                     | 10.9 | 50             | 8.7            | 65             | 7.9            | 80             | 6.9  | 90             | 6.4     | 100            | 5.7            | 100            | 4.5            |
| 50    | MDR                                                     | 14.5 | 50             | 8.2            | 65             | 7.4            | 80             | 6.5  | 90             | 6.0     | 100            | 5.4            | 100            | 4.3            |
| 65    | HDR                                                     | 24   | 50             | 6.7            | 65             | 6.1            | 75             | 5.1  | 90             | 4.9     | 95             | 4.3            | 100            | 3.5            |
| 80    | HDR                                                     | 43   | 50             | 5.3            | 65             | 4.7            | 75             | 4.0  | 85             | 3.8     | 95             | 3.4            | 100            | 2.7            |
| 80    | N. Com                                                  |      | 50             | 5.3            | 60             | 4.5            | 75             | 4.0  | 85             | 3.8     | 95             | 3.4            | 100            | 2.7            |
| 85    | G. Com                                                  |      | 50             | 4.7            | 60             | 4.1            | 75             | 3.6  | 85             | 3.4     | 90             | 2.9            | 100            | 2.4            |
| 90    | O.P./Com                                                |      | 50             | 4.2            | 60             | 3.7            | 70             | 3.1  | 80             | 2.9     | 90             | 2.6            | 100            | 2.2            |
| 90    | Limited I.                                              |      | 50             | 4.2            | 60             | 3.7            | 70             | 3.1  | 80             | 2.9     | 90             | 2.6            | 100            | 2.2            |
| 95    | General I.                                              |      | 50             | 3.7            | 60             | 3.2            | 70             | 2.7  | 80             | 2.6     | 90             | 2.3            | 100            | 1.9            |

\*See Table 3-1 for more detailed description



#### Nomograph for Determination of Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersheds

3-4

# **Channel Report**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 26 2022

#### **Basin E-1 - Asphalt Swale**

|             | Highlighted                                            |                                                                                                                                                                    |
|-------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = 34.88     | Depth (ft)                                             | = 0.10                                                                                                                                                             |
| = 3.40      | Q (cfs)                                                | = 4.602                                                                                                                                                            |
| = Composite | Area (sqft)                                            | = 1.65                                                                                                                                                             |
|             | Velocity (ft/s)                                        | = 2.79                                                                                                                                                             |
|             | Wetted Perim (ft)                                      | = 34.40                                                                                                                                                            |
| Q vs Depth  | Crit Depth, Yc (ft)                                    | = 0.12                                                                                                                                                             |
| = 10        | Top Width (ft)                                         | = 34.40                                                                                                                                                            |
|             | EGL (ft)                                               | = 0.22                                                                                                                                                             |
|             | = 34.88<br>= 3.40<br>= Composite<br>Q vs Depth<br>= 10 | Highlighted= 34.88Depth (ft)= 3.40Q (cfs)= CompositeArea (sqft)<br>Velocity (ft/s)<br>Wetted Perim (ft)Q vs DepthCrit Depth, Yc (ft)= 10Top Width (ft)<br>EGL (ft) |

(Sta, El, n)-(Sta, El, n)... ( 0.00, 35.00)-(21.50, 34.88, 0.013)-(43.00, 35.00, 0.013)



# **Channel Report**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 26 2022

#### Basin P-1 - 2.5' Curb & Gutter Analysis

| User-defined     |             | Highlighted         |         |
|------------------|-------------|---------------------|---------|
| Invert Elev (ft) | = 39.56     | Depth (ft)          | = 0.15  |
| Slope (%)        | = 3.00      | Q (cfs)             | = 0.611 |
| N-Value          | = Composite | Area (sqft)         | = 0.19  |
|                  |             | Velocity (ft/s)     | = 3.27  |
| Calculations     |             | Wetted Perim (ft)   | = 2.80  |
| Compute by:      | Q vs Depth  | Crit Depth, Yc (ft) | = 0.21  |
| No. Increments   | = 10        | Top Width (ft)      | = 2.73  |
|                  |             | EGL (ft)            | = 0.32  |
|                  |             |                     |         |

(Sta, El, n)-(Sta, El, n)... ( 0.00, 40.06)-(0.50, 39.56, 0.013)-(2.50, 39.69, 0.013)-(11.50, 40.00, 0.013)



Sta (ft)

# **Channel Report**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Jan 24 2022

#### Basin P-2 - 4' Gutter Analysis

| User-defined     |             | Highlighted         |         |
|------------------|-------------|---------------------|---------|
| Invert Elev (ft) | = 35.43     | Depth (ft)          | = 0.13  |
| Slope (%)        | = 1.20      | Q (cfs)             | = 0.520 |
| N-Value          | = Composite | Area (sqft)         | = 0.28  |
|                  |             | Velocity (ft/s)     | = 1.87  |
| Calculations     |             | Wetted Perim (ft)   | = 4.81  |
| Compute by:      | Q vs Depth  | Crit Depth, Yc (ft) | = 0.16  |
| No. Increments   | = 10        | Top Width (ft)      | = 4.80  |
|                  |             | EGL (ft)            | = 0.19  |
|                  |             |                     |         |

(Sta, El, n)-(Sta, El, n)... ( 0.00, 36.10)-(0.50, 35.60, 0.013)-(7.50, 35.56, 0.013)-(9.50, 35.43, 0.013)-(11.50, 35.56, 0.013)-(18.50, 35.83, 0.013)



Sta (ft)

Project Name: KA Enteprises C-Store and Car Wash

#### THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING



Project Name: KA Enteprises C-Store and Car Wash

# Attachment 6 Geotechnical and Groundwater Investigation Report

Attach project's geotechnical and groundwater investigation report. Refer to Appendix C.4 to determine the reporting requirements.





Project Name: KA Enteprises C-Store and Car Wash

### THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING





#### PRELIMINARY GEOTECHNICAL EVALUATION For PROPOSED CONVENIENCE STORE AND CARWASH 3060 CARMEL VALLEY ROAD SAN DIEGO, CALIFORNIA 92130

**PREPARED FOR** 

KA ENTERPRISES 5820 OBERLIN DRIVE SUITE 201 SAN DIEGO, CALIFORNIA 92121

PREPARED BY

GEOTEK, INC. 1384 POINSETTIA AVENUE, SUITE A VISTA, CALIFORNIA 92081

PROJECT NO. 3778-SD

JUNE 23, 2022



GeoTek, Inc. 1384 Poinsettia Avenue, Suite A Vista, CA 92081-8505 (760) 599-0509 Office (760) 599-0593 Fax www.geotekusa.com

> June 23, 2022 Project No. 3778-SD

#### **KA Enterprises**

5820 Oberlin Drive Suite 201 San Diego, California 92121

Attention: Mr. Eugene Marini

Subject: Preliminary Geotechnical Evaluation Proposed Convenience Store and Carwash 3060 Carmel Valley Road San Diego, California 92130

Dear Mr. Marini:

GeoTek, Inc. (GeoTek) is pleased to provide herein the results of a preliminary geotechnical evaluation for the subject project located in the City of San Diego, California. This report presents the results of GeoTek's evaluation and provides preliminary geotechnical recommendations for earthwork, foundation design, and construction. Based upon review, site development appears feasible from a geotechnical viewpoint provided that the recommendations included herein are incorporated into the design and construction phases of site development.

The opportunity to be of service is sincerely appreciated. If you should have any questions, please do not hesitate to call GeoTek.

Respectfully submitted, **GeoTek, Inc.** 





Farhad Bastani RCE 79962 Project Engineer



Christopher D. Livesey

CEG 2733 Associate Vice President

#### TABLE OF CONTENTS

| ١. | PURPOS         | E AND SCOPE OF SERVICES                              | . I      |
|----|----------------|------------------------------------------------------|----------|
| 2. | SITE DES       | SCRIPTION AND PROPOSED DEVELOPMENT                   | . I      |
|    | 2.1            | SITE DESCRIPTION                                     | 1        |
|    | 2.2            | PROPOSED DEVELOPMENT                                 | 1        |
| 3. | FIELD EX       | PLORATION AND LABORATORY TESTING                     | . 2      |
|    | 21             |                                                      | 2        |
|    | 3.1            | I ABORATORY TESTING                                  | . 2      |
|    | ed all         |                                                      |          |
| 4. | GEOLOC         | GIC AND SOILS CONDITIONS                             | . 3      |
|    | 4.1            | REGIONAL SETTING                                     | 3        |
|    | 4.2            | EARTH MATERIALS                                      | 3        |
|    | 4.2.1          | Artificial Fill (Map Symbol Af)                      | 3        |
|    | 4.2.2          | Young Alluvial Flood-Plain Deposits (Map Symbol Qya) | 3        |
|    | 4.2.3          | Forrey Sandstone (Map Symbol It)                     | 4        |
|    | 4.5            | SURFACE WATER AND GROUNDWATER                        | 4<br>1   |
|    | 4.3.1          | Surjuce vvuler                                       | +<br>4   |
|    | 7.J.Z<br>4 A   | FARTHOLIAKE HAZARDS                                  | . 7      |
|    | T.T<br>4 4 1   | Surface Fault Rubture                                | . 4      |
| F  | CONCLU         |                                                      |          |
| 5. | CONCLU         |                                                      | , 3<br>, |
|    | 5.1            |                                                      | כ<br>ב   |
|    | 3.Z<br>534     | Conoral                                              |          |
|    | 2.2.1<br>5 2 7 | Site Clearing and Preharation                        | .5       |
|    | 573            | Remedial Grading                                     | 5        |
|    | 52.4           | Engineered Fill                                      | 6        |
|    | 5.2.5          | Excavation Characteristics                           | 6        |
|    | 5.2.6          | Shrinkage and Bulking                                | 6        |
|    | 5.2.7          | Trench Excavations and Backfill                      | 6        |
|    | 5.3            | DESIGN RECOMMENDATIONS                               | 7        |
|    | 5.3.1          | Stormwater Infiltration                              | 7        |
|    | 5.3.2          | Foundation Design Criteria                           | 7        |
|    | 5.3.3          | Under Slab Moisture Membrane                         | 9        |
|    | 5.3.4          | Miscellaneous Foundation Recommendations             | 10       |
|    | 5.3.5          | Foundation Setbacks                                  | 10       |
|    | 5.3.6          | Seismic Design Parameters                            |          |
|    | 3.J./<br>530   | Soil Suifate Content                                 | ::       |
|    | 2.2.0          | Preliminary Pavement Design                          | 11       |
|    | 5.3.7<br>5.4   | RETAINING WALL DESIGN AND CONSTRUCTION               | 12       |
|    | 5.4<br>E.A. (  | General Design Criteria                              | 13       |
|    | 547            | Restrained Retaining Walls                           | 14       |
|    | 5.4.3          | Wall Backfill and Drainage                           | 14       |
| 6. | CONCRE         |                                                      | 15       |
|    | 6.1 Geni       | ERAL CONCRETE FLATWORK                               | 15       |
|    | 611            | Exterior Concrete Slabs and Sidewalks                | 15       |
|    | *****          |                                                      |          |



#### TABLE OF CONTENTS

|    | 6.1.2 Concrete Performance                                    | 15 |
|----|---------------------------------------------------------------|----|
| 7. | POST CONSTRUCTION CONSIDERATIONS                              | 16 |
|    | 7.1 LANDSCAPE MAINTENANCE AND PLANTING                        | 16 |
|    | 7.2 DRAINAGE<br>7.3 PLAN REVIEW AND CONSTRUCTION OBSERVATIONS |    |
| 8. | LIMITATIONS                                                   |    |
| 9. | SELECTED REFERENCES                                           |    |

#### ENCLOSURES

<u>Figure 1</u> – Site Location Map <u>Figure 2</u> – Geotechnical Map <u>Figure 3</u> – Geotechnical Cross-Section AA <u>Figure 2</u> – Geotechnical Cross-Section BB

<u>Appendix A</u> – Boring Logs

<u>Appendix B</u> – Results of Laboratory Testing

Appendix C – General Earthwork Grading Guidelines



### I. PURPOSE AND SCOPE OF SERVICES

The purpose of this study was to evaluate the geotechnical conditions of the project site. Services provided for this study included the following:

- Research and review of available geologic and geotechnical data, and general information pertinent to the site.
- Excavation of six exploratory borings and collection of relatively undisturbed ring and bulk soil samples for subsequent laboratory testing.
- Laboratory testing of the soil samples collected during the field investigation.
- Compilation of this geotechnical report which presents GeoTek's findings of pertinent site geotechnical conditions and geotechnical recommendations for site development.

### 2. SITE DESCRIPTION AND PROPOSED DEVELOPMENT

#### 2.1 SITE DESCRIPTION

The subject property is located at the address of 3060 Carmel Valley Road, San Diego, California 92130 (see Figure 1). The subject site is bounded to the north by a descending driveway, to the west by the I-5 freeway, to the east by Old El Camino Real, and to the south by Carmel Valley Road. The site is currently improved with a gas station in the southeast, a True-zero Hydrogen Fuel station in the northeast, a convenience store in the west, a few parking spaces in the southwest, and a vacant asphalt pad in the north which is enclosed by a metal fence. Topography relief across the entire site ranges from 46 to 33 feet above mean sea level (msl). Surface drainage is directed towards the south.

#### 2.2 PROPOSED DEVELOPMENT

Based on the conceptual grading plan provided by Barghausen Consulting Engineers, Inc. (BCEI, 2021), proposed improvements include demolition of the existing store facility (fuel canopy and underground storage tanks will remain) and a new convenience store and new car wash. Multiple vacuum stalls with be constructed along with additional parking spaces and a car wash driveway entrance in the north, off Old El Camino Real. A proposed BMP stormwater tank is anticipated



in the southwest portion of the subject site. Assumed improvements for the building pads are considered to include a single-story commercial building, underground wet and dry utilities and some landscaping. Cuts and fills are proposed to be within a few feet of existing grades.

It is anticipated that the convenience store and car wash will be of wood frame construction and will be supported by conventional shallow foundations (continuous and isolated pad) and a conventional slab on-grade or raised-wood floor. For the purposes of this report, it is assumed maximum column and wall loads will be approximately 25 kips and 2 kips per foot, respectively. Once actual loads are known that information should be provided to GeoTek to determine if modifications to the recommendations presented in this report are warranted.

As site planning progresses and additional or revised plans become available, they should be provided to GeoTek for review and comment. If plans vary significantly, additional geotechnical field exploration, laboratory testing and engineering analyses may be necessary to provide specific earthwork recommendations and geotechnical design parameters for actual site development plans.

### 3. FIELD EXPLORATION AND LABORATORY TESTING

#### 3.1 FIELD EXPLORATION

GeoTek's field study, conducted on April 8<sup>th</sup>, 2022, consisted of a site reconnaissance and excavation of six exploratory borings with a truck mounted drill rig. Borings B-I through B-6 were drilled to depths ranging between 15 to 30 feet below existing grade. A representative from GeoTek visually logged the test borings, collected ring, standard penetration test (SPT), and loose bulk soil samples for laboratory analysis, and transported the samples to GeoTek's laboratory. Approximate locations of the exploratory borings and percolation test holes are presented on the Geotechnical Map, Figure 2. A description of material encountered in the test pits is included in the Boring Logs in Appendix A.

#### 3.2 LABORATORY TESTING

Laboratory testing was performed on ring, SPT, and bulk soil samples collected during the field explorations. The purpose of the laboratory testing was to evaluate their physical and chemical properties for use in engineering design and analysis. Results of the laboratory testing program, along with a brief description and relevant information regarding testing procedures, are included in Appendix B.



#### 4. GEOLOGIC AND SOILS CONDITIONS

#### 4.1 REGIONAL SETTING

The subject property is located in the Peninsular Ranges geomorphic province. The Peninsular Ranges province is one of the largest geomorphic units in western North America. It extends roughly 975 miles from the north and northeasterly adjacent the Transverse Ranges geomorphic province to the peninsula of Baja California. This province varies in width from about 30 to 100 miles. It is bounded on the west by the Pacific Ocean, on the south by the Gulf of California and on the east by the Colorado Desert Province.

The Peninsular Ranges are essentially a series of northwest-southeast oriented fault blocks. Several major fault zones are found in this province. The Elsinore Fault zone and the San Jacinto Fault zones trend northwest-southeast and are found in the near the middle of the province. The San Andreas Fault zone borders the northeasterly margin of the province. The Newport-Inglewood-Rose Canyon Fault zone meanders the southwest margin of the province. No faults are shown in the immediate site vicinity on the map reviewed for the area.

#### 4.2 EARTH MATERIALS

A brief description of the earth materials encountered during the current subsurface exploration is presented in the following sections. Based on the field observations and review of published geologic maps the subject site is locally underlain by artificial fill and young alluvial flood plain deposits over Torrey Sandstone.

#### 4.2.1 Artificial Fill (Map Symbol Af)

Artificial fill was encountered in all borings to a maximum depth of 5 feet from existing grades. The artificial fill consisted of silty fine to medium sand, dry, very loose, with some surficial vegetation and roots in the upper 6 inches for some of the borings (SM soil type). The fill was observed to increase in moisture with depth.

#### 4.2.2 Young Alluvial Flood-Plain Deposits (Map Symbol Qya)

Young alluvial deposits were encountered in all the exploratory borings at depths ranging between 1.5 and 29 feet below existing grades. The alluvial deposits consisted of silty fine to medium sand, light brown to dark brown in color, damp to saturated, loose to very dense with depth, and some surficial vegetation and roots in the upper 6 inches (SM soil type). The density and moisture of the deposits were observed to increase with depth until sandstone material was encountered or the hole was terminated. Localized perched groundwater tables were



encountered in borings B-2 through B-6 within this earth material at depths ranging between 12 to 25 feet below existing grades.

#### 4.2.3 Torrey Sandstone (Map Symbol Tt)

Torrey Sandstone was encountered in boring, B-5, at a depth of 29 feet below existing grades. This material consisted of sandstone, light brown with green siltstone gravel, slightly moist, and very dense (SP soil type based upon USCS). The formation was found to be slightly weathered at the upper half foot but became less weathered with depth.

#### 4.3 SURFACE WATER AND GROUNDWATER

#### 4.3.1 Surface Water

Surface water was not observed during the recent site exploration. If encountered during earthwork construction, surface water on this site will most likely be the result of precipitation. Overall site area drainage is in a southeastern direction. Provisions for surface drainage will need to be accounted for by the project civil engineer.

#### 4.3.2 Groundwater

Perched groundwater was encountered during exploration of the subject site in Borings B-2 through B-6 at depths ranging between 12 and 25 feet below existing grades. Based on the anticipated depth of removals and the underlying sandstone formation, groundwater is not anticipated to be a factor in site development.

#### 4.4 EARTHQUAKE HAZARDS

#### 4.4.1 Surface Fault Rupture

The geologic structure of the entire southern California area is dominated mainly by northwesttrending faults associated with the San Andreas system. The site is not in a seismically active region. No active or potentially active fault is known to exist at this site nor is the site situated within an *"Alquist-Priolo"* Earthquake Fault Zone or a Special Studies Zone (Bryant and Hart, 2007). No faults transecting the site were identified on the readily available geologic maps reviewed. The nearest known active fault is the Newport Inglewood-Rose Canyon fault located about 2.63 miles to the southeast of the site.



#### 5. CONCLUSIONS AND RECOMMENDATIONS

#### 5.1 GENERAL

Development of the site appears feasible from a geotechnical viewpoint provided that the following recommendations are incorporated in the design and construction phases of the development. The following sections present general recommendations for currently anticipated site development plans.

#### 5.2 EARTHWORK CONSIDERATIONS

#### 5.2.1 General

Earthwork and grading should be performed in accordance with the applicable grading ordinances of the City of San Diego, the 2019 (or current) California Building Code (CBC), and recommendations contained in this report. The Grading Guidelines included in Appendix C outline general procedures and do not anticipate all site-specific situations. In the event of conflict, the recommendations presented in the text of this report should supersede those contained in Appendix C.

#### 5.2.2 Site Clearing and Preparation

Site preparation should start with removal of existing improvements conflict with the proposed improvements, deleterious materials, vegetations, and trees/shrubs in the proposed improvement areas. These materials should be disposed of properly off site. Any existing underground improvements, utilities and trench backfill should also be removed or be further evaluated as part of site development operations.

#### 5.2.3 Remedial Grading

Prior to placement of fill materials and in all structural areas, the upper variable, potentially compressible materials should be removed. Removals should include at a minimum the upper 3 feet of artificial fill or young alluvium below existing grade or proposed grade, or 2 ft below bottom of footing, whichever is deeper. The bottom of the removals should be observed by a GeoTek representative prior to processing the bottom for receiving placement of compacted fills. Depending on actual field conditions encountered during grading, locally deeper and/or shallower areas of removal may be necessary.

Prior to fill placement, the bottom of all removals should be scarified to a minimum depth of six (6) inches, moisture conditioned to slightly above optimum moisture content, and then compacted to at least 90% of the soil's maximum dry density as determined by ASTM D1557 test



procedures. The resultant voids from remedial grading/over-excavation should be filled with materials placed in general accordance with Section 5.2.4 Engineered Fill of this report.

#### 5.2.4 Engineered Fill

Onsite materials are generally considered suitable for reuse as engineered fill provided they are free from vegetation, roots, debris, and rock/concrete or hard lumps greater than six (6) inches in maximum dimension. The earthwork contractor should have the proposed excavated materials to be used as engineered fill at this project approved by the soils engineer prior to placement.

Engineered fill materials should be moisture conditioned to at or above optimum moisture content and compacted in horizontal lifts not exceeding 8 inch in loose thickness to a minimum relative compaction of 90% as determined by ASTM D1557 test procedures.

If fill is being placed on slopes steeper than 5:1 (horizontal : vertical), the fill should be properly benched into the existing slopes and a sufficient size keyway shall be constructed in accordance with grading guidelines presented in Appendix C.

#### 5.2.5 Excavation Characteristics

Excavations in the onsite materials can generally be accomplished with medium-duty earthmoving or excavating equipment in good operating condition.

#### 5.2.6 Shrinkage and Bulking

Several factors will impact earthwork balancing on the site, including undocumented fill shrinkage, trench spoil from utilities and footing excavations, as well as the accuracy of topography. Shrinkage and bulking are largely dependent upon the degree of compactive effort achieved during construction. For planning purposes, a shrinkage factor of 5 percent may be considered for fills generated from alluvial and colluvial sources. Subsidence should not be a factor on the subject site due to the proposed improvements and proposed improvements and recommendations presented herein are completed as recommended.

#### 5.2.7 Trench Excavations and Backfill

Temporary excavations within the onsite materials should be stable at 1:1 inclinations for short durations during construction, and where cuts do not exceed 10 feet in height. Temporary cuts to a maximum height of 4 feet can be excavated vertically. The contractor should anticipate encounter caving alluvial soils.

Trench excavations should conform to Cal-OSHA regulations. The contractor should have a competent person, per OSHA requirements, on site during construction to observe conditions and to make the appropriate recommendations.



Utility trench backfill should be compacted to at least 90% relative compaction of the maximum dry density as determined by ASTM D1557 test procedures. Under-slab trenches should also be compacted to project specifications.

Onsite materials may not be suitable for use as bedding material but should be suitable as backfill provided particles larger than 6± inches are removed.

Compaction should be achieved with a mechanical compaction device. Ponding or jetting of trench backfill is not recommended. If backfill soils have dried out, they should be thoroughly moisture conditioned prior to placement in trenches.

#### 5.3 DESIGN RECOMMENDATIONS

#### 5.3.1 Stormwater Infiltration

Many factors control infiltration of surface waters into the subsurface, such as consistency of native soils and bedrock, geologic structure, fill consistency, material density differences, and existing groundwater conditions. Current conceptual site plans indicate a proposed BMP stormwater tank in the southwest portion of the subject site. Due to the historic site use and proposed continued use as a fuel facility (Hydrocarbon) infiltration of surface waters is not a recommendation.

#### 5.3.2 Foundation Design Criteria

Preliminary foundation design criteria, in general conformance with the 2019 CBC, are presented herein. These are typical design criteria and are not intended to supersede the design by the structural engineer. The preliminary recommendations presented below.

Based on visual classification of materials encountered onsite and as verified by laboratory testing, site soils are anticipated to exhibit a "very low" (EI < 20) expansion index per ASTM D4829. The following criteria for design of foundations are preliminary. Additional laboratory testing of the samples obtained during grading should be performed and final recommendations should be based on as-graded soil conditions.



| MINIMUM DESIGN PARAMETERS FOR CONVENTIONALLY REINFORCED<br>FOUNDATIONS                                            |                                                                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| Expansion Potential                                                                                               | "Very Low" Expansion Potential (El $\leq$ 20)                                             |  |  |
| Foundation Embedment Depth or<br>Minimum Perimeter Beam Depth<br>(inches below lowest adjacent<br>finished grade) | 12 - Inches                                                                               |  |  |
| Minimum Foundation Width for continuous / perimeter footings*                                                     | 12 - Inches                                                                               |  |  |
| Minimum Foundation Width for<br>isolated / column footings*                                                       | 18 – Inches (Square)                                                                      |  |  |
| Minimum Foundation Embedment<br>for Interior Foundations                                                          | 12- Inches                                                                                |  |  |
| Minimum Slab Thickness (actual)                                                                                   | 4 inches                                                                                  |  |  |
| Minimum Slab Reinforcing                                                                                          | No. 3 rebar 16" on-center, each way, placed in the middle one-third of the slab thickness |  |  |
| Minimum Footing Reinforcement                                                                                     | Two No. 4 reinforcing bars,<br>two top and two bottom                                     |  |  |
| Pre-saturation of Subgrade Soil<br>(percent of optimum moisture<br>content)                                       | Minimum 100% to a depth of 12 inches                                                      |  |  |

\*Code minimums per Table 1809.7 of the 2019 CBC should be complied with.

It should be noted that the above recommendations are based on soil support characteristics only. The structural engineer should design the slab and beam reinforcement based on actual loading conditions.

The following recommendations should be implemented into the design:

- An allowable bearing capacity of 2,000 pounds per square foot (psf) may be considered for design of continuous and perimeter footings that meet the depth and width requirements in the table above. This value may be increased by 300 psf for each additional 12 inches in depth and 300 psf for each additional 12 inches in width to a maximum value of 3,000 psf. Additionally, an increase of one-third may be applied when considering short-term live loads (e.g., seismic and wind loads).
- Structural foundations may be designed in accordance with 2019 CBC, and to withstand a total settlement of I inch and maximum differential settlement of one-



half of the total settlement over a horizontal distance of 40 feet. Seismically induced settlement is considered to be minimal.

- The passive earth pressure may preliminarily be computed as an equivalent fluid having a density of 350 psf per foot of depth, to a maximum earth pressure of 2,000 psf for footings founded on engineered fill. A coefficient of friction between soil and concrete of 0.35 may be used with dead load forces. When combining passive pressure and frictional resistance, the passive pressure component should be reduced by one-third.
- A grade beam should be utilized across large entrances. The beam should be a minimum of 12 inches wide and be at the same elevation as the bottom of the adjoining footings.

#### 5.3.3 Under Slab Moisture Membrane

A moisture and vapor retarding system should be placed below slabs-on-grade where moisture migration through the slab is undesirable. Guidelines for these are provided in the 2019 California Green Building Standards Code (CALGreen) Section 4.505.2 and the 2019 CBC Section 1907.1

It should be realized that the effectiveness of the vapor retarding membrane can be adversely impacted as a result of construction related punctures (e.g., stake penetrations, tears, punctures from walking on the vapor retarder placed atop the underlying aggregate layer, etc.). These occurrences should be limited as much as possible during construction. Thicker membranes are generally more resistant to accidental puncture that thinner ones. Products specifically designed for use as moisture/vapor retarders may also be more puncture resistant. Although the CBC specifies a 6-mil vapor retarder membrane, it is GeoTek's opinion that a minimum 10 mil membrane with joints properly overlapped and sealed should be considered, unless otherwise specified by the slab design professional.

Moisture and vapor retarding systems are intended to provide a certain level of resistance to vapor and moisture transmission through the concrete, but do not eliminate it. The acceptable level of moisture transmission through the slab is to a large extent based on the type of flooring used and environmental conditions. Ultimately, the vapor retarding system should be comprised of suitable elements to limit migration of water and reduce transmission of water vapor through the slab to acceptable levels. The selected elements should have suitable properties (i.e., thickness, composition, strength, and permeability) to achieve the desired performance level.

Moisture retarders can reduce, but not eliminate, moisture vapor rise from the underlying soils up through the slab. Moisture retarder systems should be designed and constructed in


accordance with applicable American Concrete Institute, Portland Cement Association, Post-Tensioning Concrete Institute, ASTM and California Building Code requirements and guidelines.

GeoTek does not practice in the field of moisture vapor transmission evaluation/migration since that practice is not a geotechnical discipline. Therefore, GeoTek recommends that a qualified person, such as the flooring contractor, structural engineer, architect, and/or other experts specializing in moisture control within the building be consulted to evaluate the general and specific moisture and vapor transmission paths and associated potential impact on the proposed construction. That person (or persons) should provide recommendations relative to the slab moisture and vapor retarder systems and for migration of potential adverse impact of moisture vapor transmission on various components of the structures, as deemed appropriate. In addition, the recommendations in this report and GeoTek's services in general are not intended to address mold prevention; since GeoTek, along with geotechnical consultants in general, do not practice in the area of mold prevention. If specific recommendations addressing potential mold issues are desired, then a professional mold prevention consultant should be contacted.

#### 5.3.4 Miscellaneous Foundation Recommendations

- To reduce moisture penetration beneath the slab on grade areas, utility trenches should be backfilled with engineered fill, lean concrete, or concrete slurry where they intercept the perimeter footing or thickened slab edge.
- Spoils from the footing excavations should not be placed in the slab-on-grade areas unless properly moisture-conditioned, compacted and tested. The excavations should be free of loose/sloughed materials and be neatly trimmed at the time of concrete placement.

#### 5.3.5 Foundation Setbacks

Where applicable, the following setbacks should apply to all foundations. Any improvements not conforming to these setbacks may be subject to lateral movements and/or differential settlements:

- The outside bottom edge of all footings should be set back a minimum of H/3 (where H is the slope height) from the face of any descending slope. The setback should be at least 7 feet and need not exceed 40 feet.
- The bottom of all footings for structures near retaining walls should be deepened so as to extend below a 1:1 projection upward from the bottom inside edge of the wall



stem. This applies to the existing retaining walls along the perimeter if they are to remain.

• The bottom of any existing foundations for structures should be deepened to extend below a 1:1 projection upward from the bottom of the nearest excavation.

#### 5.3.6 Seismic Design Parameters

The site is located at approximately 33.2440 degrees west latitude and -117.2658 degrees north longitude. Site spectral accelerations (Ss and SI), for 0.2 and 1.0 second periods for a risk targeted two (2) percent probability of exceedance in 50 years (MCER) were determined using the web interface provided by SEAOC/OSHPD (<u>https://seismicmaps.org</u>) to access the USGS Seismic Design Parameters. Due to the apparent density of the underlying fill material, a Site Class "D" is considered appropriate for this site. The results, based on NEHRP-2015 and the 2019 CBC, are presented in the following table:

| SITE SEISMIC PARAMETERS                                                                                 |        |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|--|--|
| Mapped 0.2 sec Period Spectral Acceleration, Ss                                                         | 1.169g |  |  |  |  |  |  |  |  |  |
| Mapped 1.0 sec Period Spectral Acceleration, SI                                                         | 0.414g |  |  |  |  |  |  |  |  |  |
| Site Coefficient for Site Class "D", Fa                                                                 | 1.032  |  |  |  |  |  |  |  |  |  |
| Site Coefficient for Site Class "D", Fv                                                                 | 1.886  |  |  |  |  |  |  |  |  |  |
| Maximum Considered Earthquake (MCE <sub>R</sub> ) Spectral<br>Response Acceleration for 0.2 Second, SMs | I.207g |  |  |  |  |  |  |  |  |  |
| Maximum Considered Earthquake (MCE <sub>R</sub> ) Spectral<br>Response Acceleration for 1.0 Second, SMI | 0.781g |  |  |  |  |  |  |  |  |  |
| 5% Damped Design Spectral Response<br>Acceleration Parameter at 0.2 Second, SDS                         | 0.805g |  |  |  |  |  |  |  |  |  |
| 5% Damped Design Spectral Response<br>Acceleration Parameter at I second, SDI                           | 0.521g |  |  |  |  |  |  |  |  |  |
| Site Modified Peak Ground Acceleration (PGA <sub>M</sub> )                                              | 0.577g |  |  |  |  |  |  |  |  |  |
| Seismic Design Category                                                                                 | D      |  |  |  |  |  |  |  |  |  |

#### 5.3.7 Soil Sulfate Content

Sulfate content test results indicate water soluble sulfate is less than 0.1 percent by weight, which is considered "S0" as per Table 19.3.1.1 of ACI 318-14. Based upon the test results, no special recommendations for concrete are required for this project due to soil sulfate exposure.

#### 5.3.8 Preliminary Pavement Design

Traffic indices have not been provided during this stage of site planning. In addition, site conditions have not been graded to a final design to evaluate specific pavement subgrade



conditions. Therefore, the minimum structural sections based on the City of San Diego's Standard Drawings Criteria (City of San Diego, 2016) are presented below.

| PRELIMINARY ASPHALT PAVEMENT STRUCTURAL SECTION FOR |                                               |                                           |  |  |  |  |
|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------|--|--|--|--|
|                                                     | SUBJECT SITE                                  |                                           |  |  |  |  |
| Design Criteria                                     | Asphaltic Concrete (AC)<br>Thickness (inches) | Aggregate Base (AB)<br>Thickness (inches) |  |  |  |  |
| Local (Low Volume Road)                             | 3.0                                           | 5.0                                       |  |  |  |  |
| Local (Residential)                                 | 3.0                                           | 5.0                                       |  |  |  |  |

As noted in the Standard Drawings document, actual structural pavement design is to be determined by the geotechnical engineer's testing (R-Value) of the 12" material located immediately below the first layer of base, or pavement. Thus, the actual R-Value of the subgrade soils can only be determined at the completion of grading for street subgrades and the above values are subject to change based on laboratory testing of the as-graded soils near subgrade elevations.

Asphalt concrete and aggregate base should conform to current Caltrans Standard Specifications Section 39 and 26-1.02, respectively. As an alternative, asphalt concrete can conform to Section 203-6 of the current Standard Specifications for Public Work (Green Book). Crushed aggregate base or crushed miscellaneous base can conform to Section 200-2.2 and 200-2.4 of the Green Book, respectively. Pavement base should be compacted to at least 95 percent of the ASTM D1557 laboratory maximum dry density as determined by ASTM D 1557 test procedures

All pavement installation, including preparation and compaction of subgrade, compaction of base material, placement and rolling of asphaltic concrete, should be done in accordance with the City of San Diego specifications, and under the observation and testing of GeoTek and a City Inspector where required. Jurisdictional minimum compaction requirements in excess of the aforementioned minimums may govern.

# 5.3.9 Portland Cement Concrete (PCC)

As an option, Portland Cement concrete (PCC) pavements could also be used at the site for the pavement areas. Based on the traffic loading provided, the following recommended minimum PCC pavement section is provided for these areas:

6 Inches Portland Cement Concrete (PCC) over6 Inches Aggregate Base (AB) over12-inches compacted subgrade to 95% per ASTM D 1557



For the PCC options, it is recommended concrete having a minimum 28-day flexural strength of 650 psi be used. A maximum joint spacing of 15 feet is also recommended.

### 5.4 RETAINING WALL DESIGN AND CONSTRUCTION

#### 5.4.1 General Design Criteria

Preliminary grading plans are not yet available. If retaining walls are added at a later date, the recommendations presented herein may apply to typical masonry or concrete vertical retaining walls to a maximum height of 6 feet. The 2019 CBC only requires the additional earthquake induced lateral force be considered on retaining walls in excess of six (6) feet in height. Therefore, additional review and recommendations should be requested for higher walls.

Retaining wall foundations embedded a minimum of 18 inches into engineered fill or dense formational materials should be designed using an allowable bearing capacity of 2,000 psf. This value may be increased by 300 psf for each additional 12 inches in depth and 300 psf for each additional 12 inches in width to a maximum value of 3,000 psf. An increase of one-third may be applied when considering short-term live loads (e.g., seismic and wind loads). The passive earth pressure may be computed as an equivalent fluid having a density of 350 psf per foot of depth, to a maximum earth pressure of 3,500 psf. A coefficient of friction between soil and concrete of 0.35 may be used with dead load forces. When combining passive pressure and frictional resistance, the passive pressure component should be reduced by one-third.

An equivalent fluid pressure approach may be used to compute the horizontal active pressure against the wall. The appropriate fluid unit weights are given in the table below for specific slope gradients of retained materials utilizing on site materials.

| Surface Slope of          | Equivalent Fluid Pressure |
|---------------------------|---------------------------|
| <b>Retained Materials</b> | (PCF)                     |
| (H:V)                     | Select Backfill*          |
| Level                     | 40                        |
| 2:1                       | 65                        |

\*Select backfill should consist of approved materials with an  $El \leq 20$  and should be provided throughout the active zone.

The above equivalent fluid weights do not include other superimposed loading conditions such as expansive soil, vehicular traffic, structures, seismic conditions or adverse geologic conditions.



# 5.4.2 Restrained Retaining Walls

Any retaining wall that will be restrained prior to placing backfill or walls that have male or reentrant corners should be designed for at-rest soil conditions using an equivalent fluid pressure of 65 pcf (select backfill), plus any applicable surcharge loading. For areas having male or reentrant corners, the restrained wall design should extend a minimum distance equal to twice the height of the wall laterally from the corner, or as otherwise determined by the structural engineer.

#### 5.4.3 Wall Backfill and Drainage

Wall backfill should include a minimum one (1) foot wide section of  $\frac{3}{4}$  to 1-inch clean crushed rock (or approved equivalent). The rock should be placed immediately adjacent to the back of wall and extend up from the backdrain to within approximately 12 inches of finish grade. The upper 12 inches should consist of compacted onsite materials. If the walls are designed using the "select" backfill design parameters, then the "select" materials shall be placed within the active zone as defined by a 1:1 (H:V) projection from the back of the retaining wall footing up to the retained surface behind the wall. Presence of other materials might necessitate revision to the parameters provided and modification of wall designs.

The backfill materials should be placed in lifts no greater than 8-inches in thickness and compacted to a minimum of 90% of the maximum dry density as determined in accordance with ASTM Test Method D 1557. Proper surface drainage needs to be provided and maintained. Water should not be allowed to pond behind retaining walls. Waterproofing of site walls should be performed where moisture migration through the wall is undesirable.

Retaining walls should be provided with an adequate pipe and gravel back drain system to reduce the potential for hydrostatic pressures to develop. A 4-inch diameter perforated collector pipe (Schedule 40 PVC, or approved equivalent) in a minimum of one (1) cubic foot per lineal foot of 3/8 to one (1) inch clean crushed rock or equivalent, wrapped in filter fabric should be placed near the bottom of the backfill and be directed (via a solid outlet pipe) to an appropriate disposal area.

As an alternative to the drain, rock and fabric, a pre-manufactured wall drainage product (example: Mira Drain 6000 or approved equivalent) may be used behind the retaining wall. The wall drainage product should extend from the base of the wall to within two (2) feet of the ground surface. The subdrain should be placed in direct contact with the wall drainage product.

Drain outlets should be maintained over the life of the project and should not be obstructed or plugged by adjacent improvements.



# 6. CONCRETE FLATWORK

### 6.1 GENERAL CONCRETE FLATWORK

#### 6.1.1 Exterior Concrete Slabs and Sidewalks

Exterior concrete slabs, sidewalks and driveways should be designed using a four-inch minimum thickness. Some shrinkage and cracking of the concrete should be anticipated because of typical mix designs and curing practices typically utilized in construction.

Sidewalks and driveways may be under the jurisdiction of the governing agency. If so, jurisdictional design and construction criteria would apply, if more restrictive than the recommendations presented in this report.

Subgrade soils should be pre-moistened prior to placing concrete. The subgrade soils below exterior slabs, sidewalks, driveways, etc. should be pre-saturated to a minimum of 100 percent (for "very low" expansivity) of the optimum moisture content to a depth of 12 inches.

All concrete installation, including preparation and compaction of subgrade, should be done in accordance with the City of San Diego specifications, and under the observation and testing of GeoTek, Inc. and a City inspector, if necessary.

#### **6.1.2 Concrete Performance**

Concrete cracks should be expected. These cracks can vary from sizes that are essentially unnoticeable to more than 1/8 inch in width. Most cracks in concrete, while unsightly, do not significantly impact long-term performance. While it is possible to take measures (proper concrete mix, placement, curing, control joints, etc.) to reduce the extent and size of cracks that occur, some cracking will occur despite the best efforts to minimize it. Concrete undergoes chemical processes that are dependent on a wide range of variables, which are difficult, at best, to control. Concrete, while seemingly a stable material, is subject to internal expansion and contraction due to external changes over time.

One of the simplest means to control cracking is to provide weakened control joints for cracking to occur along. These do not prevent cracks from developing; they simply provide a relief point for the stresses that develop. These joints are a widely accepted means to control cracks but are not always effective. Control joints are more effective the more closely spaced they are. GeoTek, Inc. suggests that control joints be placed in two directions and located a distance apart approximately equal to 24 to 36 times the slab thickness.



# 7. POST CONSTRUCTION CONSIDERATIONS

#### 7.1 LANDSCAPE MAINTENANCE AND PLANTING

Water has been shown to weaken the inherent strength of soil, and slope stability is significantly reduced by overly wet conditions. Positive surface drainage away from graded slopes should be maintained and only the amount of irrigation necessary to sustain plant life should be provided for planted slopes. Controlling surface drainage and runoff and maintaining a suitable vegetation cover can minimize erosion. Plants selected for landscaping should be lightweight, deep-rooted types that require little water and are capable of surviving the prevailing climate.

Overwatering should be avoided. The soils should be maintained in a solid to semi-solid state as defined by the materials Atterberg Limits. Care should be taken when adding soil amendments to avoid excessive watering. Leaching as a method of soil preparation prior to planting is not recommended. An abatement program to control ground-burrowing rodents should be implemented and maintained. This is critical as burrowing rodents can decreased the long-term performance of slopes.

It is common for planting to be placed adjacent to structures in planter or lawn areas. This will result in the introduction of water into the ground adjacent to the foundation. This type of landscaping should be avoided. If used, then extreme care should be exercised with regard to the irrigation and drainage in these areas. Waterproofing of the foundation and/or subdrains may be warranted and advisable. GeoTek could discuss these issues, if desired, when plans are made available.

#### 7.2 DRAINAGE

The need to maintain proper surface drainage and subsurface systems cannot be overly emphasized. Positive site drainage should be maintained at all times. Drainage should not flow uncontrolled down any descending slope. Water should be directed away from foundations and not allowed to pond or seep into the ground adjacent to the footings. Site drainage should conform to Section 1804.4 of the 2019 CBC. Roof gutters and downspouts should discharge onto paved surfaces sloping away from the structure or into a closed pipe system which outfalls to the street gutter pan or directly to the storm drain system. Pad drainage should be directed toward approved areas and not be blocked by other improvements.



#### 7.3 PLAN REVIEW AND CONSTRUCTION OBSERVATIONS

GeoTek recommends that site grading, specifications, retaining wall/shoring plans and foundation plans be reviewed by this office prior to construction to check for conformance with the recommendations of this report. Additional recommendations may be necessary based on these reviews. It is also recommended that GeoTek representatives be present during site grading and foundation construction to check for proper implementation of the geotechnical recommendations. The owner/developer should have GeoTek's representative perform at least the following duties:

- Observe site clearing and grubbing operations for proper removal of unsuitable materials.
- Observe and bottom of removals prior to fill placement.
- Evaluate the suitability of on-site and import materials for fill placement and collect soil samples for laboratory testing when necessary.
- Observe the fill for uniformity during placement, including utility trenches.
- Observe and test the fill for field density and relative compaction.
- Observe and probe foundation excavations to confirm suitability of bearing materials.

If requested, a construction observation and compaction report can be provided by GeoTek, which can comply with the requirements of the governmental agencies having jurisdiction over the project. GeoTek recommends that these agencies be notified prior to commencement of construction so that necessary grading permits can be obtained.

# 8. LIMITATIONS

The scope of this evaluation is limited to the area explored that is shown on the Geotechnical Map (Figure 2). This evaluation does not and should in no way be construed to encompass any areas beyond the specific area of proposed construction as indicated to us by the client. The scope is based on GeoTek's understanding of the project and the client's needs, GeoTek's proposal (Proposal No. P-0200522-SD) dated February 14<sup>th</sup>, 2022, and geotechnical engineering standards normally used on similar projects in this region.

The materials observed on the project site appear to be representative of the area; however, soil and bedrock materials vary in character between excavations and natural outcrops, or conditions exposed during site construction. Site conditions may vary due to seasonal changes or other



factors. GeoTek, Inc. assumes no responsibility or liability for work, testing or recommendations performed or provided by others.

Since GeoTek's recommendations are based on the site conditions observed and encountered, and laboratory testing, GeoTek's conclusions and recommendations are professional opinions that are limited to the extent of the available data. Observations during construction are important to allow for any change in recommendations found to be warranted. These opinions have been derived in accordance with current standards of practice and no warranty is expressed or implied. Standards of practice are subject to change with time.



# 9. SELECTED REFERENCES

- American Society of Civil Engineers (ASCE), 2016, "Minimum Design Loads for Buildings and Other Structures," ASCE/SEI 7-16.
- ASTM International (ASTM), "ASTM Volumes 4.08 and 4.09 Soil and Rock."
- Barghausen Consulting Engineering, Inc., 2021, "Preliminary Conceptual Grading Plan, for KA Enterprises C-store and Carwash, 3060 Carmel Valley Road, San Diego, California," Job Number 21895, Sheet C-2.
- Bryant, W.A., and Hart, E.W., 2007, "Fault Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps," California Geological Survey: Special Publication 42.
- California Code of Regulations, Title 24, 2019 "California Building Code," 2 volumes.
- California Geological Survey (CGS, formerly referred to as the California Division of Mines and Geology), 1977, "Geologic Map of California."
- \_\_\_\_\_, 1998, "Maps of Known Active Fault Near-Source Zones in California and Adjacent Portions of Nevada," International Conference of Building Officials.
- City of San Diego, 2016, "City of San Diego Standard Drawings, for Public Works Construction, Pavement 'J' Schedule," prepared by Public Works Division, 2016<sup>th</sup> edition.
- County of San Diego, 2009, "Tsunami Inundation Map for Emergency Planning, State of California, County of San Diego, Del Mar Quadrangle," map scaled 1:24,000, dated June 1, 2009.
- GeoTek, Inc., In-house proprietary information.
- Kennedy, M.P., and Tan, S.S., 2008, "Geologic Map of San Diego 30x60-minute Quadrangle, California," California Geological Survey, Regional Geologic Map No. 3, map scale 1:100,000.
- Structural Engineers Association of California/California Office of Statewide Health Planning and Development (SEOC/OSHPD), 2019, Seismic Design Maps web interface, https://seismicmaps.org
- Terzaghi, K. and Peck, R., 1967, "Soil Mechanics in Engineering Practice", second edition.













# APPENDIX A

**BORING LOGS** 



## A - FIELD TESTING AND SAMPLING PROCEDURES

#### **Ring Samples**

These samples are normally airtight cylinders 6" in length containing 6 thin rings weighing approximately 45 grams each. These rings are sampled by means of the modified California Sampler (3" outer diameter, 2.5" inner diameter) to determine in-situ moisture content, density, and classification indices.

#### Bulk Samples (SPT)

These samples are normally airtight plastic bag samples containing less than 5 pounds in weight of earth materials collected from the field. These samples were collected by means of Standard Penetration Tests (SPT) to determine moisture content, density, and classification indices.

Bulk Samples (Large)

These samples are normally large bags of earth materials over 20 pounds in weight collected from the field by means of hand digging or exploratory cuttings.

#### **B – BORING/TRENCH LOG LEGEND**

The following abbreviations and symbols often appear in the classification and description of soil and rock on the logs of borings/trenches:

SOILS USCS Unified Soil Classification System Fine to coarse f-c f-m Fine to medium GEOLOGIC B: Attitudes Bedding: strike/dip ]: Attitudes Joint: strike/dip C: Contact line Dashed line denotes USCS material change . . . . . . . . . . . Solid Line denotes unit / formational change Thick solid line denotes end of boring/trench

(Additional denotations and symbols are provided on the log of borings/trenches)



| PROJECT NAME:       3000 Carmer Value (M)       DRILL METHOD:       (P) How Carmer Value (M)       OPERATOR:       Vocor       OPERATOR:       OPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROJECT NAME:     JUNC Correctivity Rd<br>JUNC Control Map     PROJECT NO:     CHARMENT Map     PROVEMENT Map     PROVEMENT Map     PROVEMENT Map     Map       Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index Map     Index     Index Map     Index Map     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CLIE                                                                                           | ENT:        |               | _                                            | ŀ                         | KA Enterprises                                 | DRILLER:                                                         | Baja Exploration                | LOGGED                | BY:                  |                      | СН                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|---------------|----------------------------------------------|---------------------------|------------------------------------------------|------------------------------------------------------------------|---------------------------------|-----------------------|----------------------|----------------------|------------------------|
| PROLECT NO:         The bit medium SAND, light brown, moist to very moist, loose         The bit medium SAND, light brown, moist to very moist, loose, medium dense         R.3         121 2           Image: Sample core         S.2         S.P         Fine to medium SAND, light brown, moist to very moist, loose, medium dense         8.3         121 2           Image: Sample core         S.2         S.P         Fine to medium SAND, light brown, moist to very moist, loose, medium dense         8.3         121 2           Image: Sample core         S.P         Fine to medium SAND, light brown, moist to very moist, loose, medium dense         8.3         121 2           Image: Sample core         S.P         Fine to medium SAND, light brown, moist to very moist, loose, medium dense         8.3         121 2           Image: Sample core         S.P         Fine to medium SAND, light brown, moist to very moist, loose, medium dense         8.3         121 2           Image: Sample core         S.P         Fine to medium SAND, light brown, moist to very moist, loose, medium dense         8.3         121 2           Image: Sample core         S.P         Fine to medium SAND, light brown, moist to very moist, loose, medium dense         S.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRODUCTION:     278-8D     PARMINER:     148-backlin     Rel TYPE:     Collect Schin Right       10     14 Fi     DATE:     Collect Schin Right     0     0     0       10     2     8     0     0     0     0     0     0       10     3     S-1     SP     Fine to medium SAND, light brown, moist to very moist, loose     8.3     121.2       10     8     12     SP     Fine to medium SAND, light brown, moist to very moist, loose, medium donse     8.3     121.2       10     8     12     SP     Fine to medium SAND, light brown, moist to very moist, loose, medium donse     8.3     121.2       10     4     7     SP     Fine to medium SAND, light brown, moist to very moist, loose     8.3     121.2       10     4     7     SP     Fine to medium SAND, light brown, moist to very moist, loose, medium donse     8.3     121.2       10     4     7     SP     Fine to medium SAND, light brown, moist to very moist, loose, medium donse     8.3     121.2       10     4     7     SP     Fine to medium SAND, light brown, moist to very moist, loose, medium donse     8.3     121.2       11     4     7     SP     Fine to medium SAND, light brown, moist to very moist, loose, medium donse     8.3     121.2 <td>PRO</td> <td>JEC</td> <td></td> <td>E:</td> <td>3060</td> <td>Carmel Valley Rd</td> <td>DRILL METHOD:</td> <td>8" Hollow-Stem Auger</td> <td>_ OPERAT</td> <td>OR:</td> <td></td> <td>Victor</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRO                                                                                            | JEC         |               | E:                                           | 3060                      | Carmel Valley Rd                               | DRILL METHOD:                                                    | 8" Hollow-Stem Auger            | _ OPERAT              | OR:                  |                      | Victor                 |
| COUNT         Determination         ELEVATION         ATF         DATE         Object         Object <thobject< th=""> <thobject< th="">         Objec</thobject<></thobject<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LUCKTION:       Use detection large       LEVATION:       4 HT       DATE:       tabulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRO                                                                                            |             | I NO.:        |                                              |                           | 3778-SD                                        |                                                                  | 140lbs/30in                     |                       | YPE:                 |                      | CME-75 Drill Rig       |
| CAUPUES         Laboratory Testing           BORING NO.: B-1         Use for the set of the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAUPUES         Laboratory Testing           Colspan="2">Colspan="2">Laboratory Testing           Material Description AND Comments         T         Laboratory Testing           0         2         8         BB-1         Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"           0         2         2         Colspan="2">Colspan="2"         Colspan="2">Colspan="2"           3         S-1         SP         SP         Fine to medium SAND, dark brown, dry, very loose         7         129.4         EI, SR           10         8         S-2         SP         Fine to medium SAND, light brown, moist to very moist loose         7         121.2         Fine to medium SAND, light brown, moist to very moist with depth, medium         8.3         121.2           15         4         4         Fine to medium SAND, light brown, moist to very moist, loose, medium dense         1         1         1           20         4         Fine to medium SAND, light brown, moist to very moist, loose, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |             | JN:           |                                              | See                       | Geotechnical Map                               |                                                                  | 44 Ft                           |                       | ATE:                 |                      | 4/8/2022               |
| open         open <th< td=""><td>Image: space space</td><td></td><td></td><td>SAMPLE</td><td>ES</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td>Lab</td><td>oratory Testing</td></th<> | Image: space |                                                                                                |             | SAMPLE        | ES                                           | <u> </u>                  |                                                |                                                                  |                                 |                       |                      | Lab                  | oratory Testing        |
| CK         Sitty fine to medium SAND, dark brown, dry, very loose         T         129.4           5         3         S-1         SP         Fine to medium SAND, dark brown, dry, very loose         T         129.4           5         3         S-1         SP         Fine to medium SAND, dark brown, dry, very loose         T         129.4         Et. SR           10         3         S-1         SP         Fine to medium SAND, light brown, dry very loose         T         121.2           10         8         R-2         SP         Fine to medium SAND, light brown, dry to slightly molet, loose         8.3         121.2           10         8         R-2         SP         Fine to medium SAND, light brown, moist to very moist with depth, medium         8.3         121.2           15         4         S-2         SP         Fine to medium SAND, light brown, moist to very moist, loose, medium donse         8.3         121.2           20         4         S-2         SP         Fine to medium SAND, light brown, moist to very moist, loose, medium donse         1           20         4         7         No groundwate encounteed bactified with sol cuttings         1         1           20         4         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td>Depth (ft)</td> <td>Sample Type</td> <td>Blows/ 6 in</td> <td>Sample<br/>Number</td> <td>USCS Symb</td> <td>MA</td> <td>BORING N</td> <td>O.: B-1</td> <td></td> <td>Water Content<br/>(%)</td> <td>Dry Density<br/>(pcf)</td> <td>Others</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth (ft)                                                                                     | Sample Type | Blows/ 6 in   | Sample<br>Number                             | USCS Symb                 | MA                                             | BORING N                                                         | O.: B-1                         |                       | Water Content<br>(%) | Dry Density<br>(pcf) | Others                 |
| 0       2       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10     3     S-1     SP     Fine to medium SAND, dark brown, dry, vary locae     7     129.4     EL.SR       10     3     S-1     SP     Fine to medium SAND, light brown, dry, vary locae     7     129.4     EL.SR       10     3     S-1     SP     Fine to medium SAND, light brown, dry, vary locae     7     129.4       10     3     S-1     SP     Fine to medium SAND, light brown, dry to slightly moist, locse     8.3     121.2       10     8     S-2     SP     Fine to medium SAND, light brown, moist to very moist with depth, medium     8.3     121.2       10     4     S-2     SP     Fine to medium SAND, light brown, moist to very moist with depth, medium     8.3     121.2       11     4     S-2     SP     Fine to medium SAND, light brown, moist to very moist, locse, medium dense     1     1       20     4     S-2     SP     Fine to medium SAND, light brown, moist to very moist, locse, medium dense     1     1       20     4     5     S2     SP     Fine to medium SAND, light brown, moist to very moist, locse, medium dense     1     1       20     4     5     SP     Fine to medium SAND, light brown, moist to very moist, locse, medium dense     1     1       20     4     5     SP     Fine to m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                |             |               |                                              |                           | 6" asphalt and base                            |                                                                  |                                 |                       | -                    |                      |                        |
| 3       S-1       SP       Young Alluvial Flood-Flain Deposits (Qva)<br>3       No.       No.         10       3       S-1       SP       Fine to medium SAND, light brown, dry to slightly moist, loose       8.3       121.2         10       8       R-2       SP       Fine to medium SAND, light brown, dry to slightly moist, loose       8.3       121.2         10       4       S-2       SP       Fine to medium SAND, light brown, moist to very moist with depth, medium dense       8.3       121.2         15       4       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.3       121.2         20       4       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.3       121.2         20       4       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       1         20       4       1       No groundwater encountered<br>Backfilled with soil outlings       1       1         20       1       1       1       1       1       1       1         21       1       1       1       1       1       1       1       1         22       1       1       1 <td>5         3         S-1         SP         Young Alluvial Flood-Plain Deposite (Qya)<br/>SP         Key         Key</td> <td>-</td> <td></td> <td>2<br/>3<br/>5</td> <td>BB-1<br/>R-1</td> <td>СК<br/>SM</td> <td>Artificial Fill (Af)<br/>Silty fine to medium S</td> <td>SAND, dark brown, dry, very<br/>SAND, dark brown, dry, very</td> <td>loose</td> <td></td> <td>7</td> <td>129.4</td> <td>EI, SR</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5         3         S-1         SP         Young Alluvial Flood-Plain Deposite (Qya)<br>SP         Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                              |             | 2<br>3<br>5   | BB-1<br>R-1                                  | СК<br>SM                  | Artificial Fill (Af)<br>Silty fine to medium S | SAND, dark brown, dry, very<br>SAND, dark brown, dry, very       | loose                           |                       | 7                    | 129.4                | EI, SR                 |
| 10       8.3       121.2         15       4       5.2       SP       Fine to medium SAND, light brown, moist to very moist with depth, medium         15       4       5.2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.3       121.2         16       4       7       S.2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       1       1         20       4       7       No       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       1       1         20       4       7       No       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       1       1         20       4       7       No       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       1       1         20       4       1       No       No       No       No       1       1         21       1       1       1       1       1       1       1       1       1         22       1       1       1       1       1       1       1       1       1       1         23       1       1 <td>10       A       R-2       SP       Fine to medium SAND, light brown, moist to very moist with depth, medium       8.3       121.2         15       4       4       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.3       121.2         16       4       4       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.4       14         20       4       4       7       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.4       14         20       4       4       7       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.4       14         20       4       4       5.2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       14       14         20       4       4       5       14       14       14       14         20       4       4       5       14       14       14       14         21       4       4       14       14       14       14       14         22       4       4       14       14       14       <t< td=""><td>5-</td><td></td><td>3<br/>3<br/>3</td><td>S-1</td><td>SP</td><td>Young Alluvial Floor<br/>Fine to medium SAN</td><td><b>d-Plain Deposits (Qya)</b><br/>D, light brown, dry to slightly</td><td>moist, loose</td><td></td><td></td><td></td><td></td></t<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10       A       R-2       SP       Fine to medium SAND, light brown, moist to very moist with depth, medium       8.3       121.2         15       4       4       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.3       121.2         16       4       4       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.4       14         20       4       4       7       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.4       14         20       4       4       7       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       8.4       14         20       4       4       5.2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense       14       14         20       4       4       5       14       14       14       14         20       4       4       5       14       14       14       14         21       4       4       14       14       14       14       14         22       4       4       14       14       14 <t< td=""><td>5-</td><td></td><td>3<br/>3<br/>3</td><td>S-1</td><td>SP</td><td>Young Alluvial Floor<br/>Fine to medium SAN</td><td><b>d-Plain Deposits (Qya)</b><br/>D, light brown, dry to slightly</td><td>moist, loose</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-                                                                                             |             | 3<br>3<br>3   | S-1                                          | SP                        | Young Alluvial Floor<br>Fine to medium SAN     | <b>d-Plain Deposits (Qya)</b><br>D, light brown, dry to slightly | moist, loose                    |                       |                      |                      |                        |
| 15       4       4       7       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense         20       4       7       S-2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense         20       1       1       I       Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15       4       4       5.2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense         20       1       7       S.2       SP       Fine to medium SAND, light brown, moist to very moist, loose, medium dense         20       1       1       No groundwater encountered Backfilled with soil cuttings         21       1       1       1       1         25       1       1       1       1         30       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                             |             | 8<br>12<br>17 | R-2                                          | SP                        | Fine to medium SANi<br>dense                   | D, light brown, moist to very                                    | moist with depth, media         | um                    | 8.3                  | 121.2                |                        |
| 20       HOLE TERMINATED AT 20 FEET         No groundwater encountered         Backfilled with soil cuttings         25         30         30         Sample type:        Ring        SPT        Small Bulk        No Recovery        Water Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20       HOLE TERMINATED AT 20 FEET         25       No groundwater encountered Backfilled with soil cuttings         30       Image: Comparison of the second                                                                                             | 15 -                                                                                           |             | 4<br>4<br>7   | S-2<br>S-2                                   | SP                        | Fine to medium SAN                             | D, light brown, moist to very                                    | moist, loose, medium c          | dense                 |                      |                      |                        |
| Pole Terminated AT 20 FEET         No groundwater encountered         Backfilled with soil cuttings         25         30         30         Sample type:        Ring        Spt        Spt        Spt        Spt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 -                                                                                           |             |               |                                              |                           |                                                |                                                                  |                                 |                       |                      |                      |                        |
| Sample type:RingSPTSmall BulkLarge BulkNo RecoveryWater Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             |               |                                              |                           | No groundwater enco<br>Backfilled with soil cu | HOLE TERMINATED                                                  | AT 20 FEET                      |                       |                      |                      |                        |
| Sample type:      Ring      SPT      Small Bulk      Large Bulk      No Recovery      Water Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |             |               |                                              |                           |                                                |                                                                  |                                 |                       |                      |                      | $\nabla$               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample type:RingSPTSmall BulkArge BulkNo RecoveryWater Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | END                                                                                            | Sam         | ple typ       | <u>e</u> :                                   |                           | RingSPT                                        | Small Bulk                                                       | Large Bulk                      | No Ree                | covery               |                      | ≚Water Table           |
| Lab testing: AL = Atterberg Limits EI = Expansion Index SA = Sieve Analysis RV = R-Value Test<br>SR = Sulfate/Resistivity Test SH = Share Test CO = Consolidation test MD = Maximum Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL = Atterberg Limits     EI = Expansion Index     SA = Sieve Analysis     RV = R-Value Test       Lab testing:     OB = 0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEG                                                                                            | Lab         | testing       | <u>.                                    </u> | AL = Atterb<br>SR = Sulfa | berg Limits<br>te/Resisitivity Test            | EI = Expansion Index<br>SH = Shear Test                          | SA = Sieve Ana<br>CO = Consolid | alysis<br>dation test | RV<br>MD             | = R-Val<br>= Maxin   | ue Test<br>num Density |

| CLIE                                                                                        | NT:                           |               | _                | ŀ                         | KA Enterprises                                      | DRILLER:                                     | Baja Exploration                   | LOGGED                                | BY:                  |                      | CH                     |
|---------------------------------------------------------------------------------------------|-------------------------------|---------------|------------------|---------------------------|-----------------------------------------------------|----------------------------------------------|------------------------------------|---------------------------------------|----------------------|----------------------|------------------------|
| PRO                                                                                         | PROJECT NAME:<br>PROJECT NO.: |               |                  | 3060                      | Carmel Valley Rd                                    | DRILL METHOD:                                | 8" Hollow-Stem Auger               | OPERAT                                | OR:                  |                      | Victor                 |
| PRO                                                                                         | JEC                           | T NO.:        |                  |                           | 3778-SD                                             | HAMMER:                                      | 140lbs/30in                        | RIG TY                                | PE:                  |                      | CME-75 Drill Rig       |
| LOC                                                                                         |                               | DN:           |                  | See                       | Geotechnical Map                                    | ELEVATION:                                   | 42 Ft                              | DA                                    |                      |                      | 4/8/2022               |
|                                                                                             |                               | SAMPLE        | ES               | 0                         |                                                     |                                              |                                    |                                       |                      | Lab                  | oratory Testing        |
| Depth (ft)                                                                                  | Sample Type                   | Blows/ 6 in   | Sample<br>Number | USCS Symb                 | МАТ                                                 | BORING N                                     | O.: B-2                            | · · · · · · · · · · · · · · · · · · · | Water Content<br>(%) | Dry Density<br>(pcf) | Others                 |
|                                                                                             |                               |               |                  |                           | Artificial Fill (Af)                                |                                              |                                    |                                       | -                    |                      |                        |
|                                                                                             |                               |               |                  | SP                        | Fine to medium SAND, with depth                     | light brown, slightly moist                  | t, loose, moisture increasi        | ing                                   |                      |                      |                        |
|                                                                                             |                               |               |                  |                           | Young Alluvial Flood-                               | Plain Deposits (Qya)                         |                                    |                                       |                      |                      |                        |
| 5<br>                                                                                       |                               | 3<br>4<br>5   | S-1              | SP                        | Fine to medium SAND,                                | light brown, slightly moist                  | t, loose                           |                                       |                      |                      |                        |
| 10 -                                                                                        |                               | 8<br>13<br>14 | R-1              | SP                        | Fine to medium SAND,<br>with depth                  | light brown, slightly moisl                  | t, loose, moisture increasi        | ing                                   | 9.8                  | 106.3                |                        |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                               | 3<br>5<br>5   | S-2              | SP                        | Fine to medium SAND,<br>with depth                  | light brown, slightly moisl                  | t, loose, moisture increasi        | ing                                   |                      |                      |                        |
| -                                                                                           |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| 20                                                                                          |                               |               |                  |                           | Groundwater encounter                               | ed                                           |                                    |                                       |                      |                      |                        |
|                                                                                             |                               |               |                  | <u> </u>                  | Groundwater encounter<br>Backfilled with soil cutti | HOLE TERMINATED A<br>red at 20.5 feet<br>ngs | AT 20.5 FEET                       |                                       |                      |                      |                        |
| -                                                                                           |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| 25                                                                                          |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| 20 -                                                                                        |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| -                                                                                           |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| -                                                                                           |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
|                                                                                             |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| -                                                                                           |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| -                                                                                           |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
|                                                                                             |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| 30 -                                                                                        |                               |               |                  |                           |                                                     |                                              |                                    |                                       |                      |                      |                        |
| IEND                                                                                        | <u>Sam</u>                    | nple typ      | <u>ie</u> :      |                           | RingSPT                                             | Small Bulk                                   | Large Bulk                         | No Rec                                | overy                |                      |                        |
| 1EG                                                                                         | Lab                           | testing       | <u>I:</u>        | AL = Atterb<br>SR = Sulfa | berg Limits<br>te/Resisitivity Test                 | EI = Expansion Index<br>SH = Shear Test      | SA = Sieve Analy<br>CO = Consolida | ysis<br>tion test                     | RV<br>MD             | = R-Val<br>= Maxin   | ue Test<br>num Density |

| CL         | IEN          | T:                                                                                                     |               |                  |            | KA Enterprises                                 | DRILLER:                                        | Baja Exploration           | LOGGED | BY:      |         | CH               |
|------------|--------------|--------------------------------------------------------------------------------------------------------|---------------|------------------|------------|------------------------------------------------|-------------------------------------------------|----------------------------|--------|----------|---------|------------------|
| PF         | OJE          | ЕСТ                                                                                                    | NAM           | E:               | 3060       | Carmel Valley Rd                               | DRILL METHOD:                                   | 8" Hollow-Stem Auger       | OPERAT | OR:      |         | Victor           |
| PR         | OJE          | СТ                                                                                                     | NO.:          |                  |            | 3778-SD                                        | HAMMER:                                         | 140lbs/30in                | RIG T  | PE:      |         | CME-75 Drill Rig |
| LC         |              | ΓΙΟ                                                                                                    | N:            |                  | See        | Geotechnical Map                               | ELEVATION:                                      | ATE:                       |        | 4/8/2022 |         |                  |
|            |              |                                                                                                        | SAMPLE        | S                | -          |                                                |                                                 |                            |        |          | Lab     | oratory Testing  |
| Denth (ft) | Const clame? | sample i ype                                                                                           | Blows/ 6 in   | Sample<br>Number | USCS Symbo | ма                                             | Water Content<br>(%)                            | Dry Density<br>(pcf)       | Others |          |         |                  |
|            | -            |                                                                                                        |               |                  |            | Artificial Fill (Af)                           |                                                 |                            |        | -        |         |                  |
|            |              | 7                                                                                                      |               | BB-1             | SP         | Fine to medium SAN                             | D, light brown, dry, loose to                   | medium dense               |        |          |         |                  |
|            |              | (                                                                                                      | 8<br>13<br>15 | R-1              | SP         | Fine SAND, light brov                          | vn, dry, medium dense                           |                            |        | 3.7      | 133.8   |                  |
| Ę          |              | 6     S-1     SP     Fine SAND, light brown, dry, medium dense, poor recovery, sample falls out     MD |               |                  |            |                                                |                                                 |                            |        |          |         |                  |
| 10         |              |                                                                                                        | 8<br>8<br>14  | R-2              | SP         | Fine SAND, light brov<br>medium dense          | vn, dry to moist, loose, moi                    | st increasing with depth,  |        | 1.6      | 131.3   |                  |
| 15         |              |                                                                                                        | 4<br>3<br>3   | S-2              | SP         | Fine SAND, light brov                          | vn, moist, loose, groundwal                     | ter encountered at 19 feet |        |          |         |                  |
| 20         |              |                                                                                                        | 3<br>4<br>10  | R-3              | ∑<br>SP    | Fine SAND, light brov                          | vn, very moist, loose                           |                            |        | 16.1     | 134.6   |                  |
| 25         |              |                                                                                                        | 3<br>6<br>7   | S-3              | SP         | Fine SAND, light brov<br>decrease with depth   | vn, very moist, medium der                      | ise , moisture starting to |        |          |         |                  |
| 30         |              |                                                                                                        |               |                  |            | Groundwater encount<br>Backfilled with soil cu | HOLE TERMINATED A<br>tered at 19 feet<br>ttings | AT 26.5 FEET               |        |          |         |                  |
| ð          | S            | amı                                                                                                    | ole tvp       | e:               |            | RingSPT                                        | Small Bulk                                      | Large Bulk                 | No Red | coverv   |         | Water Table      |
| LEGEN      |              | ab t                                                                                                   | esting        | <u>-</u><br>:    | AL = Atter | berg Limits                                    | El = Expansion Index                            | SA = Sieve Analys          | sis    | RV       | = R-Val | ue Test          |
| L          | 1            |                                                                                                        |               |                  | Oulle      |                                                | S.I. Shou root                                  | 55 551651idati             |        |          |         |                  |

| CLIE                                         | ENT:                                                                                                                                                                                                                                              |               | CH               |            |                                               |                                                |                           |                        |                      |                      |                  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------------|-----------------------------------------------|------------------------------------------------|---------------------------|------------------------|----------------------|----------------------|------------------|
| PRC                                          | JEC                                                                                                                                                                                                                                               | T NAM         | E:               | 3060       | Carmel Valley Rd                              | DRILL METHOD:                                  | 8" Hollow-Stem Auger      | OPERAT                 | OR:                  |                      | Victor           |
| PRC                                          | JEC                                                                                                                                                                                                                                               | T NO.:        |                  |            | 3778-SD                                       | HAMMER:                                        | 140lbs/30in               | RIG T                  | PE:                  |                      | CME-75 Drill Rig |
| LOC                                          | ATIC                                                                                                                                                                                                                                              | DN:           |                  | See        | Geotechnical Map                              | ELEVATION:                                     | 37 Ft                     | D#                     | ATE:                 |                      | 4/8/2022         |
|                                              |                                                                                                                                                                                                                                                   | SAMPL         | ES               | -          |                                               |                                                |                           |                        |                      | Lab                  | oratory Testing  |
| Depth (ft)                                   | Sample Type                                                                                                                                                                                                                                       | Blows/ 6 in   | Sample<br>Number | USCS Symbo | MA                                            | BORING N                                       | O.: B-4                   |                        | Water Content<br>(%) | Dry Density<br>(pcf) | Others           |
|                                              |                                                                                                                                                                                                                                                   |               |                  |            | Asphalt and Base in u                         | upper 6"                                       |                           |                        | -                    |                      |                  |
|                                              |                                                                                                                                                                                                                                                   |               | BB-1             | SP         | Artifical Fill (Af)<br>Fine to medium SAN     | D, light brown, slightly mois                  | t, loose                  |                        |                      |                      |                  |
| 5-                                           | 5     5     S-1     SP     Young Alluvial Flood Plain Deposits (Qya)<br>Fine to medium SAND, light brown, very moist with moisture increasing with<br>depth, loose     Fine to medium SAND, light brown, very moist with moisture increasing with |               |                  |            |                                               |                                                |                           |                        |                      |                      |                  |
| 10 -                                         |                                                                                                                                                                                                                                                   | 5<br>6<br>8   | R-1              | SP         | Fine to medium SAN                            | D, light brown, very moist, r                  | nedium dense to dense     |                        | 17.1                 | 135.6                |                  |
| -<br>-<br>15 -<br>-<br>-<br>-                |                                                                                                                                                                                                                                                   | 5<br>14<br>34 | S-2              | SP         | Fine to medium SAN                            | D, light brown,moisture incr                   | easing with depth, very c | dense                  |                      |                      |                  |
| 20 -                                         |                                                                                                                                                                                                                                                   |               |                  | ¥          | Groundwater encoun                            | tered, some gravels, no sa                     | mple recovery             |                        |                      |                      |                  |
|                                              |                                                                                                                                                                                                                                                   |               |                  |            | Groundwater encoun<br>Backfilled with soil cu | HOLE TERMINATED<br>tered at 18 feet<br>ittings | AT 20 FEET                |                        |                      |                      |                  |
| 25 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                                   |               |                  |            |                                               |                                                |                           |                        |                      |                      |                  |
| 30 -                                         |                                                                                                                                                                                                                                                   |               |                  |            |                                               |                                                |                           |                        |                      |                      |                  |
| END                                          | San                                                                                                                                                                                                                                               | nple typ      | <u>e</u> :       |            | RingSPT                                       | Small Bulk                                     | Large Bulk                | No Rec                 | covery               |                      | ✓Water Table     |
| 1EG                                          | Lab testing:       AL = Atterberg Limits       EI = Expansion Index       SA = Sieve Analysis       RV = R-Value Test         SR = Sulfate/Resistivity Test       SH = Shear Test       CO = Consolidation test       MD = Maximum Density        |               |                  |            |                                               |                                                |                           | ue Test<br>num Density |                      |                      |                  |

| SAMPLES       Image: Solution of the second se               | Laboratory T<br>Åg<br>Laboratory T<br>Åg<br>Laboratory T                                                                                                                                                                                   | tor<br>Drill Rig<br>022<br>esting<br>s<br>of<br>O |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|
| SAMPLES     Image: Solution of the second seco |                                                                                                                                                                                                                                            | Drill Rig<br>022<br>esting<br>sat<br>O            |  |  |  |  |  |
| SAMPLES     organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laboratory T<br>(bct)<br>(bct)<br>(bct)                                                                                                                                                                                                    | esting<br>sate<br>o                               |  |  |  |  |  |
| SAMPLES       Image: Sample in the second seco               | Laboratory T<br>Did Deuziti<br>(bct)<br>(bct)                                                                                                                                                                                              | esting<br>Set<br>O                                |  |  |  |  |  |
| (1)       ui       ui <thu< th="">       ui       ui       <thu< td=""><td>Dry Density<br/>(pcf)</td><td>Others</td></thu<></thu<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dry Density<br>(pcf)                                                                                                                                                                                                                       | Others                                            |  |  |  |  |  |
| Image: second      | Dry Dens<br>(pcf)                                                                                                                                                                                                                          | Others                                            |  |  |  |  |  |
| Image: Boot of the second s      |                                                                                                                                                                                                                                            | Ōţ                                                |  |  |  |  |  |
| Image: Second system     Image: Second system <th image:="" second="" system<="" t<="" td=""><td></td><td></td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <td></td> <td></td>                                                                                                                                                                                                                        |                                                   |  |  |  |  |  |
| Asphalt and Base in upper 6" <u>Artifical Fill (Af)</u> SP Fine to medium SAND, dark brown, moist, loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| Artifical Fill (Af)<br>SP Fine to medium SAND, dark brown, moist, loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| SP Fine to medium SAND, dark brown, moist, loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| Young Alluvial Flood Plain Deposits (Qva)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| SP Fine to medium SAND, light brown, moist, loose, some gravels, density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| increasing with depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| 6 S-1 SP Fine to medium SAND, light brown, moist to very moist with depth,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| Groundwater encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 141.9                                                                                                                                                                                                                                      |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| 20 8 R_1 SP Fine to medium SAND light brown saturated to very moist with depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| 19 medium dense, density increasing with depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| SP  Fine to medium SAND, light brown, very dense, moisture declining to slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| Torrey Sandstone (Tt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
| SANDSTONE, light brown with green tints, slightly moist, very dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                          |                                                   |  |  |  |  |  |
| Sample type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 👱Wat                                                                                                                                                                                                                                       | er Table                                          |  |  |  |  |  |
| Al = Atterhern Limits     FL = Expansion Index     SA = Sieve Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = R-Value Test                                                                                                                                                                                                                             |                                                   |  |  |  |  |  |
| Lab testing:         DE = Database Lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lab testing:       AL = Atterberg Limits       EI = Expansion Index       SA = Sieve Analysis       RV = R-Value Test         SR = Sulfate/Resistivity Test       SH = Shear Test       CO = Consolidation test       MD = Maximum Density |                                                   |  |  |  |  |  |

| CLIE       |              |                |                  | ł                                           | KA Enterprises                                                                      | DRILLER:                                                                                                        | Baja Exploration                     | LOGGED BY                       | ′:Сн                      |                        |  |  |
|------------|--------------|----------------|------------------|---------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------|------------------------|--|--|
| PRO        | JEC.         | T NAM          | E:               | 3060                                        | Carmel Valley Rd                                                                    | DRILL METHOD:                                                                                                   | 8" Hollow-Stem Auger                 | OPERATOR                        | .:                        | Victor                 |  |  |
| PRO        | JEC.         | T NO.:         |                  |                                             | 3778-SD                                                                             | HAMMER:                                                                                                         | 140lbs/30in                          | RIG TYPE                        |                           | CME-75 Drill Rig       |  |  |
| LOC        | ATIC         | DN:            |                  | See Geotechnical Map ELEVATION: 36 Ft DATE: |                                                                                     |                                                                                                                 |                                      |                                 |                           | 4/8/2022               |  |  |
|            |              | SAMPL          | ES               | -                                           |                                                                                     |                                                                                                                 |                                      |                                 | Lab                       | oratory Testing        |  |  |
| Depth (ft) | Sample Type  | Blows/ 6 in    | Sample<br>Number | USCS Symbo                                  |                                                                                     | BORING NO.:                                                                                                     | B-5 Cont.                            | Water Content                   | Dry Density<br>(pcf)      | Others                 |  |  |
|            |              | 19<br>32<br>45 | S-2              |                                             | SANDSTONE, ligh<br>very dense, slightly<br>Groundwater enco<br>Backfilled with soil | It brown with green mottling ar<br>weathered in upper 6'<br>HOLE TERMINATED /<br>untered at 18 feet<br>cuttings | nd oxidization, slightly mois        | st,                             |                           |                        |  |  |
|            |              |                |                  |                                             |                                                                                     |                                                                                                                 |                                      |                                 |                           |                        |  |  |
| GND        | <u>Sam</u>   | ple typ        | <u>e</u> :       |                                             | RingSPT                                                                             | Small Bulk                                                                                                      | Large Bulk                           | Large BulkNo Recovery 🔤Water Ta |                           |                        |  |  |
| LE(        | Lab testing: |                |                  | AL = Attert<br>SR = Sulfa                   | berg Limits<br>te/Resisitivity Test                                                 | El = Expansion Index<br>SH = Shear Test                                                                         | SA = Sieve Analy<br>CO = Consolidati | rsis Fion test M                | .V = R-Valı<br>1D = Maxim | ue Test<br>num Density |  |  |

| CLIE                                                                                                                                                                                                                                                        | NT:        |          |              | GED BY: CH  |                          |                              |                          |             |             |             |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|--------------|-------------|--------------------------|------------------------------|--------------------------|-------------|-------------|-------------|------------------|
| PRO                                                                                                                                                                                                                                                         | JEC        | T NAM    | E:           | 3060        | Carmel Valley Rd         | DRILL METHOD:                | 8" Hollow-Stem Auger     | OPERAT      | OR:         |             | Victor           |
| PRO                                                                                                                                                                                                                                                         | JEC        | T NO.:   |              |             | 3778-SD                  | HAMMER:                      | 140lbs/30in              | RIG T       | PE:         |             | CME-75 Drill Rig |
| LOC                                                                                                                                                                                                                                                         | ATIC       | ON:      |              | See         | Geotechnical Map         | ELEVATION:                   | 35 Ft                    | DA          | ATE:        |             | 4/8/2022         |
|                                                                                                                                                                                                                                                             |            | SAMPLE   | ES           | -           |                          |                              |                          |             |             | Lab         | oratory Testing  |
| (#)                                                                                                                                                                                                                                                         | be         | ,c       |              | mbc         |                          |                              |                          |             | ent         | ty          |                  |
| pth                                                                                                                                                                                                                                                         | e Ty       | s/ 6     | alqr<br>1ber | ŝŝ          |                          | DUKING N                     | Ю Б-0                    |             | Cont<br>6)  | ensi<br>cf) | ers              |
| De                                                                                                                                                                                                                                                          | npl        | swo      | San<br>Nun   | SC          |                          |                              |                          |             | ter (<br>(% | D d<br>(p   | Oth              |
|                                                                                                                                                                                                                                                             | Sa         | В        |              |             | MA                       | TERIAL DESCRIPTION           | AND COMMENTS             |             | Wa          | D           |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             | Asphalt and Base in u    | pper 6"                      |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             | Artifical Fill (Af)      |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              | SP          | Fine to medium SAND      | ), dark brown, moist, loose  | 1                        |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              | SD.         | Fine to modium SAND      | Plain Deposits (Qya)         |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           | -          |          |              | 5P          | Fine to medium SAND      | , dark brown, moist, loose   |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| 5-                                                                                                                                                                                                                                                          |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            | 3        | S-1          | SP          | Fine to medium SAND      | ), dark brown, moist, loose  |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            | 4        |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            | Ŭ        |              |             |                          |                              |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             | 13.9        | 129.9       |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| 10 -                                                                                                                                                                                                                                                        |            | 7        | R-1          | SP          | Fine to medium SAND      | ) dark brown verv moist to   | saturated with depth me  | edium       |             |             |                  |
|                                                                                                                                                                                                                                                             |            | 9        | 1.1-1        | 01          | dense                    | , dant brown, vory molot a   |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            | 9        |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              | $\nabla$    |                          |                              |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           |            |          |              | <b></b>     | Groundwater encounter    | ered                         |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| 15 -                                                                                                                                                                                                                                                        |            | 3        | S-2          | SP          | Fine to medium SAND      | ), dark brown, very moist to | o saturated, medium dens | e           |             |             |                  |
| _                                                                                                                                                                                                                                                           |            | 3        |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            | 7        |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          | HOLE TERMINATED              | AT 15 FEFT               |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             | Groundwater encounter    | ered at 12 feet              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             | Backfilled with soil cut | tings                        |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| 20 -                                                                                                                                                                                                                                                        |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
|                                                                                                                                                                                                                                                             |            |          |              |             |                          |                              |                          |             |             |             |                  |
| 25 —                                                                                                                                                                                                                                                        |            |          |              |             |                          |                              |                          |             |             |             |                  |
| I –                                                                                                                                                                                                                                                         | ]          |          |              |             |                          |                              |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           | .          |          |              |             |                          |                              |                          |             |             |             |                  |
| _                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| -                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| 20                                                                                                                                                                                                                                                          |            |          |              |             |                          |                              |                          |             |             |             |                  |
| 30                                                                                                                                                                                                                                                          |            |          |              |             |                          |                              |                          |             |             |             |                  |
| Ē                                                                                                                                                                                                                                                           |            |          |              |             |                          |                              |                          |             |             |             |                  |
| N.                                                                                                                                                                                                                                                          | <u>Sam</u> | nple typ | <u>e</u> :   |             | RingSPT                  | Small Bulk                   | Large Bulk               | No Red      | covery      |             | 👱Water Table     |
| 89                                                                                                                                                                                                                                                          |            |          |              | AL = Attert | perg Limits              | EI = Expansion Index         | SA = Sieve Analy         | vsis        | RV          | = R-Val     | ue Test          |
| Lab testing:         AL = Atterberg Limits         EI = Expansion index         SA = Sieve Analysis         RV = R-Value Test           SR = Sulfate/Resisitivity Test         SH = Shear Test         CO = Consolidation test         MD = Maximum Density |            |          |              |             |                          |                              |                          | num Density |             |             |                  |

# **APPENDIX B**

**RESULTS OF LABORATORY TESTING** 



#### SUMMARY OF LABORATORY TESTING

#### Identification and Classification

Soils were identified visually in general accordance with the standard practice for description and identification of soils (ASTM D 2488). The soil identifications and classifications are shown on the Logs of Exploration in Appendix A.

#### **Moisture Density Modified Proctor**

Laboratory testing was performed on one sample collected during the subsurface exploration for compaction characteristics. The laboratory maximum dry density and optimum moisture content for the soil was determined in general accordance with ASTM Test Method D 1557 procedures. The test results are graphically presented in Appendix B.

#### **Expansion Index Test**

Expansion Index testing was performed on one sample collected during the subsurface exploration from boring B-1. The expansion index was determined in general accordance with ASTM Test Method D 4829 procedures. The test results are presented in Appendix B.

#### Sulfate Content

A full corrosion series was performed in general accordance with several ASTM Test Methods on one representative sample collected during the subsurface exploration. The sample was obtained from boring B-1 and tested by Project X Engineering.

#### **Direct Shear Remolded**

Shear testing was performed in a direct shear machine of the strain-control type in general accordance with ASTM Test Method D 3080 procedures. The rate of deformation is approximately 0.025 inches per minute. The samples were sheared under varying confining loads to determine the coulomb shear strength parameters, angle of internal friction and cohesion. One test was performed on a bulk sample that was remolded to approximately 90 percent of the maximum dry density as determined by ASTM D 1557. The results of the testing are graphically presented in Appendix B.

#### **R-Value**

A sample collected during the subsurface exploration was tested for its R-Value in general accordance with California Test Method 301 by Labelle-Marvin Professional Pavement Engineering. The test result is presented in Appendix B.





# **EXPANSION INDEX TEST**

### (ASTM D4829)

|   | Project Name:                     | 3060 Carmel Va   | lley Rd | Teste | ed/ Ch      | ecked By:                |             | СН                     | Lab No      | 3943          |       |
|---|-----------------------------------|------------------|---------|-------|-------------|--------------------------|-------------|------------------------|-------------|---------------|-------|
|   | Project Number:                   | 3778-SD          |         | Date  | Teste       | d:                       |             |                        | 5/23/20     | 22            |       |
|   | Project Location:                 | San Diego, (     | CA      | Samp  | ole So      | urce:                    |             |                        | B-1 BB      | -1            |       |
|   |                                   |                  |         | Samp  | ole De      | scription:               |             | Fine D                 | ark Brown S | Silty Sand    |       |
|   | Ring Id: <u>12</u> Ring Dia. "    | : 4" Ring I 1"   |         |       |             |                          |             |                        |             |               |       |
|   | Loading weight: 5516. grar        | ns               |         |       |             |                          |             |                        |             |               |       |
|   | DENSIT                            | Y DETERMINATION  |         | _     |             |                          |             |                        |             | _             |       |
| A | Weight of compacted same          | ole & ring       | 772.5   |       |             |                          | RE/         |                        |             |               |       |
| в | Weight of ring                    |                  | 369.7   |       |             | DATE                     |             | TIME                   | READIN      | G             |       |
| С | Net weight of sample              |                  | 402.8   |       | 5/23/2022   |                          |             |                        | 168         | Initi         | al    |
| D | Wet Density, lb / ft3 (C*0.3      | 3016)            | 121.5   |       |             |                          |             | 10:54                  | 168         | 10 min        | n/Dry |
| Е | Dry Density, lb / ft3 (D/1.F)     |                  | 111.1   |       |             |                          |             | 10:55                  | 165         | 1 min/        | Wet   |
|   | SATURATI                          | ON DETERMINATION | 1       |       |             |                          |             | 11:00                  | 165         | 5 min/        | Wet   |
|   | Wet Weight of sample & ta         | are              | 248.2   |       |             | 5/24/202                 | 22          | 10:44                  | 164         | Rand          | om    |
|   | Dry Weight of sample & ta         | ire              | 227.3   |       |             |                          |             | 10:54                  | 164         | Fina          | al    |
|   | Tare                              |                  | 4.8     |       |             |                          |             |                        |             |               | _     |
| F | Initial Moisture Content, %       |                  | 9.4     |       |             | F                        | INAL        | MOIST                  | JRE         |               |       |
| G | (E*F)                             |                  | 1043.1  |       | vvei<br>sam | ght of wet<br>ple & tare | vvi<br>samp | t. of dry<br>ble & tar | e Tare      | %<br>Moisture |       |
| н | (E/167.232)                       |                  | 0.66    |       |             | 201.1                    | 1           | 76.3                   | 4.8         | 14.5%         | 1     |
| I | (1H)                              |                  | 0.34    |       | ·           |                          |             |                        |             |               | 3     |
| J | (62.4*I)<br>(G/I)= 1 % Seturation | F                | 21.0    | _     |             |                          |             |                        |             |               |       |
| n |                                   |                  | 49.0    |       |             |                          |             |                        |             |               |       |

EXPANSION INDEX = 0



# **MOISTURE/DENSITY RELATIONSHIP**

| Client: KA Enterprises                     | Job No.: 3778-SD                     |
|--------------------------------------------|--------------------------------------|
| Project: 3060 Carmel Valley Rd             | Lab No.: 3973                        |
| Location: San Diego, CA                    |                                      |
| Material Type: Fine Silty Sand Light Brown | -                                    |
| Material Supplier: -                       |                                      |
| Material Source:                           | _                                    |
| Sample Location: B-3, BB-2                 | _                                    |
| -                                          |                                      |
| Sampled By: CH                             | Date Sampled: 4/8/2022               |
|                                            | Date Received: 4/8/2022              |
|                                            | Date Tested: 4/29/2022               |
| Reviewed By:                               | Date Reviewed: -                     |
| Test Procedure: ASTM D1557 Method:         | Α                                    |
| Oversized Material (%): 0.0 Correction     | Required: Ves X no                   |
|                                            |                                      |
| MOISTURE/DENSITY RELATIONSHIP CURVE        | • DRT DENOTT (pc).                   |
|                                            | CORRECTED DRY DENSITY (pcf):         |
| 130                                        | ZERO AIR VOIDS DRY DENSITY     (prf) |
|                                            |                                      |
|                                            |                                      |
|                                            | * 3.9.2.0                            |
|                                            | • S.G. 2.6                           |
|                                            | Poly. (DRY DENSITY (pcf):)           |
| 116 116                                    | OVERSIZE CORRECTED                   |
|                                            |                                      |
|                                            | Poly. (S.G. 2.7)                     |
|                                            | 10 —— Poly. (S.G. 2.8)               |
| MOISTURE CONTENT, %                        | Poly. (S.G. 2.6)                     |
|                                            |                                      |
| Maximum Dry Density, pcf 123.0             | @ Optimum Moisture, % 5.5            |
| Corrected Maximum Dry Density, pcf         | @ Optimum Moisture, %                |
| MATERIAL DESCI                             | RIPTION                              |
| Grain Size Distribution:                   | Atterberg Limits:                    |
| % Gravel (retained on No. 4)               | Liquid Limit, %                      |
| % Sand (Passing No. 4, Retained on No. 200 | ) Plastic Limit, %                   |
| % Silt and Clay (Passing No. 200)          | Plasticity Index, %                  |
| Classification:                            |                                      |
| Unified Soils Classification:              |                                      |



# **DIRECT SHEAR TEST**



- Notes: I The soil specimen used in the shear box was a ring sample remolded to approximately 90% relative compaction from a bulk sample collected during the field investigation.
  - 2 The above reflect direct shear strength at saturated conditions.
  - 3 The tests were run at a shear rate of 0.035 in/min.



# **DIRECT SHEAR TEST**



- Notes: I The soil specimen used in the shear box was a ring sample remolded to approximately 90% relative compaction from a bulk sample collected during the field investigation.
  - 2 The above reflect direct shear strength at saturated conditions.
  - 3 The tests were run at a shear rate of 0.035 in/min.

# Results Only Soil Testing for 3060 Carmel Valley Rd

May 31, 2022

**Prepared for:** 

Chris Livesey GeoTek, Inc. 1384 Poinsettia Ave, Suite A Vista, CA, 92081 clivesey@geotekusa.com

Project X Job#: S220527D Client Job or PO#: 3778-SD

Respectfully Submitted,

Eduardo Hernandez, M.Sc., P.E. Sr. Corrosion Consultant NACE Corrosion Technologist #16592 Professional Engineer California No. M37102 <u>ehernandez@projectxcorrosion.com</u>





# Soil Analysis Lab Results

Client: GeoTek, Inc. Job Name: 3060 Carmel Valley Rd Client Job Number: 3778-SD Project X Job Number: S220527D May 31, 2022

|                           | Method         | AST<br>D433  | M<br>27 |  |
|---------------------------|----------------|--------------|---------|--|
| Bore# / Description       | Depth          | Sulfa<br>SO4 | ites    |  |
|                           | ( <b>i</b> ft) | (mg/kg)      | (wt%)   |  |
| B-1 BB-1 Silty Sand Brown | 1-4            | 11.4         | 0.0011  |  |

Cations and Anions, except Sulfide and Bicarbonate, tested with Ion Chromatography mg/kg = milligrams per kilogram (parts per million) of dry soil weight ND = 0 = Not Detected | NT = Not Tested | Unk = Unknown Chemical Analysis performed on 1:3 Soil-To-Water extract PPM = mg/kg (soil) = mg/L (Liquid)



Lab Request Sheet Chain of Custody Phone: (213) 928-7213 · Fax (951) 226-1720 · www.projectxcorrosion.com Ship Samples To: 29990 Technology Dr, Suite 13, Murrieta, CA 92563

|     |     | Project X Job Number                 | 5220527                                 | DG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                            | 3-                 | 17                                           | 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -S          | D       | )               |          |         | 3            | 06            | 0      | 0      | ay      | me          | 2                             |                       | 1          | S               | 0              | 4                          |               |  |
|-----|-----|--------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-----------------|----------|---------|--------------|---------------|--------|--------|---------|-------------|-------------------------------|-----------------------|------------|-----------------|----------------|----------------------------|---------------|--|
|     | ŀ   | Company Name: GeoTek, Inc.           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                    | Contact Name: Chris Livesey Phone No: 949-3: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |                 |          |         |              |               | 38-    | 923    | 3       |             |                               |                       |            |                 |                |                            |               |  |
|     | F   | Mailing Address:                     | 1384 Poinsetta Ave                      | , Ste A, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vista, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92081                        | Сол                | tact En                                      | nail:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cliv        | es      | eve             | Da       | eot     | ek           | usa           | a.0    | cor    | n       |             |                               |                       |            |                 |                |                            |               |  |
|     | T   | Accounting Contact:                  | Accounts Payable                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Inv                | oice En                                      | nail:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ap          | @g      | jeo             | lek      | usa     | a.c          | om            | 1;     | wł     | nite    | @0          | jeot                          | tekusa.com            |            |                 |                |                            |               |  |
|     | ſ   | Client Project No:                   | 3778-00                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Pro                | ject Na                                      | me:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30          | 60      | >               | Car      | me      | 21           |               | V      | al     | ley     | 1           | Ra                            | L                     |            |                 |                |                            |               |  |
|     |     | P.O. #:                              | Vista                                   | s-6 Dar<br>staedard 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EON<br>Locat Alles<br>Proc participation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iam<br>aibe<br>1000 contempo |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |                 | N        | MARA    | -            | REO           | n E    | site   | D (PI   | case c      | n and                         |                       |            |                 |                |                            |               |  |
|     |     |                                      | (Business Days) Turn Around Tin         | ne:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Coltrans<br>C1NK40 | CTM643<br>Caluens<br>CTM417                  | Cultures<br>CTN,4122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |                 |          |         |              |               |        |        |         | minim       | nd<br>info                    |                       |            | ŀ               |                |                            |               |  |
|     |     | Results By: 🗆 Phone 🗋 Fax 🗟 Email    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                    |                                              | AASIFIO<br>1 ZM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 253013      | EIN-05F | 8M<br>45un-Nu)3 |          |         |              |               |        | •      |         | fin 2 G     | map. al                       |                       |            |                 | •              |                            |               |  |
|     |     | Date & Received by : Defaul<br>Metho |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                    | G 51<br>ASTM<br>DUDY                         | ASTAI<br>14327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CODO NO     | ASTM    | ASTAI<br>14327  | T2001    | ASTM    | NS1M<br>MISA | ASTM<br>Die19 | 61690  | Digity | 1026213 | *Ron.       | sito                          | ASTM                  | S2018      |                 |                | 1                          | Π             |  |
|     |     | Sneeial Instructions:                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fall C'e    |         |                 | on Ser   | ies     | -            | -             | -      |        |         | 3           | legiorts                      |                       | $\square$  | $\square$       | sis            | 1                          | ysis          |  |
|     |     |                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Resistivity        | le                                           | ride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x Potential | ionia   | le              | ide      | m       | m            | sium          | hesium | nm     | rbonate | Corrosivity | ation Report<br>r Corrosivity | Report<br>ure Content | Alkalinity | nal Resistivity | lurgical Analy | clicr Inuca<br>Drius Index | Elemental Ana |  |
|     |     | SAMPLE ID - BORE #                   | DESCRIPTION                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEPTH (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BAFE<br>COLLECTED            | Soil I             | Sulfa                                        | Chlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Redo        | Amm     | Nitra           | Flour    | Lichi   | Sodiu        | Potas         | Magi   | Calci  | BiCa    | Soil        | Wafe                          | Mini                  | Total      | Therr           | Metal          | Pucke                      | XRF           |  |
| 394 | Tre | B-1 BB-1                             | Silty Send B                            | troun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11-4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/8/22                       |                    | ~                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 1       | 11-11           | 11       | -       |              |               | -11    | -      |         | CITE        |                               |                       |            |                 |                |                            |               |  |
| 1   | 2   | Contraction and the store            | and the second second                   | - Mary - Mary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B INTERIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and and the                  |                    | -j-                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           | -ll-n   | di-             | <u>_</u> | nullana | -            |               |        | -      |         |             |                               |                       | 4          |                 | -              |                            |               |  |
|     | 4   | freedow with the first state         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a can det                    |                    | +                                            | Contraction of the local division of the loc | 1           | Ti      | T I             | Ť        | 1       |              |               | -      | Í      | T       | 1           | 1                             |                       | 1          |                 |                | 1                          | t i           |  |
|     | 1   | Carto and and                        | Automation of the second                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a fair an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                          |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N           |         |                 |          |         |              |               |        |        |         |             | -                             | 100 - Carl            |            |                 | -              | 1                          |               |  |
|     | 6   |                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                    | _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           | il      | i.              |          |         |              | Щ             | 1      | 4      | -       | -           |                               |                       | 1          |                 | -              | 1                          |               |  |
|     |     | REAL PROPERTY IN                     | Contraction of the second second        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | la Later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                            |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 1       | 11              | -        | -       | i-           |               | -      |        |         | -           | na dia sa                     |                       | -          | -+              | -              | -                          |               |  |
|     |     | The State Second                     |                                         | A STATE OF THE STA | S POST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IN STREET                    | H                  | +                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +           |         |                 | -        | #       | -            |               |        |        | T       | 1-          |                               | 1                     | -          |                 | - i            |                            |               |  |
|     | 10  |                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                            | T                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T           | 1       |                 | T        |         |              |               |        |        | T       |             |                               |                       | T          |                 | 1              |                            |               |  |
|     | 134 | Station of                           | Call States and States                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         | L               |          |         |              |               |        |        |         |             |                               |                       | 1          |                 |                |                            | 1             |  |
|     | 12  |                                      |                                         | Concerned to the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A Coloring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D. Print Print               | hard               | 4                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Han     |                 |          | -       |              | H             | -      |        |         | -           | malinam                       | -                     | -          | -               | 1              | -                          |               |  |
|     |     | State State                          | 100000000000000000000000000000000000000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s | P. Contraction               |                    | 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           | +       | +               | -        | -       |              | H             | -      | -      | +       | -           |                               |                       | +          | -               |                |                            |               |  |
|     | 14  | 1                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | N 2                | 112                                          | 10 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |         | 11              |          | 11      | 11           | 1 11          |        | 1 11   | 12      | 12          | 14                            | i.                    | 4 /        | 1 11            | 22             | 11                         | 1 1           |  |

# APPENDIX C

**GENERAL EARTHWORK GRADING GUIDELINES** 



#### **GENERAL GRADING GUIDELINES**

Guidelines presented herein are intended to address general construction procedures for earthwork construction. Specific situations and conditions often arise which cannot reasonably be discussed in general guidelines, when anticipated these are discussed in the text of the report. Often unanticipated conditions are encountered which may necessitate modification or changes to these guidelines. It is our hope that these will assist the contractor to more efficiently complete the project by providing a reasonable understanding of the procedures that would be expected during earthwork and the testing and observation used to evaluate those procedures.

#### General

Grading should be performed to at least the minimum requirements of governing agencies, Chapters 18 and 33 of the California Building Code, CBC (2019) and the guidelines presented below.

#### **Preconstruction Meeting**

A preconstruction meeting should be held prior to site earthwork. Any questions the contractor has regarding our recommendations, general site conditions, apparent discrepancies between reported and actual conditions and/or differences in procedures the contractor intends to use should be brought up at that meeting. The contractor (including the main onsite representative) should review our report and these guidelines in advance of the meeting. Any comments the contractor may have regarding these guidelines should be brought up at that meeting.

#### Grading Observation and Testing

- I. Observation of the fill placement should be provided by our representative during grading. Verbal communication during the course of each day will be used to inform the contractor of test results. The contractor should receive a copy of the "Daily Field Report" indicating results of field density tests that day. If our representative does not provide the contractor with these reports, our office should be notified.
- 2. Testing and observation procedures are, by their nature, specific to the work or area observed and location of the tests taken, variability may occur in other locations. The contractor is responsible for the uniformity of the grading operations; our observations and test results are intended to evaluate the contractor's overall level of efforts during grading. The contractor's personnel are the only individuals participating in all aspect of site work. Compaction testing and observation should not be considered as relieving the contractor's responsibility to properly compact the fill.
- 3. Cleanouts, processed ground to receive fill, key excavations, and subdrains should be observed by our representative prior to placing any fill. It will be the contractor's responsibility to notify our representative or office when such areas are ready for observation.
- 4. Density tests may be made on the surface material to receive fill, as considered warranted by this firm.
- 5. In general, density tests would be made at maximum intervals of two feet of fill height or every 1,000 cubic yards of fill placed. Criteria will vary depending on soil conditions and size of the fill. More frequent testing may be performed. In any case, an adequate number of field density tests should be made to evaluate the required compaction and moisture content is generally being obtained.
- 6. Laboratory testing to support field test procedures will be performed, as considered warranted, based on conditions encountered (e.g. change of material sources, types, etc.) Every effort will



be made to process samples in the laboratory as quickly as possible and in progress construction projects are our first priority. However, laboratory workloads may cause in delays and some soils may require a **minimum of 48 to 72 hours to complete test procedures**. Whenever possible, our representative(s) should be informed in advance of operational changes that might result in different source areas for materials.

- 7. Procedures for testing of fill slopes are as follows:
  - a) Density tests should be taken periodically during grading on the flat surface of the fill, three to five feet horizontally from the face of the slope.
  - b) If a method other than over building and cutting back to the compacted core is to be employed, slope compaction testing during construction should include testing the outer six inches to three feet in the slope face to determine if the required compaction is being achieved.
- 8. Finish grade testing of slopes and pad surfaces should be performed after construction is complete.

#### Site Clearing

- 1. All vegetation, and other deleterious materials, should be removed from the site. If material is not immediately removed from the site it should be stockpiled in a designated area(s) well outside of all current work areas and delineated with flagging or other means. Site clearing should be performed in advance of any grading in a specific area.
- 2. Efforts should be made by the contractor to remove all organic or other deleterious material from the fill, as even the most diligent efforts may result in the incorporation of some materials. This is especially important when grading is occurring near the natural grade. All equipment operators should be aware of these efforts. Laborers may be required as root pickers.
- 3. Nonorganic debris or concrete may be placed in deeper fill areas provided the procedures used are observed and found acceptable by our representative.

#### **Treatment of Existing Ground**

- 1. Following site clearing, all surficial deposits of alluvium and colluvium as well as weathered or creep effected bedrock, should be removed unless otherwise specifically indicated in the text of this report.
- 2. In some cases, removal may be recommended to a specified depth (e.g. flat sites where partial alluvial removals may be sufficient). The contractor should not exceed these depths unless directed otherwise by our representative.
- 3. Groundwater existing in alluvial areas may make excavation difficult. Deeper removals than indicated in the text of the report may be necessary due to saturation during winter months.
- 4. Subsequent to removals, the natural ground should be processed to a depth of six inches, moistened to near optimum moisture conditions and compacted to fill standards.
- 5. Exploratory back hoe or dozer trenches still remaining after site removal should be excavated and filled with compacted fill if they can be located.

#### Fill Placement

- 1. Unless otherwise indicated, all site soil and bedrock may be reused for compacted fill; however, some special processing or handling may be required (see text of report).
- 2. Material used in the compacting process should be evenly spread, moisture conditioned, processed, and compacted in thin lifts six (6) to eight (8) inches in compacted thickness to



obtain a uniformly dense layer. The fill should be placed and compacted on a nearly horizontal plane, unless otherwise found acceptable by our representative.

- 3. If the moisture content or relative density varies from that recommended by this firm, the contractor should rework the fill until it is in accordance with the following:
  - a) Moisture content of the fill should be at or above optimum moisture. Moisture should be evenly distributed without wet and dry pockets. Pre-watering of cut or removal areas should be considered in addition to watering during fill placement, particularly in clay or dry surficial soils. The ability of the contractor to obtain the proper moisture content will control production rates.
  - b) Each six-inch layer should be compacted to at least 90 percent of the maximum dry density in compliance with the testing method specified by the controlling governmental agency. In most cases, the testing method is ASTM Test Designation D 1557.
- 4. Rock fragments less than eight inches in diameter may be utilized in the fill, provided:
  - a) They are not placed in concentrated pockets;
  - b) There is a sufficient percentage of fine-grained material to surround the rocks;
  - c) The distribution of the rocks is observed by, and acceptable to, our representative.
- 5. Rocks exceeding eight (8) inches in diameter should be taken off site, broken into smaller fragments, or placed in accordance with recommendations of this firm in areas designated suitable for rock disposal. On projects where significant large quantities of oversized materials are anticipated, alternate guidelines for placement may be included. If significant oversize materials are encountered during construction, these guidelines should be requested.
- 6. In clay soil, dry or large chunks or blocks are common. If in excess of eight (8) inches minimum dimension, then they are considered as oversized. Sheepsfoot compactors or other suitable methods should be used to break up blocks. When dry, they should be moisture conditioned to provide a uniform condition with the surrounding fill.

#### Slope Construction

- 1. The contractor should obtain a minimum relative compaction of 90 percent out to the finished slope face of fill slopes. This may be achieved by either overbuilding the slope and cutting back to the compacted core, or by direct compaction of the slope face with suitable equipment.
- 2. Slopes trimmed to the compacted core should be overbuilt by at least three (3) feet with compaction efforts out to the edge of the false slope. Failure to properly compact the outer edge results in trimming not exposing the compacted core and additional compaction after trimming may be necessary.
- 3. If fill slopes are built "at grade" using direct compaction methods, then the slope construction should be performed so that a constant gradient is maintained throughout construction. Soil should not be "spilled" over the slope face nor should slopes be "pushed out" to obtain grades. Compaction equipment should compact each lift along the immediate top of slope. Slopes should be back rolled or otherwise compacted at approximately every 4 feet vertically as the slope is built.
- 4. Corners and bends in slopes should have special attention during construction as these are the most difficult areas to obtain proper compaction.
- 5. Cut slopes should be cut to the finished surface. Excessive undercutting and smoothing of the face with fill may necessitate stabilization.


## UTILITY TRENCH CONSTRUCTION AND BACKFILL

Utility trench excavation and backfill is the contractors responsibility. The geotechnical consultant typically provides periodic observation and testing of these operations. While efforts are made to make sufficient observations and tests to verify that the contractors' methods and procedures are adequate to achieve proper compaction, it is typically impractical to observe all backfill procedures. As such, it is critical that the contractor use consistent backfill procedures.

Compaction methods vary for trench compaction and experience indicates many methods can be successful. However, procedures that "worked" on previous projects may or may not prove effective on a given site. The contractor(s) should outline the procedures proposed, so that we may discuss them **prior** to construction. We will offer comments based on our knowledge of site conditions and experience.

- 1. Utility trench backfill in slopes, structural areas, in streets and beneath flat work or hardscape should be brought to at least optimum moisture and compacted to at least 90 percent of the laboratory standard. Soil should be moisture conditioned prior to placing in the trench.
- 2. Flooding and jetting are not typically recommended or acceptable for native soils. Flooding or jetting may be used with select sand having a Sand Equivalent (SE) of 30 or higher. This is typically limited to the following uses:
  - a) shallow (12 + inches) under slab interior trenches and,
  - b) as bedding in pipe zone.

The water should be allowed to dissipate prior to pouring slabs or completing trench compaction.

- 3. Care should be taken not to place soils at high moisture content within the upper three feet of the trench backfill in street areas, as overly wet soils may impact subgrade preparation. Moisture may be reduced to 2% below optimum moisture in areas to be paved within the upper three feet below sub grade.
- 4. Sand backfill should not be allowed in exterior trenches adjacent to and within an area extending below a 1:1 projection from the outside bottom edge of a footing, unless it is similar to the surrounding soil.
- 5. Trench compaction testing is generally at the discretion of the geotechnical consultant. Testing frequency will be based on trench depth and the contractors procedures. A probing rod would be used to assess the consistency of compaction between tested areas and untested areas. If zones are found that are considered less compact than other areas, this would be brought to the contractors attention.

# JOB SAFETY

#### General

Personnel safety is a primary concern on all job sites. The following summaries are safety considerations for use by all our employees on multi-employer construction sites. On ground personnel are at highest risk of injury and possible fatality on grading construction projects. The company recognizes that construction activities will vary on each site and that job site safety is the contractor's responsibility. However, it is, imperative that all personnel be safety conscious to avoid accidents and potential injury.

In an effort to minimize risks associated with geotechnical testing and observation, the following precautions are to be implemented for the safety of our field personnel on grading and construction projects.



- I. Safety Meetings: Our field personnel are directed to attend the contractor's regularly scheduled safety meetings.
- 2. Safety Vests: Safety vests are provided for and are to be worn by our personnel while on the job site.
- 3. Safety Flags: Safety flags are provided to our field technicians; one is to be affixed to the vehicle when on site, the other is to be placed atop the spoil pile on all test pits.

In the event that the contractor's representative observes any of our personnel not following the above, we request that it be brought to the attention of our office.

### **Test Pits Location, Orientation and Clearance**

The technician is responsible for selecting test pit locations. The primary concern is the technician's safety. However, it is necessary to take sufficient tests at various locations to obtain a representative sampling of the fill. As such, efforts will be made to coordinate locations with the grading contractors authorized representatives (e.g. dump man, operator, supervisor, grade checker, etc.), and to select locations following or behind the established traffic pattern, preferably outside of current traffic. The contractors authorized representative should direct excavation of the pit and safety during the test period. Again, safety is the paramount concern.

Test pits should be excavated so that the spoil pile is placed away from oncoming traffic. The technician's vehicle is to be placed next to the test pit, opposite the spoil pile. This necessitates that the fill be maintained in a drivable condition. Alternatively, the contractor may opt to park a piece of equipment in front of test pits, particularly in small fill areas or those with limited access.

A zone of non-encroachment should be established for all test pits (see diagram below). No grading equipment should enter this zone during the test procedure. The zone should extend outward to the sides approximately 50 feet from the center of the test pit and 100 feet in the direction of traffic flow. This zone is established both for safety and to avoid excessive ground vibration, which typically decreases test results.



TEST PIT SAFETY PLAN



### Slope Tests

When taking slope tests, the technician should park their vehicle directly above or below the test location on the slope. The contractor's representative should effectively keep all equipment at a safe operation distance (e.g. 50 feet) away from the slope during testing.

The technician is directed to withdraw from the active portion of the fill as soon as possible following testing. The technician's vehicle should be parked at the perimeter of the fill in a highly visible location.

### Trench Safety

It is the contractor's responsibility to provide safe access into trenches where compaction testing is needed. Trenches for all utilities should be excavated in accordance with CAL-OSHA and any other applicable safety standards. Safe conditions will be required to enable compaction testing of the trench backfill.

All utility trench excavations in excess of 5 feet deep, which a person enters, are to be shored or laid back. Trench access should be provided in accordance with OSHA standards. Our personnel are directed not to enter any trench by being lowered or "riding down" on the equipment.

Our personnel are directed not to enter any excavation which;

- I. is 5 feet or deeper unless shored or laid back,
- 2. exit points or ladders are not provided,
- 3. displays any evidence of instability, has any loose rock or other debris which could fall into the trench, or
- 4. displays any other evidence of any unsafe conditions regardless of depth.

If the contractor fails to provide safe access to trenches for compaction testing, our company policy requires that the soil technician withdraws and notifies their supervisor. The contractors representative will then be contacted in an effort to effect a solution. All backfill not tested due to safety concerns or other reasons is subject to reprocessing and/or removal.

#### Procedures

In the event that the technician's safety is jeopardized or compromised as a result of the contractor's failure to comply with any of the above, the technician is directed to inform both the developer's and contractor's representatives. If the condition is not rectified, the technician is required, by company policy, to immediately withdraw and notify their supervisor. The contractor's representative will then be contacted in an effort to effect a solution. No further testing will be performed until the situation is rectified. Any fill placed in the interim can be considered unacceptable and subject to reprocessing, recompaction or removal.

In the event that the soil technician does not comply with the above or other established safety guidelines, we request that the contractor bring this to technicians attention and notify our project manager or office. Effective communication and coordination between the contractors' representative and the field technician(s) is strongly encouraged in order to implement the above safety program and safety in general.

The safety procedures outlined above should be discussed at the contractor's safety meetings. This will serve to inform and remind equipment operators of these safety procedures particularly the zone of non-encroachment.



The safety procedures outlined above should be discussed at the contractor's safety meetings. This will serve to inform and remind equipment operators of these safety procedures particularly the zone of non-encroachment.

