

Attachment 3 Structural BMP Maintenance Information

This is the cover sheet for Attachment 3.

R		(
The City of	P V)
SAN DIEC	SO	
THE CITY OF SAN DIEGO WHEN RECORDED MAIL T	AND O:	
Latitude 33 Planning & Eng	gineering	
9968 Hibert St., 2nd Floor		
San Diego, CA	92131	

(THIS SPACE IS FOR RECORDER'S USE ONLY)

STORM WATER MANAGEMENT AND DISCHARGE CONTROL MAINTENANCE AGREEMENT APPROVAL NUMBER: ASSESSORS PARCEL NUMBER: PROJECT NUMBER: 2505422 306-420-04, 05, 10 679136

This agreement is made by and between the City of San Diego, a municipal corporation [City] and _ SEA BREEZE 56, LLC

the owner or duly authorized representative of the owner [Property Owner] of property located at 8092 1/3 Carmel Mountain Road San Diego, CA 92129

(PROPERTY ADDRESS)

and more particularly described as: Lots 1-6 of Merge 56 Unit 1 Map 16433

(LEGAL DESCRIPTION OF PROPERTY)

in the City of San Diego, County of San Diego, State of California.

Property Owner is required pursuant to the City of San Diego Municipal Code, Chapter 4, Article 3, Division 3, Chapter 14, Article 2, Division 2, and the Land Development Manual, Storm Water Standards to enter into a Storm Water Management and Discharge Control Maintenance Agreement [Maintenance Agreement] for the installation and maintenance of Permanent Storm Water Best Management Practices [Permanent Storm Water BMP's] prior to the issuance of construction permits. The Maintenance Agreement is intended to ensure the establishment and maintenance of Permanent Storm Water BMP's onsite, as described in the attached exhibit(s), the project's Storm Water Quality Management Plan [SWQMP] and Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s): <u>40552-D</u>

Property Owner wishes to obtain a building or engineering permit according to the Grading and/or Improvement Plan Drawing No(s) or Building Plan Project No(s): <u>40552-D</u>.

Continued on Page 2

DS-3247 (05-16)

Page 2 of 2 City of San Diego • Development Services Department • Storm Water Management and Discharge Control

NOW, THEREFORE, the parties agree as follows:

Property Owner shall have prepared, or if qualified, shall prepare an Operation and Maintenance Procedure [OMP] for Permanent Storm Water BMP's, satisfactory to the City, according to the attached exhibit(s), consistent with the Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s): <u>40552-D</u>.

Property Owner shall install, maintain and repair or replace all Permanent Storm Water BMP's within their property, according to the OMP guidelines as described in the attached exhibit(s), the project's SWQMP and Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s) <u>40552-D</u>.

 Property Owner shall maintain operation and maintenance records for at least five (5) years. These records shall be made available to the City for inspection upon request at any time.

This Maintenance Agreement shall commence upon execution of this document by all parties named hereon, and shall run with the land.

Executed by the City of San Diego and by Property Owner in San Diego, California.

4 de		
11-		
(Owner Signature)	THE CITY OF SAN DIEGO	
	APPROVED:	
Gary Levitt, President		
(Print Name and Title)		
Sea Breeze 56, LLC	(City Control Engineer Signature)	
company, organization numer	(city control Engineer Signature)	
04/22/2021	(Print Name)	
(Date)		
	(Date)	

$(\mathcal{F}, \mathcal{W}, \mathcal{V})$	
S V C	
CALIFORNIA ALL-PURPOSE ACKNOWLED	GMENT CIVIL CODE S 1
	20202020202020202020202020202020202020
A notany public or other officer completing this certifi	coto vorifico anky the identity of the individual when iterativ
decument to which this partificate is attached, and not	the truthfulness, assures an unlight of the descent
docament to which this certificate is attached, and not	the truthulness, accuracy, or validity of that document.
State of California)
County of San Diego)
	1
	mara Galeano, Notary Public
On 7 22 2021 before me, Cion	india Galeano, Hotary I abite
Qn <u>7 22 2027</u> before me, <u>Cion</u> Date	Here Insert Name and Title of the Officer
On <u>7 22 2027</u> before me, <u>Cion</u> Date	Here Insert Name and Title of the Officer
Date Dersonally appeared <u>Cary</u> Levitt	Here Insert Name and Title of the Officer
Date Dersonally appeared <u>bary Levitt</u>	Here Insert Name and Title of the Officer Name(s) of Signer(s)
Date Date personally appeared <u>Gary Lavitt</u>	Here Insert Name and Title of the Officer Name(s) of Signer(s)

who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Signature

Signature of Notary Public

Place Notary Seal Above

- OPTIONAL

Though this section is optional, completing this information can deter alteration of the document or fraudulent reattachment of this form to an unintended document.

ned Document ment:	Docu	ment Date:			
Signer(s) Other Than	Named Above:				
d by Signer(s)					
	Signer's Name:				
- Title(s):	□ Corporate Officer - Title(s):				
ed 🗆 General	🗆 Partner – 🗆	Limited General			
Attorney in Fact	🗋 Individual	□ Attorney in Fact			
Guardian or Conservator	□ Trustee	Guardian or Conservator			
	□ Other:				
g:	Signer Is Repre	esenting:			
	hed Document iment: Signer(s) Other Than d by Signer(s) - Title(s): ed	hed Document Iment: Docu Signer(s) Other Than Named Above: d by Signer(s) Signer's Name: - Title(s): Signer's Name: - Title(s): Corporate Of ed General Partner Attorney in Fact Individual Guardian or Conservator Trustee Other: g: Signer Is Represe			

©2014 National Notary Association • www.NationalNotary.org • 1-800-US NOTARY (1-800-876-6827) Item #5907

ME	TION PERMANENT BMP HIBIT 'A' IT 1 DMAS 12 - 14 -SWMDOMA ET 3 OF 5	TON PERMANENT BMP OPERATION H	WIROL MANTENANCE AGREEMENT APPROVAL NO.: 2505422	MAINTENANCE METHOD QUANTITY NUMBER(S)	///////////////////////////////////////	TASKS INCLUDE TRASH REMOVAL FROM BASIN 3 24-26, 34	
	CONSTRUC EX ONSITE UN SHE	-CONSTRUC MAINTEN	NIENT AND DISCHARGE C RTY DESIGNEE: PROPER	MAINTENANCE FREQUENCY	1111	AS NEEDED AFTER RAIN EVENT	
-	NERGE 56	POST	STORM WATER MANAGE O&M RESPONSIBLE PAH	MAINTENANCE TASK		TRASH & SEDIMENT REMOVAL	3
	-			BMP DESCRIPTION	POLLUTANT CONTROL	BIOFIL TRATION BASIN	

10 (M

5

MERGE 56 ONSITE UNIT 1 DMAS 12 - 14 - SWNDCMA Post-construction Permanent BMP < exhibit SHEET 4 OF 5

ر کرک

BIOFILTRATION BASIN NOTES

- (1) AMENDED SOIL SHALL CONFORM TO THE STANDARD SPECIFICATION PER APPENDIX F.4 OF THE CITY OF SAN DIEGO STORM WATER STANDARDS MANUAL AND SHALL MAINTAIN A MINIMUM INFILTRATION RATE OF 5 IN HIR OVER THE LIFETIME OF THE FACILITY.
- 2) GRAVEL STORAGE LAYER SHALL CONFORM TO THE STANDARD SPECIFICATION PER APPENDIX F.5 OF THE CITY OF SAN DIEGO STORM WATER STANDARDS MANUAL AND SHALL CONSIST OF A MINIMUM 6" FILTER COURSE OVER MINIMUM 12" OF CLEAN WASHED ASTM #57 OPEN GRADED STONE (VARIES PER HYDROMOD CALCS).
- FILTER COURSE SHALL CONSIST OF 3" LAYER OF CLEAN WASHED ASTM 33 FINE AGGREGATE SAND OVERLYING A 3" LAYER OF ASTM NO. 8 STONE.
- UNDERDRAINS SHALL BE MINIMUM 6" SLOTTED PVC PIPE CONFORMING TO ASTM D3034 OR CORRUGATED HDP CONFORMING TO AASHTO 252M. CLEANOUT PORTS SHALL BE A MINIMUM 8" DIAMETER WITH LOCKABLE CAP AND PLACED EVERY 50' OF UNDERDRAIN LENGTH. $\langle \mathfrak{s} \rangle$
- BIOFILTRATION BASINS SHALL BE PLANTED WITH ADEQUATE GROUNDCOVER AS OUTLINED IN APPENDIX E OF THE SAN DIEGO LOW IMPACT DEVELOPMENT DESIGN MANUAL. SEE LANDSCAPE PLANS SHEETS FOR PLANTING PLAN. 4
- $\left(5\right)$ BF-1 BIOFIL TRATION BASINS WHICH DO NOT INCORPORATE ANY INFIL TRATION SHALL BE FULLY LINED WITH A 30MIL IMPERMEABLE LINER ON BOTH SIDES AND THE BOTTOM OF THE BASIN EXCAVATION.

NP		ſ
The City of	Mr. C)
SAN DIE	GOU	
RECORDING REQUESTED	BY:	
THE CITY OF SAN DIEGO WHEN RECORDED MAIL T	AND O:	
Latitude 33 Planning & En 9968 Hibert St. 2nd Eloor	gineering	
San Diego, CA	92131	

(THIS SPACE IS FOR RECORDER'S USE ONLY)

STORM WATER MANAGEMENT AND DISCHARGE CONTROL MAINTENANCE AGREEMENT

APPROVAL NUMBER:	ASSESSORS PARCEL NUMBER:	PROJECT NUMBER:
2520475	306-420-04, 05, 10	679136

This agreement is made by and between the City of San Diego, a municipal corporation [City] and _ SEA BREEZE 56, LLC

the owner or duly authorized representative of the owner [Property Owner] of property located at 8092 1/3 Carmel Mountain Road San Diego, CA 92129

(PROPERTY ADDRESS)

and more particularly described as: Lots "A", "D -"F" of Merge 56 Unit 1 Map 16433, Lot "G" of Merge 56 Unit 2 Map

(LEGAL DESCRIPTION OF PROPERTY)

in the City of San Diego, County of San Diego, State of California.

Property Owner is required pursuant to the City of San Diego Municipal Code, Chapter 4, Article 3, Division 3, Chapter 14, Article 2, Division 2, and the Land Development Manual, Storm Water Standards to enter into a Storm Water Management and Discharge Control Maintenance Agreement [Maintenance Agreement] for the installation and maintenance of Permanent Storm Water Best Management Practices [Permanent Storm Water BMP's] prior to the issuance of construction permits. The Maintenance Agreement is intended to ensure the establishment and maintenance of Permanent Storm Water BMP's onsite, as described in the attached exhibit(s), the project's Storm Water Quality Management Plan [SWQMP] and Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s): <u>40552-D</u>

Property Owner wishes to obtain a building or engineering permit according to the Grading and/or Improvement Plan Drawing No(s) or Building Plan Project No(s): <u>40552-D</u>.

Continued on Page 2

Printed on recycled paper. Visit our web site at <u>www.sandiego.gov/development-services</u>. Upon request, this information is available in alternative formats for persons with disabilities.

DS-3247 (05-16)

Page 2 of 2 City of San Diego • Development Services Department • Storm Water Management and Discharge Control

NOW, THEREFORE, the parties agree as follows:

Property Owner shall have prepared, or if qualified, shall prepare an Operation and Maintenance Procedure [OMP] for Permanent Storm Water BMP's, satisfactory to the City, according to the attached exhibit(s), consistent with the Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s): <u>40552-D</u>.

Property Owner shall install, maintain and repair or replace all Permanent Storm Water BMP's within their property, according to the OMP guidelines as described in the attached exhibit(s), the project's SWQMP and Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s) <u>40552-D</u>.

3. Property Owner shall maintain operation and maintenance records for at least five (5) years. These records shall be made available to the City for inspection upon request at any time.

This Maintenance Agreement shall commence upon execution of this document by all parties named hereon, and shall run with the land.

Executed by the City of San Diego and by Property Owner in San Diego, California.

(Owner Signature)	THE CITY OF SAN DIEGO APPROVED:	
Gary Levitt, President (Print Name and Title)		
Sea Breeze 56, LLC		
Company/Organization Name)	(City Control Engineer Signature)	
04/22/2021 (Date)	(Print Name)	
(5555)	(Date)	

	CALIFORNIA ALL-PURP	SE ACKNOW	LEDGME	NT Mananananananananananananananananananan	CIVIL CODE § 1189
, G	A notary public or other offic document to which this certifi	er completing this cate is attached, a	s certificate v and not the tra	erifies only the identity of the in uthfulness, accuracy, or validity c	dividual who signed the of that document.
	State of California)		
	County of <u>San Diego</u>)		
	On 4-22-2021	before me	Ciomara	Galeano, Notary Public	
	Date	1		Here Insert Name and Title	of the Officer
	personally appeared	Gary 1	EVIA		
		/	1	lame(s) of Signer(s)	

who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

Signature

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Signature of Notary Public

Place Notary Seal Above

- OPTIONAL -

Though this section is optional, completing this information can deter alteration of the document or fraudulent reattachment of this form to an unintended document.

Title or Type of Docum	ent:	Doci	iment Date:
Number of Pages:	Signer(s) Other Tha	n Named Above:	
Capacity(ies) Claimed	by Signer(s)		
Signer's Name:		Signer's Name:	
□ Corporate Officer - 7	Title(s):	Corporate Of	fficer - Title(s):
□ Partner - □ Limited	General	🗆 Partner 🗆	Limited General
🗆 Individual 🛛 🗆 At	corney in Fact	Individual	Attorney in Fact
Trustee Gu Gu Other:	ardian or Conservator	□ Trustee □ Other:	Guardian or Conservator
Signer Is Representing:		Signer Is Repre	esentina:

©2014 National Notary Association • www.NationalNotary.org • 1-800-US NOTARY (1-800-876-6827) Item #5907

POST-	CONSTRUCTION PERMANENT E	MP EXHIE		
	SHEET 2 OF 15		MODULAR WETLANDS SYSTEM TABLE	
DMA	1-0 SD-B	BMP	AREA OR FLOW RATE	ORIFICE AMETER (IN)
SD-B		-	MWS L-4-8, Q=0.115CFS (32 SF)	
	COMA 2	2	MWS L-8-12, Q=0.346CFS (96 SF)	
		m 17	MWS L-4-6, Q=0.073CFS (24 SF)	4 2 2
SD-A		4	MWS L-8-12 Q=0.346CFS (96 SF)	
		- 5	MWS L-4-6, Q=0.073CFS (24 SF)	1
	SD-B X	9	MWS L-4-17, Q=0.175CFS (90 SF)	1
<u></u>		~	MWS L-4-4, Q=0.052CFS (16 SF)	
<u>,, ,, ,</u>		8	MWS L-4-8, Q=0.115CFS (32 SF)	I
		6	MWS L-4-8, Q=0.115CFS (32 SF)	1
SD-B	DINA 6	 		8
			HYDROMODIFICATION TABLE	
		BMP	AREA OR FLOW RATE	ORIFICE DIAMETER (IN)
		Z1 S	TORMTRAP STORAGE VAULT A (85,305 CF)	6.5"
DMA 5	DMA 4 SD-B		XXXX LANDSCAPE FOR VOLUME RETENTION	
BD-B	DMA 8	-A-		
	STORAGE			
	DMA 9 EM			

	<u>_</u> 65	SWAN	ON A CU	0	ŝ	QUANTITY SHEET	1111		9 24-26, 34-37			t 24, 34, 38-40	
ME	CTION PERMANENT BMP XHIBIT 'A'	JNIT 1 DMAS 1 - 9 -SWMDOMA EET 3 OF 15	CTION PERMANENT BMP OPERATION NANCE PROCEDURE DETAILS	E CONTROL MAINTENANCE AGREEMENT APPROVAL NO.: 2520475	PERTY OWNER (SEA BREEZE PROPERTIES, LLC)	MAINTENANCE METHOD	///////////////////////////////////////	THS TASKS INCLUDE TRASH REMOVAL FROM SCREENING DEVICE AND SEDIMENT REMOVAL FROM SEPARATION CHAMBER.	VTHS REPLACE CARTRIDGE FILTER MEDIA AND DRAIN DOWN FILTER MEDIA.	THS PRUNE VEGETATION AND REMOVE AND REPLACE ANY DEAD PLANTS.	///////////////////////////////////////	INSPECT AND VACUUM IF NECESSARY. CLEAR ORIFICE (D=.50") OF ANY DEBRIS.	
	ONSTRU	ONSITE (SH	-CONSTRU MAINTE	AENT AND DISCHARG	TY DESIGNEE: PRO	MAINTENANCE FREQUENCY	1111	EVERY 6-24 MON	EVERY 12-24 MO	EVERY 6-12 MON		EVERY 6 MONTHS	
	POST-C	MERGE 56	POST-	STORM WATER MANAGEN	O&M RESPONSIBLE PAR	MAINTENANCE TASK	////	TRASH & SEDIMENT REMOVAL	REPLACE FILTER MEDIA	TRIM VEGETATION		VAUL T INSPECTION	
						BMP DESCRIPTION	POLLUTANT CONTROL	MODULAR WETLANDS	SYSTEM		HYDROMODIFICA TION	STORM CAPTURE VAULTS	

2

.

~

(e

O, U, U	Pr .	
The City of		
SANDIEGO		
RECORDING REQUESTED BY:		
WHEN RECORDED MAIL TO:		
Latitude 33 Planning & Engineering	-	
San Diego CA 92131		
		FOR RECORDER'S USE ONLY)
STORM WATER MANAGE	MENT AND DISCHARGE CONTROL MAI	INTENANCE AGREEMENT
APPROVAL NUMBER:	ASSESSORS PARCEL NUMBER:	PROIECT NUMBER:
2505415	306-420-04, 10	679132
the owner or duly authorized repres-	entative of the owner [Property Owner] o	f property located at
8162 1/3 Carmel Mountain Road San	Diego, CA 92129	r property located at
	(PROPERTY ADDRESS)	
and more particularly described act		and a second second second
Map 16433	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map	, Lot 7 of Merge 56 Uni
Map 16433	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (Legal Description of Property)	, Lot 7 of Merge 56 Uni
Map 16433 in the City of San Diego, County of Sa	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California.	, Lot 7 of Merge 56 Un
Map 16433	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California.	, Lot 7 of Merge 56 Uni
<u>Map 16433</u> in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14 Article 2 Division 2 an	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. nt to the City of San Diego Municipal Co	, Lot 7 of Merge 56 Uni de, Chapter 4, Article 3, Division Water Standards to enter in
Map 16433 in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, an Storm Water Management and Disc	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. nt to the City of San Diego Municipal Co nd the Land Development Manual, Storr scharge Control Maintenance Agreement	de, Chapter 4, Article 3, Division Mater Standards to enter ir Maintenance Agreement] fo
Map 16433 in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, an Storm Water Management and Disc installation and maintenance of Per	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. nt to the City of San Diego Municipal Co nd the Land Development Manual, Storr scharge Control Maintenance Agreement manent Storm Water Best Management	de, Chapter 4, Article 3, Division Mater Standards to enter ir [Maintenance Agreement] fo Practices [Permanent Storm V
Map 16433 in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, an Storm Water Management and Disc installation and maintenance of Per BMP's] prior to the issuance of con	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr scharge Control Maintenance Agreement manent Storm Water Best Management Instruction permits. The Maintenance Agr	de, Chapter 4, Article 3, Division n Water Standards to enter in [Maintenance Agreement] fo Practices [Permanent Storm V reement is intended to ensure
Map 16433 in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, an Storm Water Management and Disc installation and maintenance of Per BMP's] prior to the issuance of con establishment and maintenance of P	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr scharge Control Maintenance Agreement manent Storm Water Best Management instruction permits. The Maintenance Agr Permanent Storm Water BMP's onsite, as a	de, Chapter 4, Article 3, Division n Water Standards to enter ir [Maintenance Agreement] for Practices [Permanent Storm V reement is intended to ensure described in the attached exhib
Map 16433 in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, an Storm Water Management and Disc installation and maintenance of Per BMP's] prior to the issuance of con establishment and maintenance of P the project's Storm Water Quality M	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr scharge Control Maintenance Agreement charge Control Maintenance Agreement manent Storm Water Best Management instruction permits. The Maintenance Agr Permanent Storm Water BMP's onsite, as of Management Plan [SWQMP] and Grading	de, Chapter 4, Article 3, Divisi n Water Standards to enter in [Maintenance Agreement] fo Practices [Permanent Storm V reement is intended to ensure described in the attached exhil
Map 16433 in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, ar Storm Water Management and Disc installation and maintenance of Per BMP's] prior to the issuance of con establishment and maintenance of P the project's Storm Water Quality M No(s), or Building Plan Project No(s):	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr scharge Control Maintenance Agreement charge Control Maintenance Agreement manent Storm Water Best Management permanent Storm Water BMP's onsite, as a Management Plan [SWQMP] and Grading 40553-D	de, Chapter 4, Article 3, Division n Water Standards to enter in [Maintenance Agreement] for Practices [Permanent Storm V reement is intended to ensure described in the attached exhilt and/or Improvement Plan Dra
<u>Map 16433</u> in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, ar Storm Water Management and Dis- installation and maintenance of Per BMP's] prior to the issuance of con establishment and maintenance of P the project's Storm Water Quality M No(s), or Building Plan Project No(s):	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr scharge Control Maintenance Agreement charge Control Maintenance Agreement manent Storm Water Best Management permanent Storm Water BMP's onsite, as a Management Plan [SWQMP] and Grading <u>40553-D</u>	de, Chapter 4, Article 3, Divisi n Water Standards to enter in [Maintenance Agreement] fo Practices [Permanent Storm V reement is intended to ensure described in the attached exhil ; and/or Improvement Plan Dra
<u>Map 16433</u> in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, ar Storm Water Management and Dis- installation and maintenance of Per BMP's] prior to the issuance of con establishment and maintenance of P the project's Storm Water Quality M No(s), or Building Plan Project No(s): Property Owner wishes to obtain a b Improvement Plan Drawing No(s) or	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr scharge Control Maintenance Agreement manent Storm Water Best Management instruction permits. The Maintenance Agr Permanent Storm Water BMP's onsite, as of Anagement Plan [SWQMP] and Grading <u>40553-D</u>	, Lot 7 of Merge 56 Un de, Chapter 4, Article 3, Divisi n Water Standards to enter i [Maintenance Agreement] fo Practices [Permanent Storm V reement is intended to ensur described in the attached exhi and/or Improvement Plan Dra to the Grading and/or
Map 16433 in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, ar Storm Water Management and Dis- installation and maintenance of Per BMP's] prior to the issuance of con establishment and maintenance of P the project's Storm Water Quality M No(s), or Building Plan Project No(s): Property Owner wishes to obtain a k Improvement Plan Drawing No(s) or	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr scharge Control Maintenance Agreement manent Storm Water Best Management instruction permits. The Maintenance Agr Permanent Storm Water BMP's onsite, as of Management Plan [SWQMP] and Grading <u>40553-D</u>	, Lot 7 of Merge 56 Un de, Chapter 4, Article 3, Divisi n Water Standards to enter in [Maintenance Agreement] fo Practices [Permanent Storm V reement is intended to ensur- described in the attached exhil and/or Improvement Plan Dra to the Grading and/or
Map 16433 in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, ar Storm Water Management and Dis- installation and maintenance of Per BMP's] prior to the issuance of con establishment and maintenance of P the project's Storm Water Quality M No(s), or Building Plan Project No(s): Property Owner wishes to obtain a k Improvement Plan Drawing No(s) or	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr acharge Control Maintenance Agreement manent Storm Water Best Management instruction permits. The Maintenance Agr Permanent Storm Water BMP's onsite, as a Management Plan [SWQMP] and Grading <u>40553-D</u> building or engineering permit according Building Plan Project No(s): <u>40553-D</u>	, Lot 7 of Merge 56 Uni de, Chapter 4, Article 3, Division n Water Standards to enter ir [Maintenance Agreement] for Practices [Permanent Storm V reement is intended to ensure described in the attached exhile and/or Improvement Plan Dra to the Grading and/or
<u>Map 16433</u> in the City of San Diego, County of Sa Property Owner is required pursuar Chapter 14, Article 2, Division 2, ar Storm Water Management and Dis- installation and maintenance of Per BMP's] prior to the issuance of con establishment and maintenance of P the project's Storm Water Quality M No(s), or Building Plan Project No(s): Property Owner wishes to obtain a b Improvement Plan Drawing No(s) or	Lots 1-87, "A"-"F" of Merge 56 Unit 2 Map (LEGAL DESCRIPTION OF PROPERTY) an Diego, State of California. Int to the City of San Diego Municipal Co and the Land Development Manual, Storr scharge Control Maintenance Agreement manent Storm Water Best Management instruction permits. The Maintenance Agr Permanent Storm Water BMP's onsite, as Management Plan [SWQMP] and Grading 40553-D	, Lot 7 of Merge 56 U de, Chapter 4, Article 3, Divie n Water Standards to enter [Maintenance Agreement] f Practices [Permanent Storm reement is intended to ensu described in the attached exh and/or Improvement Plan Dr to the Grading and/or

DS-3247 (05-16)

Page 2 of 2 City of San Diego • Development Services Department • Storm Water Management and Discharge Control

NOW, THEREFORE, the parties agree as follows:

Property Owner shall have prepared, or if qualified, shall prepare an Operation and Maintenance Procedure [OMP] for Permanent Storm Water BMP's, satisfactory to the City, according to the attached exhibit(s), consistent with the Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s): <u>40553-D</u>.

Property Owner shall install, maintain and repair or replace all Permanent Storm Water BMP's within their property, according to the OMP guidelines as described in the attached exhibit(s), the project's SWQMP and Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s) <u>40553-D</u>.

3. Property Owner shall maintain operation and maintenance records for at least five (5) years. These records shall be made available to the City for inspection upon request at any time.

This Maintenance Agreement shall commence upon execution of this document by all parties named hereon, and shall run with the land.

Executed by the City of San Diego and by Property Owner in San Diego, California.

19	See Attached Exhibit(s): "A", "B", "C"	3
(Owner Signature)	THE CITY OF SAN DIEGO	
Gary Levitt, President	AFFROVED.	
(Print Name and Title)		
Sea Breeze 56, LLC		
Company/Organization Name)	(City Control Engineer Signature)	
04/22/2021	(Print Name)	
(Date)		
	(Date)	

	o l	
	NO.	
N. O. 1	0	
	e acknowiedchent	
VALUUNINA ALL'UNI US	e agrindwledgwien i 20101010101010101010101010	CIVIL CODE 9 1
A notany public or other officer of	completing this certificate verifi	ies only the identity of the individual who algoed t
The provident and a series of the providence	somptoing the continuate rolling	ies only the identity of the individual who signed i
document to which this certificate	e is attached, and not the truthf	fulness, accuracy, or validity of that document.
document to which this certificate	e is attached, and not the truthf	fulness, accuracy, or validity of that document.
document to which this certificate	e is attached, and not the truthf	fulness, accuracy, or validity of that document.
State of California)	fulness, accuracy, or validity of that document.
State of California County of <u>San Diego</u> On $4/-22 - 302/$) before me. Ciomara G	aleano, Notary Public
State of California County of <u>San Diego</u> On $4 - 22 - 3021$ Date) before me, <u>Ciomara Ga</u>	aleano, Notary Public
State of California County of <u>San Diego</u> On $4-33-3021$ Date	before me, <u>Ciomara Ga</u> <i>Amagina Le vi He</i>	aleano, Notary Public ere Insert Name and Title of the Officer
State of California County of <u>San Diego</u> On <u>$4-22-3021$</u> Date personally appeared <u>G</u>	before me, <u>Ciomara Gary</u> ary Levitt Nar	aleano, Notary Public ere Insert Name and Title of the Officer

who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/aresubscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Signature

Signature of Notary Public

Place Notary Seal Above

OPTIONAL

Though this section is optional, completing this information can deter alteration of the document or fraudulent reattachment of this form to an unintended document.

Description of Title or Type of	Attached Document	Docu	ument Date:		
Number of Pag	jes: Signer(s) Other Ti	han Named Above:	n Named Above:		
Capacity(ies) C	laimed by Signer(s)	Signer's Name			
□ Corporate Officer - Title(s):		Corporate Of	Corporate Officer - Title(s):		
□ Partner - □	Limited General	🗆 Partner – 🗆	Limited General		
🗆 Individual	☐ Attorney in Fact	Individual	□ Attorney in Fact		
Trustee Other:	Guardian or Conservator	□ Trustee □ Other:	Guardian or Conservator		
Signer Is Repre	senting:	Signer Is Repre	esenting:		

©2014 National Notary Association • www.NationalNotary.org • 1-800-US NOTARY (1-800-876-6827) Item #5907

8.66

ø2.38 EA

WETLANDMEDIA VOLUME (CY)

ORIFICE SIZE (DIA. INCHES)

STRUCTURAL REVIEW - DIMENSIONS MAY VARY.

NOTES: PRELIMINARY NOT FOR CONSTRUCTION. UNIT PENDING FINAL

EXHIBIT B, SHEET 2 OF 8 SWMDCMA (PRIVATE) MERGE 56 ONSITE UNIT 2 DMAS 15, 16, & 17 CITY OF SAN DIEGO, CALIFORNIA

PEDESTRIAN

ø30"

8.66

Ø2.38 EA

PEDESTRIAN JEA 30° X 48

PEDESTRIAN

2EA Ø30'

STRUCTURAL REVIEW - DIMENSIONS MAY VARY.

NOTES: PRELIMINARY NOT FOR CONSTRUCTION. UNIT PENDING FINAL

SURFACE LOAD

FRAME & COVER

WETLANDMEDIA VOLUME (CY)

ORIFICE SIZE (DIA. INCHES)

MWS-L-8-20-6'-0"-V-UG

EXHIBIT B, SHEET 4 OF 8 **SWMDCMA (PRIVATE)** MERGE 56 ONSITE UNIT 2 DMAS 15, 16, & 17 CITY OF SAN DIEGO, CALIFORNIA

. . .

. . . .

362.83

PRETREATMENT

377.15

PEDESTRIAN

2EA ø30"

NOTES: PRELIMINARY NOT FOR CONSTRUCTION.

RIM ELEVATION

SURFACE LOAD

FRAME & COVER

WETLANDMEDIA VOLUME (CY)

ORIFICE SIZE (DIA. INCHES)

BIOFILTRATION

377.15

PEDESTRIAN

3EA 30" X 48'

DISCHARGE

377.15

PEDESTRIAN

25A Ø30"

10.52

ø2.68 EA

DMA -17 BF-3-17-1 MWS-L-8-24-6'-0"-V-UG

EXHIBIT B, SHEET 8 OF 8 SWMDCMA (PRIVATE) MERGE 56 ONSITE UNIT 2 DMAS 15, 16, & 17 CITY OF SAN DIEGO, CALIFORNIA

POST-CONSTRUCTION PERMANENT BMP EXHIBIT 'C' MERGE 56 ONSITE UNIT 2 DMAS 15, 16, & 17 - SWMDCMA

11

	POST-CONSTRUCTION PERMANENT BMP OPERATION + MAINTENANCE PROCEDURE				
	DETAILS				
		STORM WATER MANAGE	MENT AND DISCHARGE CONTROL MAINTENANCI	E AGREEMENT APPR	OVAL NO.: 2505415
		O&M RESPONSIBLE P	ARTY DESIGNEE: PROPERTY OWNER (LENNAR HO	MES OF CALIFORNIA	, INC.)
BMP	MAINTENANCE MAINTENANCE				
DESCRIPTION	TASK	FREQUENCY		QUANTILY	SHEET NUMBER(S)
POLLUTANT CONTROL					
	TRASH &		TASKS INCLUDE TRASH REMOVAL FROM	1	
	SEDIMENT	EVERY 6-24 MONTHS	SCREENING DEVICE AND SEDIMENT REMOVAL		34, 42-45
	REMOVAL		FROM SEPARATION CHAMBER.	7	
STSTEIVI	REPLACE FILTER		REPLACE CARTRIDGE FILTER MEDIA AND		
	MEDIA	EVERY 12-24 MONTHS	DRAIN DOWN FILTER MEDIA.		
SITE DESIGN ELEMENTS	52.982.8			的時期的目标和	
	VARIES- SEE	AS NEEDED AFTER RAIN		-	42
	CITY OF SAN		VARIES OF OTV OF SAM DIEGO HANDROOK		
	DIEGO	EVENT	VARIES- SEE CITT OF SAN DIEGO HANDBOOK		
	HANDBOOK				
SOURCE CONTROL					
SC-1 THROUGH 6	VARIES- SEE		is a second s		
	CITY OF SAN		VARIES- SEE CITY OF SAN DIEGO HANDBOOK	-	42
	DIEGO				
	HANDBOOK				

EXHIBIT C SWMDCMA (PRIVATE) MERGE 56 ONSITE UNIT 2 DMAS 15, 16 & 17 CITY OF SAN DIEGO, CALIFORNIA

Attachment 4 Copy of Plan Sheets Showing Permanent Storm Water BMPs

This is the cover sheet for Attachment 4.

MEG'

Attachment 5 Drainage Report

Attach project's drainage report. Refer to Drainage Design Manual to determine the reporting requirements.

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

San Diego Developmental Services Department 101 Ash St, San Diego, CA 92101

SUBJECT:

April 19, 2021

MERGE 56 UNIT 1 & Unit 2 CONSTRUCTION CHANGE "A", PTS 679136 & 679132 ADDENDUM DRAINAGE REPORT

The letter is to address the proposed changes in the Merge 56 Unit 2 Construction Change "A", PTS 679132 (Construction Change to PTS 599996) Drainage assessment, and in the Merge 56 Unit 1 Construction Change "A", PTS 679136 (Construction Change to PTS 596359) Drainage assessment.

Note: Please refer to the attached Proposed Drainage Map for the Drainage Management Areas mentioned below.

PROPOSED PROJECT DESCRIPTION

This application proposes enacting changes to site grading and design across both Merge 56 Unit 1 and Merge 56 Unit 2 (for greater detail on these changes, please see respective PTS submittal.) These changes for Unit 1 include, but are not limited to: the shifting and realignment of the onsite StormTrap storage vault and the shift of the BMP 12 biofiltration basin. These changes for Unit 2 include, but are not limited to: shifting the street alignment of Merge 56 Private Drive N further South, significantly redesigning the street alignment of Merge 56 Private Drive "Q" and Private Drive "P", and reworking lot and building design within the entirety of Unit 2, as well as adjusting Drainage Management Area design and storm drain design.

PROJECT SITE DRAINAGE

Previously Approved Conditions: Drainage from all lots within the Unit 2 area was parsed into 11 DMAs, managed by 6 BMP Biofiltration basins (BMP 14, 16-20), and 5 Modular Wetlands System units (BMP 3, 6, 7, 10, 11) for street treatment. Drainage from all lots within the Unit 1 area was parsed into 13 DMAs, managed by 4 BMP Biofiltration Basins (BMP 12-15), and 9 Modular Wetlands System units (BMP 1-6, 8-10) for street treatment.

Outflow was primarily conveyed through the backbone storm drain systems within Private Drive M (now Merge Avenue per Street Naming approval) and Private Drive N. Drainage from this system travels north and west and confluence with the drainage systems within Camino Del Sur and ultimately discharges to the west into Deer Canyon, identified as POC 1. **Proposed Conditions:** The proposed construction changes have been designed to maintain overall drainage patterns of the previously approved report, but with a greater emphasis on Modular Wetland System usage in Unit 2. The Unit 2 site is now subdivided into 26 drainage basins, with 7 receiving Modular Wetland System treatment devices (BMP 3-15, 3-16, 3-17). Drainage from this system still travels north and west and confluences with the drainage systems within Camino Del Sur and ultimately discharges to the west into Deer Canyon, identified as POC 1. The Unit 1 drainage patterns remain the same.

Bunoff generated from the site will not result in any unmitigated drainage, or storm water quality impacts on the existing downstream conditions with these proposed measures in place.

Note: Updated drainage calculations have been provided in this addendum study.

If you have any questions or need any further information please feel free to call me on my direct line (858-875-1718) or email me at <u>Justin.Giles@latitude33.com</u>.

Sincerely,

Justin R. Giles, C83540 Project Manager Latitude 33 Planning and Engineering

DRAINAGE STUDY – ADDENDUM CC 'A' ONSITE MERGE 56 UNITS 1 & 2

Unit 1 CC'A': PTS# 679136, DWG 40552-D Unit 2 CC'A': PTS# 679132, DWG 40553-D

APRIL 2021

PREPARED BY: LATITUDE 33 PLANNING & ENGINEERING PREPARED FOR: SEABREEZE PROPERTIES, LLC JOB NUMBER: 1176.3

CHARACTER CONSITEMENT

CITY OF SAN DIEGO, CALIFORNIA

PTS NO. 679136 DWG. NO. 40552-D

Unit 2: PTS NO. 679132 DWG. NO. 40553-D

February 19, 2021

Prepared for: SEA BREEZE PROPERTIES, LLC 5550 Carmel Mountain Road, Suite 204 San Diego, CA 92130

Prepared by: Latitude 33 Planning and Engineering 9968 Hibert Street, 2nd Floor San Diego, California 92131 (858) 751-0633

Matthew J. Semic RCE 71075 Registration Expires 06/30/21 Prepared by: HRG Checked by: JRG

TABLE OF CONTENTS
DECLARATION OF RESPONSIBLE CHARGE
I. PURPOSE
II. PROJECT DESCRIPTION
3 III-EXISTING DRAINAGE PATTERNS
Clean Water Act Section 401 & 404 Applicability4
V. PROPOSED DRAINAGE PATTERNS
V. CALCULATIONS SUMMARY5
VI. CONCLUSION
APPENDIX A: REFERENCES
APPENDIX B: EXISTING CALCULATIONS & EXHIBIT9
APPENDIX C: PROPOSED CALCULATIONS & EXHIBIT11

DECLARATION OF RESPONSIBLE CHARGE

I HEREBY DECLARE THAT I AM THE ENGINEER OF WORK FOR THIS PROJECT, THAT I HAVE EXERCISED RESPONSIBLE CHARGE OVER THE DESIGN OF THE PROJECT AS DEFINED IN SECTION 6703 OF THE BUSINESS AND PROFESSIONS CODE, AND THAT THE DESIGN IS CONSISTENT WITH CURRENT STANDARDS.

I UNDERSTAND THAT THE CHECK OF PROJECT DRAWINGS AND SPECIFICATIONS BY THE CITY AND COUNTY OF SAN DIEGO IS CONFINED TO A REVIEW ONLY AND DOES NOT RELIEVE ME, AS ENGINEER OF WORK, OF MY RESPONSIBILITIES FOR PROJECT DESIGN.

Matthew J. Semic R.C.E. 71075 REGISTERED CIVIL ENGINEER DATE

I. PURPOSE JN 013

This drainage study evaluates the pre-project and post-project drainage conditions for anticipated runoff flows associated with the construction of the Merge Onsite development (approved per VTM 1266780) using the rational method outlined in the City of San Diego Drainage Design Manual. This report documents the hydrologic and hydraulic impacts due to the development.

H. PROJECT DESCRIPTION

The proposed Onsite Merge 56 project is approximately 36.10 acres, located in the City of San Diego immediately south of state route 56 (see Figure 1 – Vicinity Map). Currently, Camino Del Sur terminates approximately one mile south of SR-56. The Offsite Merge 56 Grading and Improvement Plans (DWG 45089-D & 40590-D) propose to connect the northerly segment of Camino Del Sur from Torrey Santa Fe Road to the southerly segment near Dormouse Road. The offsite project will also extend Carmel Mountain Road southwesterly to the proposed Camino Del Sur extension.

These road extensions are also accompanied by the Onsite Merge 56 project which this report will focus on. The onsite project will be a development bounded by SR-56 to the north, Camino Del Sur to the west and Carmel Mountain Road to the east. The proposed use of this space includes a mix of single family residential, multi-family residential, and mixed-use office/retail space.

FIGURE 1 – VICINITY MAP

III. EXISTING DRAINAGE PATTERNS

In pre-project conditions, the site is made up of undeveloped, naturally vegetated land. The project is located primarily within the watershed limits for Los Penasquitos Canyon Preserve. An existing ridgeline

Merge 56 Onsite Drainage Report Units 1 & 2 – April 2021

approximately 800 feet southeast of the proposed Camino Del Sur and Carmel Mountain Road intersection divides the project's drainage into the Deer Canyon and the Penasquitos Canyon. The northern portion of the project drains northwesterly towards Deer Canyon, with the remaining portions of the site draining southeasterly towards Penasquitos Canyon. For analysis, a runoff coefficient of 0.45 is used for the existing site which corresponds to rural lots greater than ½ acre per City of San Diego Drainage Design Manual 2017.

Clean Water Act Section 401 & 404 Applicability

Per the approved PDP No. 1266871 conditions, the project is subject to the requirements of CWA 401/404. The CWA 401/404 approvals will be obtained prior to start of construction.

IV. PROPOSED DRAINAGE PATTERNS

The post-project area will generally maintain the pre-project drainage patterns. Most of the runoff will be collected via proposed storm drain systems that will be installed as part of the street improvements. Refer to the attached "Proposed Onsite Merge 56 Drainage Map" for information regarding proposed drainage areas and the point of compliance (POC 'A').

Runoff from all private driveways (DMAs 1-9) will be routed via sheet flow to modular wetlands units before entering the private storm drain system. Bypass of the modular wetlands units will be via combination gutter bypass and internal bypass within the modular wetland units. Runoff generated by the pad graded areas north of Merge Avenue (DMAs 12-14), commercial and residential, will be routed to bio-filtration basins before entering the private storm drain system. Runoff from all remaining pad graded areas and private driveways south of Merge Avenue (DMAs 10-38) will be routed via storm drain to modular wetlands units. Bypass of the modular wetlands units will be via weirs installed within storm drain cleanouts.

All runoff will be piped towards the northwest corner of the project to a storage vault system which will provide detention for hydromodification requirements as well as mitigation of increased runoff generated by the developed site. The storage vault system will be equipped with an internal weir which will allow higher volume flows to bypass internally. Runoff is ultimately conveyed via private storm drain to Camino Del Sur where it will connect into the public storm drain system at POC 'A' which then drains westerly towards Deer Canyon.

Prior drainage analyses have been performed for the entire Merge 56 project (onsite and offsite) and are included in the following reports:

- January 2001, Drainage Study for Camino Ruiz (aka Camino Del Sur), South of Carmel Mountain Road
- January 22, 2004, Preliminary Drainage Study, Rhodes Crossing
- August 28, 2006, Drainage Study, Rhodes Crossing, Camino del Sur & Camel Mountain Roadway Plans.
- May 12, 2015, *Drainage Report for Merge 56 Vesting Tentative Map*, performed by Chang Consultants.36

Merge 56 Onsite Drainage Report Units 1 & 2 – April 2021 Page 4

The drainage report for the Vesting Tentative Map of the Merge 56 onsite and offsite project entitled Drainage Report for Merge 56 Vesting Tentative Map has been provided ion Appendix A and further support the findings of this report.

CALCULATIONS SUMMARY

Using Storm and Sanitary Analysis (results provided in Appendix B & C) the following 50-year values were determined for the existing and proposed condition. These values are further detailed on the Existing and Proposed Drainage Maps found in Appendix B & C respectively. Table 1 - Summary of Existing Conditi

Existing DMA Summary			
DMA ID	Area	Peak Runoff	
	(acres)	(cfs)	
	(46165)		
1	13.92	14.08	

Table 1 - Summary of Existing Condition DMA Flows

Proposed DMA Summary				
DMA ID	Area (ac)	Peak Runoff (cfs)		
1	0.45	1.49		
2	1.34	4.13		
3	0.56	1.28		
4	1.55	3.39		
5	0.30	0.92		
6	1.27	2.50		
7	0.18	0.45		
8	0.42	1.47		
9	0.39	1.88		
10	0.20	1.18		
11	0.46	0.77		
12	4.14	14.41		
13	5.52	17.93		
14	2.80	9.76		
15	1.35	4.70		
16	0.67	2.33		
17	0.39	1.36		
18	0.41	1.43		
19	0.45	1.57		

	Table 2 -	Summary	of Proposed	Condition	DMA Flows
--	-----------	---------	-------------	-----------	------------------

Proposed DMA Summary				
DMA ID	Area (ac)	Peak Runoff (cfs)		
20	0.33	1.15		
21	0.42	1.46		
22	0.56	1.95		
23	0.59	2.06		
24	0.80	2.79		
25	0.40	1.39		
26	0.51	1.46		
27	0.42	1.21		
28	0.84	2.41		
29	1.26	3.62		
30	1.35	3.78		
31	2.64	6.97		
32	0.73	2.10		
33	0.66	1.89		
34	0.74	2.12		
35	0.86	2.47		
36	0.66	1.89		
37	0.10	0.35		
38	0.34	0.49		

Existing Conditions POC Summary				
POC ID	Contributing DMAs	Q50 Peak		
		(cfs)		
POC 'A'	1, 2	41.43		

Table 4 - Summary of Proposed Outfall Flow

	M	R.M.	z}		
Ċ	N.C	E	xisting Conditio	ns POC Summary	
6		POCIE	Contribu DMA	iting s Q50 Pea	ak
	\sim		1 1 2	(cfs)	
CO. P.	10)		1, Z	41.43	
Mrcip 6					
· C LS		Table	4 - Summary of	Proposed Outfall Fl	ow
\diamond	Proposed Conditions POC Summary				
		Contributing	Existing	Proposed	Proposed
	I CCID	DMAs	Q50 Peak (cfs)	Q50 Peak (cfs)	Q50 Peak (cfs)
				Before Detention	After Detenetion
	POC 'A'	1-20	41.43	105.19	17.57

VI. CONCLUSION

The hydraulic analysis performed for the Onsite Merge 56 project provides evidence to support that the drainage design proposed is feasible. An increase in Peak Q_{50} of **63.76cfs** will be mitigated by the implementation of storage vaults. The project currently proposes 84,075cf of storage to meet hydro modification requirements. By modeling a storage vault in Storm and Sanitary Analysis, the proposed peak runoff after detention is $Q_{50} = 17.57cfs$. As this is less than the existing peak runoff ($Q_{50} = 41.43fs$), the increase in peak flow will be mitigated and the rational method analysis which was used to determine the peak 50-year values shows that the proposed private storm drain system is sized appropriately and can properly convey the project generated runoff.com

For specific sizes and other details on the proposed flow control BMP's, see the Storm Water Quality Management Plan for Onsite Merge 56 prepared by Latitude 33 Planning & Engineering.

Figure 3-2: Gutter and Roadway Discharge-Velocity Chart (6" Curb)

CHAPTER 3: STREET DRAINAGE, CLEANOUTS, AND INLETS

3.2.2. Inlet Design 3.2.2.1 Curb Inlets on Grade

Full Interception

The capacity of a curb inlet on continuous grade depends on gutter slope, depth of flow in the gutter, the dimensions of the curb opening, and the amount of depression at the catch basin. Equation 3–2 describes the capacity of a curb inlet assuming full (100 %) interception.

		Equation 3-2. Capacity of Curb Inlet
		$\frac{Q}{L_T} = 0.7 (a+y)^{3/2}$
where:		
Q	=	interception capacity of the curb inlet (ft³/s)
У	=	depth of flow approaching the curb inlet (ft; maximum of $y = 0.4$)
а	=	depth of depression of curb at inlet (ft; use a=0.33)
L_{T}	=	length of clear opening of inlet for total interception (ft)

Figure 3–4 illustrates the relationship between interception capacity, depth of approaching flow, and curb inlet depression, and may be used to determine curb inlet interception capacity.

APPENDIX A: RATIONAL METHOD AND MODIFIED RATIONAL METHOD

	_			•			-	_		
2	۱h	P	Δ_	1	Runoff	Coefficie	ents f	or Ra	tional	Method
~	•••			••	Kanon	cocincit				meenoa

•	6 A Grand Has	Runoff Coefficient (C)
6		Soil Type (1)
	Residential:	
CY D	Single Family	0.55
NY N'	Multi-Units	0.70
N°C'	Mobile Homes	0.65
C'Y O	Rural (lots greater than ½ acre)	0.45
\mathbf{Q}	Commercial (2)	
	80% Impervious	0.85
	Industrial (2)	
	90% Impervious	0.95

<u>Note:</u>

⁽¹⁾ Type D soil to be used for all areas.

⁽²⁾ Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.

Actual imperviousness	=	50%
Tabulated imperviousness	=	80%
Revised C = $(50/80) \times 0.85$	=	0.53

The values in Table A–1 are typical for urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the City.

A.1.3. Rainfall Intensity

The rainfall intensity (I) is the rainfall in inches per hour (in/hr.) for a duration equal to the T_c for a selected storm frequency. Once a particular storm frequency has been selected for design and a T_c calculated for the drainage area, the rainfall intensity can be determined from the Intensity-Duration-Frequency Design Chart (Figure A-1).

APPENDIX A: RATIONAL METHOD AND MODIFIED RATIONAL METHOD

Figure A-2. Nomograph for Determination of T_c for Natural Watersheds

<u>Note</u>: Add ten minutes to the computed time of concentration from Figure A-2.

Figure A-3. Computation of Effective Slope for Natural Watersheds

Figure A-5. Gutter and Roadway Discharge – Velocity Chart

APPENDIX B: EXISTING CALCULATIONS & EXHIBIT

Merge 56 Onsite Drainage Report Units 1 & 2 – April 2021 Page 9

This page intentionally blank for double-sided printing


```
H\1100\1176.30 Merge 56\Engineering\Reports\Drainage\SSA\Exinsting Parcels.dwg
                9
    odesk® Storm and Sanitary Analysis 2016 - Version 12.0.42 (Build 0)
     <u>_____</u>
                                                     _____
  ****
       \checkmark
 Project Description
 File Name ...... Merge Onsite Existing Hydrology.SPF
 Parcels.dwg
 ******
 Analysis Options
 *****
 Flow Units ..... cfs
 Subbasin Hydrograph Method. Rational
 Time of Concentration..... SCS TR-55
 Return Period..... 50 years
 Storage Node Exfiltration.. None
 Starting Date ..... MAY-23-2018 00:00:00
 Ending Date ..... MAY-24-2018 00:00:00
 Report Time Step ..... 00:00:10
 *****
 Element Count
 * * * * * * * * * * * * *
 Number of subbasins ..... 2
 Number of nodes ..... 1
 Number of links ..... 0
 *****
 Subbasin Summary
 ******
                    Total
 Subbasin
                    Area
 ID
                   acres
 ------
 {Site 1}._E1
{Site 1}._E2
                13.93
                    22.18
 *****
 Node Summary
 ******
                             Invert Maximum Ponded External
 Node
                Element
                           Elevation Elev. Area
ft ft ft<sup>2</sup>
 TD
                                                    Inflow
                Type
 _____
                                                    _____
                                               ____
 Out-POC'A' OUTFALL
                              298.00 298.00
                                               0.00
                        Vois.
acre-ft
                         Volume
                                     Depth
 Runoff Quantity Continuity
                                     inches
 *****
                                     _____
                         2.122
                                     0.705
 Total Precipitation .....
 Continuity Error (%) .....
                          0.554
 Volume
                                    Volume
 Flow Routing Continuity
                          acre-ft
                                   Mgallons
 *****
                                   _____
                         _____
                        0.000
0.947
0.000
                                   0.000
0.309
0.000
 External Inflow .....
 External Outflow .....
 Initial Stored Volume ....
```

Autodesk Storm and Sanitary Analysis

```
H:1100/1176.30 Merge 56\Engineering\Reports\Drainage\SSA\Exinsting Parcels.dwg
Final Stored Volume
                            0.000
                                      0.000
 ontinuity Error (%)
                            0.000
Runoff Coefficient Computations Report
******
 ----
Subbasin {Site 1}. E1
______
                                               Area
                                                          Soil
                                                                   Runoff
Soil/Surface Description
                                              (acres)
                                                         Group
                                                                   Coeff.
_____
                                             _____
                                                        ------
                                               27.07
                                                           D
                                                                    0.45
Composite Area & Weighted Runoff Coeff.
                                               27.07
                                                                    0.45
_____
Subbasin {Site 1}._E2
Area
                                                          Soil
                                                                  Runoff
Soil/Surface Description
                                                         Group
                                                                  Coeff.
                                             (acres)
_____
                                              _____
                                                        _____
                                               35.96
                                                           D
                                                                   0.45
                                               35.96
                                                                     0.45
Composite Area & Weighted Runoff Coeff.
SCS TR-55 Time of Concentration Computations Report
Sheet Flow Equation
 _____
      Tc = (0.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))
      Where:
      Tc = Time of Concentration (hrs)
      n = Manning's Roughness
      Lf = Flow Length (ft)
      P = 2 \text{ yr}, 24 \text{ hr Rainfall (inches)}
      Sf = Slope (ft/ft)
Shallow Concentrated Flow Equation
-----
      V = 16.1345 * (Sf^{0.5}) (unpaved surface)
      V = 20.3282 * (Sf^{0.5}) (paved surface)
        = 15.0 * (Sf^0.5) (grassed waterway surface)
      57
        = 10.0 * (Sf^0.5) (nearly bare & untilled surface)
      V
        = 9.0 * (Sf^0.5) (cultivated straight rows surface)
= 7.0 * (Sf^0.5) (short grass pasture surface)
      V
      V
      V = 5.0 * (Sf^{0.5}) (woodland surface)
V = 2.5 * (Sf^{0.5}) (forest w/heavy litter surface)
      Tc = (Lf / V) / (3600 sec/hr)
      Where:
      Tc = Time of Concentration (hrs)
      Lf = Flow Length (ft)
      V = Velocity (ft/sec)
      Sf = Slope (ft/ft)
Channel Flow Equation
```

H:\1100\1176.30 Merge 56\Engineering\Reports\Drainage\SSA\Exinsting Parcels.dwg

```
V = (1.49 * (R^(2/3)) * (Sf^0.5)) / n
R = Aq / Wp
To = (Lf / V) / (3600 sec/hr)
Where:
Tc = Time of Concentration (hrs)
Lf = Flow Length (ft)
R = Hydraulic Radius (ft)
Aq = Flow Area (ft<sup>2</sup>)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)
Sf = Slope (ft/ft)
n = Manning's Roughness
```

Subbasin {Site 1}._E1

F.A

Shallow Concentrated Flow Computations

9		Subarea A	Subarea B	Subarea
0.00	Flow Length (ft):	1262.00	0.00	
0.00	Slope (%):	4.00	0.00	
Unnaved	Surface Type:	Woodland	Unpaved	
	Velocity (ft/sec):	1.00	0.00	
0.00	Computed Flow Time (minutes):	21.03	0.00	
	Total TOC (minutes):	21.03		

Subbasin {Site 1}._E2

User-Defined TOC override (minutes): 14.40

Subbasin ID	Accumulated Precip in	Rainfall Intensity in/hr	Total Runoff in	Peak Runoff cfs	Weighted Runoff Coeff	Conc days	Time of entration hh:mm:ss
{Site 1}E1	0.79	2.25	0.35	14.08	0.450	0	00:21:01
{Site 1}E2	0.65	2.74	0.29	27.35	0.450	0	00:14:24

Analysis began on: Mon Jun 10 16:57:23 2019 Analysis ended on: Mon Jun 10 16:57:25 2019 Total elapsed time: 00:00:02

Autodesk Storm and Sanitary Analysis

iocai ioc (minaceb).

APPENDIX C: PROPOSED CALCULATIONS & EXHIBIT

Merge 56 Onsite Drainage Report Units 1 & 2 – April 2021 Page 11

This page intentionally blank for double-sided printing

UNMITIGATED CONDITION

Autodesk® Storm and Sanitary Analysis 2016 - Version 13.2.147 (Build 0)

Merge Proposed Onsite Hydrology_CCA (Before Detention-Lennar Revs).SPF H:\1100\1176.30 Merge 56\Engineering\Reports\Drainage\Merge Private Storm Drain.Gwg

rlow Units cfe Subbasin Hydrograph Method. Rational Time of Concentration..... SCS TR-55 Return Period...... Slomatic Wave Storage Node Exfiltration. None Repr26-2017 00:00:00 Staring Date SEP-26-2017 00:00:00 Ending Date SEP-27-2017 00:00:00 Report Time Step 00:00:10

80 B B

To call Mensor Decomposition D

Autodesk Storm and St	2011-25 2011-25 2011-25 2011-25 2011-25 2011-26 2011-26 2011-26 2011-27 2011-27 2011-27 2011-27 2011-27 2011-27 2011-27 2011-27 2011-27 2011-27 2011-25 2011-2	ວມກ-01 ວີມກ-02 ວີມກ-02 ວີມກ-03 ວີມກ-04 ວີມກ-05 ວີມກ-09 ວີມກ-09 ວີມກ-10 ວີມກ-10 ວີມກ-11 ວີມກ-12 ວີມກ-12 ວີມກ-12 ວີມກ-12 ວີມກ-12 ວີມກ-12 ວີມກ-13 ວີມກ-13 ວີມກ-13 ວີມກ-21 ວີມກ-21	**************************************	DMA29 DMA29 DMA30 DMA30 DMA31 DMA32 DMA34 DMA35 DMA35 DMA38
anter Analysis		JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	Element Type	0.84 1.26 2.63 0.67 0.74 0.86 0.86 0.10 0.14
NECAGIO	378 92 384. 380.92 384. 97 384. 380.92 384. 97 382. 98. 371.92 394. 370. 393. 393. 374.92 394. 374. 392. 377. 392. 374.96 393. 374.96 392. 374.33 386. 394. 394. 374.46 394. 374.46 394. 374.46 394. 374.46 386. 374.16 394. 374.16 394. 394. 374.16 394. 374.16 394. 374.16 394.16 374.16 384.16 374.16 384.16 374.16 384.16 374.16 384.16 374.16 384.16 374.16 384.16 <th>344.29 369, 356, 89 356, 89 356, 89 356, 89 370, 367, 76 371, 381, 20 381, 20 381, 20 381, 20 381, 20 382, 381, 20 382, 381, 20 382, 381, 20 382, 383, 20 382, 384, 20 384, 20 384, 20 374, 80 384, 20 384, 20 374, 80 384, 20 384, 20 385, 20 3</th> <th>Invert Maxim Elevation Ele</th> <th></th>	344.29 369, 356, 89 356, 89 356, 89 356, 89 370, 367, 76 371, 381, 20 381, 20 381, 20 381, 20 381, 20 382, 381, 20 382, 381, 20 382, 381, 20 382, 383, 20 382, 384, 20 384, 20 384, 20 374, 80 384, 20 384, 20 374, 80 384, 20 384, 20 385, 20 3	Invert Maxim Elevation Ele	
Ŕ		7,77 1,17 1,17 1,17 1,17 1,17 1,17 1,17	num Ponded . .vv. Area ft ft 2	
			External Inflow	

Inder-003 Inder-005 Inder-005 Inder-006 Inder-009 Inder-009 Inder-003 Inder-012 Inder-013 Inder-	inter on the second sec	Inlet-001 Inlet-002 Inlet-0003 Inlet-0006 Inlet-0006 Inlet-0006 Inlet-0012 Inlet-0012 Inlet-0012 Inlet-0013 In	**************************************
	Longtudadaa EL/fite EL/fit EL/	 РНИА НЕС-22 СЕМАЛАТ РНИА НЕС-22 СЕМАЛА 	Inlet Manufacturer
	y Roadway Manning's Roughness 0.0160	N N N N N N N N N N N N N N N N N N N	Manufacture Part Number
	Gutter G Cross J Slope ft/ft 0.0620		н Б
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ft 2.00 2.00 2.00 2.00 2.00 2.00	01 02 02 02 03 02 04 02 05	Inlet Numbe Location Inlet
		1 370.02 370.02 380.29 380.02 365.22 365.22 365.22 379.56 365.22 379.56 366.92 379.57 366.12 379.57 384.40 379.57 384.40 371.386.12 374.00 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.12 375.50 373.386.25 338.42 378.25 3378.50 377.76 375.72 377.76 375.52 377.76 375.52 377.76 375.52 377.76 375.76 377.76 375.76	r Catchbasin f Invert s Elevation ft
		375.09 369.71 368.92 369.71 368.92 373.66 377.66 377.00 364.00 377.00 364.00 377.00 364.00 377.00 364.00 377.00 364.00 377.00 369.36 377.00 369.36 377.00 369.36 377.46 377.46 377.46 377.46 377.55 377.46 377.55 37	Inlet Rim Elevation ft
			Ponded Area ft²
		370 02 381 41 365 22 366 22 377 377 54 366 22 377 56 377 56 376 11 376 12 376 1	Initial Water Elevation ft
			Grate Clogging Factor %

Autodesk Storm and	Link-000 Link-000 Link-000 Link-001 Link-001 Link-010 Link-010 Lin	sink Summary Link Summary Link ID Link-001 Link-002	Inlet-24 Inlet-25 Inlet-25 Inlet-27 Inlet-20 Inlet-20 Inlet-20 Inlet-30 Inlet-30 Inlet-30 Inlet-30 Inlet-30 Inlet-30 Inlet-30 Inlet-40 Inlet-40 Inlet-40 Inlet-40 Inlet-40 Inlet-40 Inlet-40 Inlet-40 Inlet-40 Inlet-40 Inlet-40 Inlet-40
1 Sanifary Analysis	Jun-03 Jun-05 Jun-05 Inlet-005 Inlet-005 Jun-09 Jun-09 Jun-10 Jun-10 Jun-10 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-25 Jun-18 Jun-18 Jun-18 Jun-18 Jun-18 Jun-18 Jun-26 Jun-26 Jun-25 Jun-25 Jun-26 Jun-25 Jun-26 Jun	From Node Jun-01 Stor-01	
		Le P	
ME A 6	11110 111110 11110 11110 11110 11110 11110 11110 111110 11110 11110 1111	Node POC'A'	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
· Cores	CONDUTT CONDUTT	Element Type CONDUIT CONDUIT	
×		H	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	L NUNCTIN N NNNN H(NNN 1000 1000 1000 1000 1000 1000 1000	,ength ft 43.6 30.7	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
	0.7269 0.7269 0.9255 0.9255 0.9255 1.7052 1.	Slope % 25.2921 1.9857	7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9
		Manning's Roughness 0.0150	

Autodesk Storm	4064-002 LAR-002 LAR-004 LAR-004 LAR-004 LAR-004 LAR-004 LAR-004 LAR-012 LAR-012 LAR-012 LAR-014	Cross Sectio	Line-103 Line-104 Line-105 Lin
and Sanifery Analysi	CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	stape	Titiet-27 Titiet-27 Titiet-27 Titiet-27 Titiet-29 Titiet-29 Jun-70 Titiet-29 Jun-72 Jun-75 Jun-75 Jun-75 Jun-75 Jun-75 Jun-77 Jun-75 Titiet-46 Titiet-46 Titiet-42 Titiet-42 Titiet-42 Titiet-42 Titiet-43 Titiet-43 Jun-82 Titiet-44 Jun-82 Titiet-44 Jun-82 Titiet-45 Jun-82 Titiet-46 Titiet-47 Jun-82 Titiet-43 Jun-82 Titiet-43 Jun-82 Titiet-43 Jun-82 Titiet-43 Jun-82 Jun-78 Jun-82 Jun-78 Jun-78 Jun-78 Jun-78 Jun-64 Jun-64 Jun-64 Jun-64 Jun-64 Jun-64
ME P 6	PRN2112333.550	Depth/ Diameter ft	Jun 69 Jun 69 Jun 71 Jun 71 Jun 71 Jun 71 Jun 71 Jun 71 Jun 71 Jun 72 Jun 72 Jun 72 Jun 72 Jun 75 Jun 76 Jun 71 Jun 76 Jun 76 Jun 71 Jun 76 Jun 76 Jun 76 Jun 71 Jun 76 Jun 76 Ju
NO S	3.50 3.50 2.00 2.50 2.50 2.50 50 50 50 50 50 50 50 50 50 50 50 50 5	Width £t	CONDULL CONDULL
×	ي ي ي ي ي ي ي ي ي ي ي ي	No. of Barrels St	22 22 23 25 25 25 25 25 25 25 25 25 25
	9.62 9.62 1.07 0.79 1.79 1.79 3.14 1.77 1.49 1.77	Cross ectional Area ft 2	3.766 0.52545 0.52545 0.52545 0.52545 0.5221 2.76922 2.76922 2.76922 2.76922 2.7692 2.24593 2.2469 2.3371 0.9752 2.150782 2.150782 2.150782 2.150782 2.150782 2.150782 2.15181 1.1518 1.13196 0.521181 1.13196 2.13196 2.13196 1.33466 7.28361 3.24466 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.28361 3.24666 7.24666 7.24666 7.2466667 7.246667 7.246667 7.2466
	0.550 0.5580 0.5580 0.5580 0.5580000000000	Full Flow Hydraulic Radius ft	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	438.52 122.87 49.12 12.28 12.28 12.28 12.28 12.28 12.43 12.43 19.66 19.61 19.61 19.18	Design Flow Capacity cfs	

Autodesk Storm	Linne-015 Linne-015 Linne-016 Linne-017 Linne-017 Linne-022 Linne-023 Linne-112 Linne-112 Linne-112 Linne-112 Linne-112 Linne-112 Linne-112 Linne-112 Linne-112 Linne-112 Linne-112 Linne-112 Linne-123 Linne-124 Linne-
nd Sanifary Analysis	CIRCULAR CIRCULAR
ME P	1.50 1
NO S	1.50 1
×	
	PPP 201 201 201 201 201 201 201 201 201 201
	$\begin{array}{c} 10.52\\ 10$

Autodesk Storm and Santiery Analysis	Sumbain DMad5 Suindurfice Description	Composite Area & Weighted Bunoff Coeff.	Subbasin Duqu4 Subbasin Duqu4 Sull Surlace Description	Composite Area & Weighted Runoff Coeff.	Subbasin DMAU3 Soil/Surface Description	- Composite Area & Weighted Runoff Coeff.	Subbasin DMAR2 Soll/Surface Description	- Composite Area & Weighted Runoff Coeff.	Subbasin DMA01 Soll/Surface Description	**************************************	******* Volume Volume Volume Volume Volume Mgall #remain Continuity Continuity	****** Volume Deg Runoff Quartity Continuity acre-ft incl **************************** 1.156 0.203 Continuity Error (%) 0.203 0.203	Link-98 CIRCULAR 1.50 1.5 Link-99 CIRCULAR 1.50 1.5
R	Area (acres)	1.55	Area (acres)	0.37 0.37	Area (acres)	1.34 1.34	Area (acres)	0.45 0.45	Area (acres)		000600100	B I S	00
	Soil Group	D	Soil Group	D	Soil Group	D	Soil Group	D	Soil Group				1 1.7 1 1.7
	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.				7 7 0.38 7 0.38

12.23 12.63

Autodesk Storm and Sanifary Analysis		Subbasin DMU2	- Composite Area & Weighted Runoff Coeff.	Soli/Surfree Description	composite Area & Weighted Runoff Coeff.	Spil/Surface Description	Subbasin DWAIO	- Composite Area & Weighted Runoff Coeff.	Soil/Surface Description	_ Composite Area & Weighted Runoff Coeff.	subbasin DMA08 soll/Surface Description	- Composite Area & Weighted Runoff Coeff.	 Subasin DMANOT 	- Composite Area & Weighted Runoff Coeff.	Soll/Surface Description	- Composite Area & Weighted Runoff Coeff.
4.14	4.14	Area (acres)	0.22 0.22	Area (acres)	0.34 0.34	Area (acres)		0.54	Area (acres)	0.42 0.42	Area (acres)	0.13 0.13	Area (acres)	0.80 0.80	Area (acres)	0.30
	D	Soil Group	1	Soil Group	i	Soil Group		D	Soil Group	D	Soil Group	D	Soil Group	D	Soil Group	D
0 85	0.85	Runoff Coeff.	0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.		0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85

Autodesk Storm and Sanifary Analysis	Soil Surface Description	Composite Area a Weighted Runoff Coeff.	Subbain DMA9	- Composine Area & Weighted Runoff Coeff.	Sold Surface Description	Composite Area & Weighted Runoff Coeff.	Soil/Surface Description	- Composite Area & Weighted Runoff Coeff.	Subbasin DMA16 Soil/Surface Description	_ Composite Area & Meighted Runoff Coeff.	Soil/Surface Description	Composite Area & Weighted Runoff Coeff.	Soil/Surface Description	Subbasin DMA14	Composite Area & Weighted Runoff Coeff.	Subbasin DMA13 Soil/Surface Description
R	Area (acres)	0.45 0.45	Area (acres)	0.41 0.41	Area (acres)	0.39	Area (acres)	0.67 0.67	Area (acres)	1.35 1.35	Area (acres)	2.80	(acres)	9 5 5	5.52	Area (acres)
	Soil Group	i	Soil Group	I	Soil Group	I	Soil Group	1	Soil Group	I	Soil Group	c	Group	2 	D	Soil Group
	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0. 85 5	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85	Coeff.	J b h	0.85 0.85	Runoff Coeff.

Subbasin DMA13

H:\1100\1176.30 Merge 56\Engineering\Reports\Drainage\Merge Private Storm Drain.dw		
₹	H:\1100\1176.30 Merge 56\Engineering\Reports\Drainage\Merge Private Storm Drain.d	

Autodesk Storm and Sanifary Analysis	Composite Area & Weighted Runoff Coer.	Subbasif maz	omposite Area & Weighled Runoff Coeff.	Subbasin) MA26 Soul/Suffre Discliption	Composite Area & Weighted Runoff Coeff.	Subbasin DMA25 Soll/Surface Description	- Composite Area & Weighted Runoff Coeff.	Subbasin DMA24 Soll/Surface Description	- Composite Area & Weighted Runoff Coeff.	Subbasin DMA23 Soil/Surface Description	- Composite Area & Weighted Runoff Coeff.	Subsein DMA22 Soil/Surface Description	Composite Area & Weighted Runoff Coeff.	Subbasin DMA21 Soll/Surface Description	Composite Area & Weighted Runoff Coeff.
Q S	0.42	Area (acres)	0.51	Area (acres)	0.40	Area (acres)	0.80	Area (acres)	0.59	Area (acres)	0.56	Area (acres)	0.42 0.42	Area (acres)	0.33
	1	Soil Group	Ì	Soil Group	I	Soil Group	l	Soil Group	Ì	Soil Group	I	Soil Group	I	Soil Group	1
	0.70 0.70	Runoff Coeff.	0.70 0.70	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85 0.85	Runoff Coeff.	0.85

Autodesk Storm and Sanifary Analysis	Subbad In DMA35	Composite prest Weighted Reworf Coeff.	Soll/Sufface Description	- Composite Area & Weighted Runoff Coeff.	Subbasin DWA33 Sollygerage Description	- Composite Area & Weighted Runoff Coeff.	Soll/Burface Description	- Composite Area & Weighted Runoff Coeff.	Subbasin DMA31 Soil/Surface Description	_ Composite Area & Weighted Runoff Coeff.	Subbasin DMA30 Soll/Surface Description	- Composite Area & Weighted Runoff Coeff.	Soll/Surface Description	 Composite Area & Weighted Runoff Coeff.	Soll/Sufface Description
R	Area	5.00	Area (acres)	0.66	Area (acres)	5.00	Area (acres)	5.00	Area (acres)	1.35 1.35	Årea (acres)	5.00 5.00	Area (acres)	0.84 0.84	Area (acres)
	Soil	I	Soil Group	ļ	Soil Group	İ	Soil Group	I	Soil Group	I	Soil Group	ļ	Soil Group	Ţ	Soil Group
	Runoff	0.70 0.70	Runoff Coeff.	0.70 0.70	Runoff Coeff.	0.70 0.70	Runoff Coeff.	0.70 0.70	Runoff Coeff.	0.70 0.70	Runoff Coeff.	0.70 0.70	Runoff Coeff.	0.70 0.70	Runoff Coeff.

Soil/Surface Description	(acres)	Group	Coeff.
Composite Area & Weighted Runoff Coeff.	0.86 0.86	I	0.70 0.70
Subbasin DMA36			
Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
Composite Area & Weighted Runoff Coeff.	0.66 0.66	1	0.70 0.70
Subbasin DMA37			
Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
Composite Area & Weighted Runoff Coeff.	0.10	ı	0.85
Subbasin DMA38			
Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
Composite Area & Weighted Runoff Coeff.	0.34 0.34	ı	0.35 0.35

$\label{eq:constraint} \mathbb{T} c = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.5)) + ((f^0.5)) + ((f^0.5)) + (f^0.5) +$).4))		
Tc = Time of Concentration (hrs) n = Maning's Roughness Lf = Flow Length (fc) P = 2 yr, 24 hr Rainfall (inches) S = Slope (ft/ft)			
Shallow Concentrated Flow Equation			
$ \begin{array}{c} V = 16.145 \times (5170.5) \ (unpaved surface) \\ V = 20.0482 \times (5170.5) \ (paved surface) \\ V = 50.0482 \times (5170.5) \ (parased waterway surface) \\ v = 50.045 \ (parase) \ (parased waterway surface) \\ v = 9.045 \ (stro.5) \ (paraty bare & untilled surface) \\ v = 50.045 \ (stro.5) \ (paraty bare & surface) \\ v = 50.045 \ (stro.5) \ (paraty bare & surface) \\ v = 50.045 \ (stro.5) \ (paraty bare & surface) \\ v = 50.045 \ (stro.5) \ ($	cface) urface) e)		
The diff / V) / (300) she/hr) Where:			
<pre>#e = Time of Concentration Thr6) If = Flow wonght Tet)</pre>			
Autodack Storm and Santian Analysis			

0 Autodesk Storm and Sanifary Analysis

Autodesk Storm and Santiary Analysis	unannigi. F.ow Compensations	Subbasing DMAAD Shep Flow Computations Shep Flow Computations Provide Length (fb) Stopp 24 hr Rain 51 (fb): Computed Blow Time (minutes):	Total TOC (minutes):	Channel Flow Computations Manning's Roughness: Flow Length (ft): Channel Slope (%): Cross Section Area (ft ²): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):	<pre>Manning's Roughness: Flow Length (ft): Slope (%): 2 yr. 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):</pre>	Subbasin DMA01 Sheet Flow Computations	$\begin{array}{l} \mathbb{T}_{C} = \mathbb{T}_{1} \mathbb{m} \text{of Concentration (hrs)} \\ \mathbb{L}_{f}^{f} = \mathbb{F}_{1} \mathbb{O} \text{w Length (ft)} \\ \mathbb{R} = \text{Hydraulic Fadius (ft)} \\ \mathbb{A}_{q}^{f} = \mathbb{F}_{1} \mathbb{O} \text{w Area} (\mathbb{T}^{f, 2}) \\ \mathbb{M}_{q}^{f} = \mathbb{P}_{0} \mathbb{O} \text{total Parimeter (ft)} \\ \mathbb{V} = \mathbb{V}_{0} \mathbb{O} \text{city (ft/sec)} \\ \mathbb{S}_{f}^{f} = \mathbb{S}_{0} \mathbb{O} \text{p} (\mathbb{T}/\mathbb{F}^{f}) \\ \mathbb{N} = \mathbb{M} \text{anning's Roughness} \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V = Velocity (ft/sec) Sf = Slope (ft/ft) Channel Flow Equation
R.C.S.	Subarea A	Subarea A 0.01 50.00 1.70 1.70 1.55 1.59	5.95	Subarea A 766.001 2.87 0.13 2.13 2.93 4.35	Subarea A 0.01 50.00 1.00 1.75 0.52 1.59			/ n	
	Subarea B	Subarea B 0.00 1.75 1.75 0.00		Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 0.00 0.00 1.75 0.00 0.00				
	Subarea C	Subarea C 0.00 0.00 0.00 0.00 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea C 0.00 0.00 0.00 1.75 1.75 0.00 0.00				

Autodesk Storm and Santiary Analysis	Towning's Roughness Yamung's Roughness Tow argth (ft) thanei Aliope (k) Codes Section Area (ft) : Weitued Paymeter (t) : Velocity (ft)Rea(t) : Computed Flow Mine (minutes):	Subbasin DMA04 Subbasin DMA04 Sheet Flow Computations Wanning's Roughness: Flow Length (ft): Slope (%): Slope (%): Caputed Flow Time (minutes):	Channel Flow Computations Manning's Roughness: Flow Length (ft): Channel Slow 2000 (ft): Cross Soction Area (ft ²): Wetted Perimeter (ft): Compoted Flow Time (minutes): Total TCC (minutes):	Subbasin DMA03 Sheet Flow Computations Nanning's Rouphess: Flow Length (ft) : Slope (k) 2 yr.24 hr Rainfall (in): Velocity (ft/see):	<pre>Manning's Roughness: Flow Length (tt): Channel Slope (%): Cross Section Area (ft²): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes): Total TOC (minutes):</pre>
R.C.C.S	Subarea A 0.01 1530.00 0.13 2.13 1.73 14.73 16.32	Subarca A 50.01 1.00 1.75 0.52 1.59	1.59 Suberea A 281.00 2.180 2.13 2.13 2.13 2.13 1.62 1.62 3.21	Subarea A 0.01 50.00 1.00 1.25	960.01 960.20 2.29 2.13 2.13 2.13 2.62 6.11 7.70
	Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarca B 0.00 0.00 0.00 0.00 1.75 0.00 0.00	Subare C. 0.000 0.000 0.000 0.000 0.000	Subarea B 0.00 0.00 0.00 0.00 1.75	
	Subarea C 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Subarca C 0.00 0.00 1.75 1.75 0.00 0.00	Suber c. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Subarea C 0.00 0.10 0.10 0.10 1.15	0.000 0.000 0.000 0.000 0.000

т
:1
10
Ξ
176
30
M
erge
ğ
Ē
ŋ.
lee
ij.
۲, ۳
ep
с,
ő
rair
Ъ
le/V
/er
ge
Pj.
vate
ŝ
ton
Ľ
Orai
n.o
λC
_

i -
i -
i -
i -
i -
1
1
1
Į.,
8
1
8
8
1
8
i -
i -
i -
i -
i -
i -
Ľ.
1
1
1
1
1
£
8
Į.,
8
1
8
1
8
8
1
i -
i -
i -
i -
i -
i -
í.
i -
1
1
1
1
1
1
1
£
1
1
8
8
1
1
8
1
i -
i -
i -
i -
i -
i -

Subbasin DMA05

Manning's Roughness: Subarea A Subarea B Subarea C Subarea B Subarea C O </th <th></th> <th></th> <th></th> <th></th>				
Subarea A Subarea A Subarea B Subarea B Subarea B Subarea B Subarea C Subarea B Subarea C Subarea C Subarea B Subarea C Subarea C <t< th=""><th></th><th></th><th>7.29</th><th>Total TOC (minutes):</th></t<>			7.29	Total TOC (minutes):
Manning's Roughness: Subarea A Subarea B Subarea C Subarea C Subarea C Subarea C Subarea C Subarea B Subarea C Subarea B Subarea C	0.00	0.00	5.70	Computed Flow Time (minutes):
Manning's Roughness: Subarea A Subarea B Subarea C Flow Length (ft): 50.00 0.00 0.00 Slope (s): 1.00 0.00 0.00 Z yr, 24 hr Rainfall (in): 1.75 1.75 1.75 Velocity (ft/sec): 1.75 1.75 1.75 Computed Flow Time (minutes): 1.52 0.00 0.00 hannel Flow Computations 1.55 0.01 0.00 Manning's Boughness: 650.01 0.00 0.00 Cross Section Area (ft2): 1.22 0.00 0.00 Manting's Boughnest (ft1): 1.22 0.00 0.00 Cross Section Area (ft2): 1.23 0.00 0.00 0.13 0.00 0.00 0.00	0.00	0.00	1.91	Velocity (ft/sec):
Manning's Roughness: Subarea A Subarea B Subarea B Subarea B Subarea C Subarea B Subarea C Subarea B Subarea C	0.00	0.00	2.13	Wetted Perimeter (ft):
Manning's Roughness: Subarea A Subarea B Subarea C Flow Length (ft): 0.00 0.00 0.00 Slope (8): 1.10 0.00 0.00 2 yr. 2 hr Rainfall (in): 1.75 1.75 1.75 Velocity (ft/sec): 1.75 0.00 0.00 Computed Flow Time (minutes): 1.59 0.00 0.00 hannel Flow Computations Subarea A Subarea B Subarea C Flow Length (ft): 654.00 0.00 0.00 Lannel Slope (8): 1.22 0.00 0.00	0.00	0.00	0.13	Cross Section Area (ft ²):
Manning's Roughness: Subarea A Subarea B Subarea C	0.00	0.00	1.22	Channel Slope (%):
Manning's Roughness: Subarea A Subarea B Subarea C Flow Length (ft): 0.01 0.00 0.00 Slope (b): 50.00 0.00 0.00 2 yr, 24 hr Rainfall (in): 1.75 1.75 1.75 Velocity (ft/sec): 0.52 0.00 0.00 0.00 Computed Flow Time (minutes): 1.59 0.00 0.00 0.00 Channel Flow Computations Subarea A Subarea B Subarea C Manning's Roughness: 0.01 0.00 0.00 0.00	0.00	0.00	654.00	Flow Length (ft):
Manning's Roughness: Subarea A Subarea B Subarea C	0.00	0.00	0.01	Manning's Roughness:
Manning's Roughness: Subarea A Subarea B Subarea C Flow Length (ft): 0.01 0.00 0.00 Slope (%): 1.00 0.00 0.00 2 yr, 24 hr Rainfall (in): 1.75 1.75 1.75 Velocity (ft/sec): 0.52 0.00 0.00 0.00 Long to the sec in he sec in the sec in the sec in the sec in the sec i	Subarea C	Subarea B	Subarea A	
Manning's Roughness: Subarea A Subarea B Subarea C Flow Leigth (ft): 0.01 0.00 0.00 Slope (%): 50.00 0.00 0.00 2 yr. 24 hr Rainfall (in): 1.75 1.75 1.75 Velocity (ft/sec): 0.52 0.00 0.00 0.00 Computed Flow Time (minutes): 1.59 0.00 0.00 0.00				hannel Flow Computations
Manning's Roughness: Subarea A Subarea B Subarea C Flow Leigth (ft): 0.0 0.00 0.00 Slope (%): 50.00 0.00 0.00 2 yr; 24 hr Rainfall (in): 1.00 0.00 0.00 Velocity (ft/sec): 0.52 0.00 0.00	0.00	0.00	1.59	Computed Flow Time (minutes):
Manning's Roughness: Subarea A Subarea B Subarea C Flow Length (ft): 0.01 0.00 0.00 Slope (%): 50.00 0.00 0.00 2 yr, 24 hr Rainfall (in): 1.75 1.75 1.75	0.00	0.00	0.52	Velocity (ft/sec):
Subarea A Subarea B Subarea C Manning's Roughness: 0.01 0.00 0.00 Flow Length (ft): 50.00 0.00 0.00 Slope (%): 1.00 0.00 0.00	1.75	1.75	1.75	2 yr, 24 hr Rainfall (in):
Manning's Roughness: Subarea A Subarea B Subarea C Flow Leigth (ft): 0.00 0.00 0.00	0.00	0.00	1.00	Slope (%):
Subarea A Subarea B Subarea C Manning's Roughness: 0.01 0.00 0.00	0.00	0.00	50.00	Flow Length (ft):
Subarea A Subarea B Subarea C	0.00	0.00	0.01	Manning's Roughness:
	Subarea C	Subarea B	Subarea A	
				heet Flow Computations

Subbasin DMA06 Sheet Flow Computations

Computed Flow Time (minutes): 5.86 0.00	Welted Perimeter (tt): 2.13 0.00	Cross Section Area (It ²): 0.13 0.00	Channel SLope (%): 1.25 0.00	7 Flow Length (ft): 680.00 0.00	Manning's Roughness: 0.01 0.00	Subarea A Subarea B	Channel Flow Computations	Computed Flow Time (minutes): 1.59 0.00	Velocity (ft/sec): 0.52 0.00	2 yr, 24 hr Rainfall (in): 1.75 1.75	Slope (%): 1.00 0.00	Flow Length (ft): 50.00 0.00	Manning's Roughness: 0.01 0.00	Subarea A Subarea B	
L.30	1 93 0.00	0.13 0.00	1.25 0.00	680.00 0.00	0.01 0.00	Subarea A Subarea B		1.59 0.00	0.52 0.00	1.75 1.75	1.00 0.00	50.00 0.00	0.01 0.00	Subarea A Subarea B	
	0.00	0.00	0.00	0.00	0.00	Subarea C		0.00	0.00	1.75	0.00	0.00	0.00	Subarea C	

Autodesk Storm and Santiary Analysis

Autodesk Storm and Santfary Analysis	Suppasin Did0 Suppasin Did0 Suppasin Did0 Suppasin Did0 Suppasin Suppasin Flow Computations Suppasin	Total TOC (minutes):	Manning's Roughness: Flow Length (ft): Channel Slope (%): Cross Section Area (ft ²): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):	Channel Flow Computations	Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): Velocity (ft/sec): Computed Flow Time (minutes):	 Total TOC (minutes):	Channel Flow Computations Manning's Roughness: Flow Length (ft): Channel Slope (%): Cross Soccion Area (ft ²): Wetced Petimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):	Manning's Roughness; Flow Length (FC): Slope (%): Rainfall (in): 2 yr. 24 hr: Rainfall (in): Velocity (fC/sec): Computed Flow Time (minutes):
N'CC'S	Subarea A 50.00 1.00 1.55 0.52 1.59	3.67	Subarea A 20.01 2.19 0.13 0.13 2.56 2.08		Subarea A 0.01 50.00 1.00 1.75 0.75 1.59	2.77	Subarea A 0.01 150.00 0.13 2.13 2.13 2.13 1.18	Subarea A 0.01 50.00 1.00 1.75 0.52 1.59
	Subarea B 0.00 0.00 0.00 0.00 1.75 0.00 0.00		Subarea B 0.00 0.00 0.00 0.00 0.00		Subarea B 0.00 0.00 0.00 1.75 0.00 0.00		Subartea 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea B 0.00 0.00 0.00 1.75 0.00 0.00
	Subares C 0.00 1.75 1.75 0.00 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		Subarea C 0.00 0.00 1.05 1.05 0.00 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea C 0.00 0.00 1.75 1.75 0.00 0.00

Autodesk Storm and Sanifary Analysis	Canning Roughuess Pow lefuth (fb): Claudi Subp (fb): Claudi Subp (fb): Ccoss Subtion Area (fb): Wethed Perimeter (ff) Subputed Phys Wime (minutes):	Subbasin DMA11 Subbasin DMA11 Sheet Flow Computations Maning's Roughness: Flow Ength (ff): Suppo (ji): 2 wr, 4 hr Rainfall (in): Computed Flow Time (minutes):	Total TOC (minutes):	Channel Flow Computations Manning's Roughness: Flow Length (ft): Channel Slope (%): Cross Soction Area (ft*): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):	Sheet Flow Computations Manning's Roughnees: Flow Length (ft): Slope (%): 2 yr. 24 hr Rainfell (in): Velocity (ft/sec): Computed Flow Time (minutes):	Subbasin DMA10	Total TOC (minutes):	Manning's Roughness: Flow Length (ft): Channel Slope (%): Cross Section Area (ft ²): Wetted Perimeter (ft): Velocity (ft/sect): Computed Flow Time (minutes):
RICKS	Subarea A 0.01 210.00 2.20 0.13 2.13 2.13 2.13 1.57	Subarea A 0.01 50.02 2.20 1.75 0.72 1.15	3.07	Subarca A 255.00 2.13 0.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	Subarea A 0.01 50.00 2.20 1.75 0.72 1.15		3.76	Subarea A 0.01 390.00 0.13 2.13 2.13 3.01 2.13 2.17
	Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarca B 0.00 0.00 1.75 1.75 0.00		Subarca 0.00 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 0.00 0.00 1.75 0.00 0.00			Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
	Subarca C 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea 0.00 0.00 0.00 0.00 0.00 0.00		Subarca 0.000 0.000 0.000 0.000 0.000 0.000	Subarea C 0.00 2.00 1.00 1.75 1.75 0.00 0.00			Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I.
1
5
9
1
76
3
2
e
ge
Ω.
8
no.
٦.
ee
-Bi
Ę.
ê
ğ
ts
ģ
air
a
je/
Ň
Ble
ē
Ξ.
a
e
St
n
2
Jra
3
ďγ
ĝ

Autodesk Storm and Sanifary Analysis	Sheet Thow Computations Anning's Woighness:	Total mcc (minutes):	Flow Length (ft): Slope (%): Strfate Type: Vefocity (ft/sec): Coupit of Blow Time (minutes):	Manning's Roughness: Flow Length (ft): Sivpe (8): 2 yr. 24 hr Rainfall (in): Computed Flow Time (minutes): Shafloy Concentrated Flow Computations	Subbasin DMA13	Total TOC (minutes):	<pre>Flow Length (ft): Slope (%): Surface Type: Velocity (ft/sec): Computed Flow Time (minutes):</pre>	Shallow Concentrated Flow Computations	Manning's Roughness: Flow Length (ft): Slope (%): 2 yr. 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Sheet Flow Computations	Subbasin DMA12	Total TCC (minutes):
Micits	Subarea A	6.35	Subarea A 637.00 1.16 Paved 2.19 4.85	Subarea A 50.00 1.15 1.55 1.50 1.50		4.03	Subarea A 493.00 2.03 Pared 2.90 2.83		Subarea A 0.01 50.00 2.03 1.75 0.70 1.20			2.73
	Subarea B 0.00		Subarea B 0.00 0.00 Unpaved 0.00 0.00	Subarea B 0.00 1.75 0.00 0.00 0.00			Subarea B 0.00 0.00 Unpaved 0.00 0.00		Subarea B 0.00 0.00 0.75 1.75 0.00 0.00			
	Subarea C 0.00		Subarea C 0.00 Unpaved 0.00 0.00 0.00	Subarea C 0.00 0.00 0.00 1.75 0.00 0.00			Subarea C 0.00 Unpaved 0.00 0.00 0.00		Subarea C 0.00 0.100 1.75 0.00 0.00			

Autodesk Storm and Santary Analysis	Ehallow Concentrated Flow Computations Flow Learth (tt): Slope V): Surface (uppe Velocity (tr/spc):	Shebadro DMA16 Shebadro DMA16 Sheet Fick Computations Fick Leads h (ft) : Stope M): Stope M): Velocity (ft/sec): Velocity (ft/sec): Nintel Fick Thime Minutes):	Total TOC (minutes):	Flow Length (ft): SLope (%): Surface Type: Valocity (ft/sec): Computed Flow Time (minutes):	Shallow Concentrated Flow Computations	Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): Velocity (ft/sec): Computed Flow Time (minutes):	Subbasin DMA15	Total TOC (minutes):	Flow Length (ft): Slope (%): Surface Type: Velocity (ft/sec): Computed Flow Time (minutes):	Slope (s): Slope (s): Z yr, 24 hr Rainfall (in): Valocity (fr/sec): Computed Flow Time (minutes): Shallow Concentrated Flow Computations	ゴー・・・ チャー・マナブ (カナイ・
N'C'S	Subarea A 180.00 Paved 2.59	Subarea A 0.01 50.00 1.00 1.55 0.55 1.59	2.59	Subarea A 172.00 2.00 Paved 2.87 1.00		Subarea A 0.01 50.00 1.75 0.52 1.75		2.88	Subarea A 447.00 3.62 Parved 3.87 1.93	0.88 0.95	n > >>
	Subarea B 0.00 Unpaved 0.00	Subarea B 0.00 1.00 1.75 1.75 0.00 0.00		Subarea B 0.00 0.00 Unpaved 0.00 0.00 0.00		Subarea B 0.00 0.00 1.75 0.00 0.00 0.00			Subarea B 0.00 0.00 Unpaved 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0
	Subarea C 0.00 Unpaved 0.00	Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00		Subarea C 0.00 Unpaved 0.00 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 1.05 1.75 0.00 0.00			Subarea C 0.00 Unpaved 0.00 0.00	0.00 0.00 0.00	2 00

Autodesk Storm and Sanliery Analysis	STALLOY Concentrated Floor Computations Floor Lefoth (ft): Stoge (b) Surface type Velocity (ft/s)e): Velocity (ft/s)e): Velocity (ft/s)e):	Subject DMA18 Shed Flow Computations The formation and the set of	Total TOC (minutes):	<pre>Manning's Boughness:</pre>	Channel Flow Computations	<pre>Flow Length (ft): Slope (%): Surface Type: Velocity (ft/sec): Computed Flow Time (minutes):</pre>	Shallow Concentrated Flow Computations	<pre>Manning's Roughnees: Flow Length (ft): Slope (%): 2 yr, 24 hr Rainfall (in): Velocity (ff/sec): Computed Flow Time (minutes):</pre>	Sheet Flow Computations	Subbasin DMA17	Total TOC (minutes):	Computed Flow Time (minutes):
RICKS	Subarea A 123.00 1.90 Paved 2.80 0.73	Subarca A 50.001 1.000 1.75 0.55 0.55	3.19	Subarea A 37.01 1.60 0.13 2.13 1.90 1.3 0.33		Subarea A 155.00 Paved 2.03 1.27		Subarea A 0.01 50.00 1.70 1.75 0.52 1.59			2.75	1.16
	Subarea B 0.00 Unpaved 0.00 0.00	Subarea B 0.00 0.00 0.00 1.75 0.00 0.00		Subarca B 0.00 0.00 0.00 0.00 0.00 0.00		Subarea B 0.00 0.00 Unpaved 0.00 0.00		Subarea B 0.00 1.75 1.75 0.00 0.00				0.00
	Subarea C 0.00 0.00 Unpaved 0.00 0.00	Subarca C 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.0		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00		Subarea C 0.00 0.00 Unpaved 0.00 0.00		Subarea C 0.00 0.00 0.00 1.75 0.00 0.00				0.00

т	
:\1100\1	
176.30 M	
erge 56\E	
Ingineeri	
ng\Repor	
ts\Draina	
ge\Merg	
e Private	
Storm D	
rain.dwg	

Total TOC (minutes):

2.32

Autodesk Storm and Sanifary Analysis	flow length (ft) flog ling Type: Suffact Type: Velofit (ft Ssc): Computed filow Type (minutes):	Subbasin DMA20 Sheet Flow Computations Camping's Roughness: Flow Length (ffl): Flow Length (ffl): Compile Flow Time (minutes): Compile Flow Time (minutes):	Total TOC (minutes):	<pre>Manning's Roughness: Flow Length (ft): Channel Slopp (%): Cross Section Atea (ft*): Wetted Perimeter (ft*): Velocity (ft/sec): Computed Flow Time (minutes):</pre>	Channel Flow Computations	<pre>Flow Length (ft): Slope (%): Surface Type: Velocity (ft/sec): Computed Flow Time (minutes):</pre>	Shallow Concentrated Flow Computations	Sheet Flow Computations Mannind's Roughness: Flow Length (ft): Slope (%): 2 yr, 2 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Subbasin DMA19
R.C.S.	Subarea A 124.00 Paved 2.80 0.74 2.33	Subarea A 0.01 50.00 1.00 1.75 0.52	3.28	Subarea A 5.00 1.60 0.13 0.13 2.13 1.90 0.44		Subarea A 152.00 1.00 Paved 2.03 1.25		Subarea A 0.01 50.00 1.00 1.75 0.52 1.59	
	Subarea B 0.00 0.00 Unpaved 0.00 0.00	Subarea B 0.00 1.75 1.75 0.00 0.00		Subarca B 0.00 0.00 0.00 0.00 0.00 0.00		Subarea B 0.00 Unpaved 0.00 0.00 0.00		Subatea B 0.00 0.00 0.00 0.00 1.75 0.00 0.00	
	Subarea C 0.00 0.00 Unpaved 0.00 0.00	Subarea C 0.00 0.100 0.100 0.100 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00		Subarea C 0.00 Unpaved 0.00 0.00 0.00		Subatea C 0.00 0.00 1.75 0.00 0.00 0.00	

Autodesk Storm and Sanifary Analysis	Total Top (minutes):	Subbasin DMA22 Subbasin DMA22 Sheet Flow Computations Manning's Roughness: Flow Length (ft): 2 Singe (%): 2 S	Total TOC (minutes):	Manning's Roughness: Flow Length (ft): Channel Slope (%): Cross Soction Arca (ft*): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):	Slope (%): Slope (%): Surface Type: Valocity (ft/sec): Computed Flow Time (minutes): Channel Flow Computations	Shallow Concentrated Flow Computations	Manning's Roughness: Flow Length (ft): Slope (%): 2 yr.24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Sheet Flow Computations	Subbasin DMA21
N.C.S R	Subarea A 164.00 Pared 2.41 1.13 2.73	Subarea A 0.01 50.00 1.00 1.52 0.52	3.60	Subarea A 0.01 109.00 1.60 1.13 2.13 1.93 1.96 0.96	128.00 Payed 2.03 1.05	Subarea A	Subarea A 0.01 50.00 1.00 1.75 0.52 1.59		
	Subarea B 0.00 0.00 Unpaved 0.00 0.00	Subarea B 0.00 0.00 0.00 1.75 0.00 0.00		Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00	Subarea B	Subarea B 0.00 0.00 1.75 0.00 0.00		
	Subarea C 0.00 Unpaved 0.00 0.00 0.00 0.00	Subarea C 0.00 0.00 1.75 1.75 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	Subarea C	Subarea C 0.00 0.00 0.00 1.75 0.00 0.00 0.00		
· · ·									

-									
3									
z									
2									
-									
7									
െ									
ω									
0									
<									
ē									
2									
0									
(Th									
ത്									
б.									
Ξ.									
ō									
3.									
Φ									
Ψ									
₹.									
ā									
₩.									
õ									
ö									
<u>q</u>									
ದೆ.									
ž.									
Υ.									
ຜ									
3									
ຼ									
8									
≥									
≤									
<u>u</u>									
e									
ω									
τ									
Pi									
Priva									
Private									
Private :									
Private St									
Private Stor									
Private Storn									
Private Storm I									
Private Storm Di									
Private Storm Dra									
Private Storm Drain									
Private Storm Drain.c									
Private Storm Drain.dv									
Private Storm Drain.dwg									

Subbasin DMA23

Sneet Flow computations			
	Subarea A	Subarea B	Subarea
Manning's Roughness: Flow Lenath (ft):	0.01 50.00	0.00	0.0
Slope (%):	1.00	0.00	0.0
2 yr, 24 hr Rainfall (in):	1.75	1.75	1.7
Velocity (ft/sec):	0.52	0.00	0.0
Computed Flow Time (minutes):	1.59	0.00	0.0
Shallow Concentrated Flow Computations			
	Subarea A	Subarea B	Subarea
Flow Length (ft):	140.00	0.00	0.0
Slope (%):	1.50	0.00	0.0
Surface Type:	Paved	Unpaved	Unpave
Velocity (ft/sec):	2.49	0.00	0.0
Computed Flow Time (minutes):	0.94	0.00	0.0
Total TOC (minutes):	2.53		
Subbasin DMA24			
Sheet Flow Computations			
Manning's Roughness:	Subarea A 0.01	Subarea B 0.00	Subarea
Flow Length (ft):	50.00	0.00	00
2 vr, 24 hr Rainfall (in):	1.75	1.75	1.7

7		<u>_</u> ,		
	JP .	Channel		Subbasin
T tal TOC (minutee)	Maning's Roughness: Flow Langth (ft): Flow Section Lee (ft): tross Section Lee (ft): Verted Peimeter (ft): Vertety (ft/sec. Computed Flow The (minutes):	Flow Length (ft): Slope (%): Surface Type: Valocity (ft/sec): Computed Flow Time (minutes):	Manning's Roughnees: Flow Length (Et): Slope (%): 2 yr.24 hr Rainfall (in): Computed Flow Time (minutes): Computed Flow Time (minutes):	DMA24
2 Q 2	Subarea A 0.01 131.00 2.80 0.13 2.13 2.13 2.53 2.53	Subarea A 186.00 1.10 Paved 2.13 1.46	Subarea A 50.01 1.00 1.75 0.52 1.59	
	Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea B 0.00 Unpared 0.00 0.00 0.00	Subarea B 0.00 0.00 0.00 1.75 1.75 0.00 0.00	
	Subarea C 0.00 0.00 0.00 0.00 0.00 0.00	Subarea C 0.00 Unpaved 0.00 0.00 0.00	Subarca C 0.00 0.00 0.00 1.75 0.00 0.00	

Autodesk Storm and Sanlfary Analysis

<u>-</u>
3
ŏ
-
7
െ
ώ
0
2
7
≝
8
g
9
Π.
2
₽.
2
Ж.
≝.
3
ā
₩.
ã.
ö
0
<u></u>
<u>~</u>
<u>a</u>
₹.
ฉ
0
œ
2
ē
ä.
፳
-
-7
Ś.
ഖ
E.
~
¥
<u>o</u>
3
-
0
3
Ę٠
ಷ
9
2

	·	N'C'LS	Autodesk Storm and Sanifary Analysis
		2.43	Total TCC (minutes)
Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea A 57.00 2.80 2.13 2.13 2.13 2.13 2.13	Channel Llow Computations Manning's Roughness: prover Learth (ft): Channel Slope (%): Cross Section Acea (ft): Wetter deschapter (ft): Velocity (ft/Sec): Computed Llow Time (minutes):
Subarea C 0.00 0.00 Unpaved 0.00 0.00 0.00	Subarea B 0.00 0.00 Unpaved 0.00 0.00 0.00	Subarea A 99.00 3.10 Paved 3.58 0.46	Flow Length (ft): Surface (%): Velocity (ft/sec): Computed Flow Time (minutes):
Subarea 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 0.00 1.75 0.00 0.00	Subarea A 50.01 1.00 1.75 0.52 1.52	Subbasin DMA26 Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (8): Raiffall (in): Velocity (ft/sec): Computed Flow Time (minutes): Shallow Concentrated Flow Computations
		2.35	Total TOC (minutes):
Subarca C 0.00 0.00 Unpaved 0.00 0.00	Subarea B 0.00 0.00 Unpaved 0.00 0.00	Subarea A 120.00 1.70 Pared 2.65 0.75	Shallow Concentrated Flow Computations Flow Length (ft): Slope (%): Sufface Type: Velocity (ft/sec): Computed Flow Time (minutes):
Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 0.00 0.00 1.75 0.00 0.00	Subarea A 0.01 50.00 1.00 1.75 0.52 1.59	Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): 2 yr, 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):
.1100\1176.30 Merge 5	H		

Autodesk Storm and Sanifery Analysis	fotal TOC (minutes)	Vector crimeri (177) Velocity (ff/sec): Computed Flow Time (minutes):	Channel Stope (%): Channel Stope (%): Cross Section Area (ft ²):	Chapfel Flow Computations	Velocity (ft/sec): Computed Flow Time (minutes):	Flow Length (ft): Slope (%):	Shallow Concentrated Flow Computations	2 yr, 24 hr Rainfall (in): 2 yr, 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Manning's Roughness: Flow Length (ft):	Sheet Flow Computations	Subbasin DMA28	Total TOC (minutes):	<pre>Manning's Roughness: Flow Lenth (ft); Channel Slope (%): Cross Soction Area (ft²): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):</pre>	Channel Flow Computations	Manning's Roughness: Flow Length (ft): Slope (%): 2 yr. 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Sheet Flow Computations
RCKS	3.79	2.22 0.73	20.00 2.20 0.13	Subarea A 0.01	2.13 1.46	Subarea A 187.00 1.10 Pawed		1.75	Subarea A 0.01 50.00 1.00			2.39	Subarea A 205.00 2.50 0.13 2.37 2.37 1.44		Subarea A 0.01 33.00 1.60 1.75 0.58 0.95	
		0.00	0.000	Subarea B	0.00	Subarea B 0.00 0.00 Unnaved		0.05	Subarea B 0.00 0.00				Subarea B 0.00 0.00 0.00 0.00 0.00 0.00		Subarea B 0.00 0.00 1.75 1.75 0.00 0.00	
		0.00	0.000	Subarea C	0.00	Subarea C 0.00 0.00		1.75 0.00 0.00	Subarea C 0.00 0.00				Subarea C 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Subarea C 0.00 0.00 0.00 1.75 0.00 0.00	

Autodesk Storm and Santiery Analysis	Vanning's Roughuss: Pow Leigth (ft): Chayfel Sope (%): Cross SocionArea (ft): Whethed Ferimetr (ft): Whethed Ferimetr (ft): Whethed Pow pime (minutes):	Shallow Concentrated Flow Computations Flow Length (Ft): Surge (H): Surge (Fpe: Computed From Fime (minutes):	Subbasin DMA30 Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): 2 yr 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Total TCC (minutes):	<pre>Manning's Roughness: Flow Length (ft): Channel Slope (%): Cross Soction Atea (ft[±]): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):</pre>	Shallow Concentrated Flow Computations Flow Length (ft): Slope (%): Surface Type: Valoticy (ft/sec): Computed Flow Time (minutes): Channel Flow Computations	Sheet Flow Computations Manning's Roughness: Flow Length (Ft): Slope (%): 2 yr, 24 hr Rainfall (in): Valocity (ft/sec): Computed Flow Time (minutes):
Ricks	Subarea A 0.01 255.00 1.00 0.13 2.13 1.50 2.83	Subarea A 146.00 Paved 2.32 1.05	Subarea A 0.01 5.000 1.00 1.75 0.55 0.52	4.63	Subarea A 0.01 174.00 1.20 0.13 2.13 1.64 1.76	Subarea A 163.00 1.0 2.ved 2.ved 1.28	Subarea A 0.01 50.00 1.00 1.75 1.75 1.59
	Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 Unpaved 0.00 0.00	Subarea B 0.00 0.00 0.00 0.00 1.75 0.00 0.00		Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea B 0.00 Unpaved 0.00 0.00 0.00	Subarea B 0.00 0.00 0.00 1.75 0.00 0.00
	Subarea 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea C 0.00 0.00 Unpacd 0.00 0.00 0.00	Subarea C 0.00 0.00 1.0 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea C 0.00 Unpaved 0.00 0.00 0.00	Subarea C 0.00 0.00 0.10 1.75 0.00 0.00 0.00

T	
_	
·	
-	
_	
_	
0	
\sim	
9	
~	
-	
~	
Ċ,	
~	
č.	
×.	
0	
_	
<	
-	
w.	
0	
m –	
(Th	
õ.	
5	
<u></u>	
-	
<u>م</u>	
<u>ч</u> .	
- T	
2	
Ψ	
m –	
÷.	
÷.	
-	
0	
~	
Ξ.	
~	
<u>م</u>	
73	
Υ.	
0	
<u> </u>	
ā.	
ts)	
rts/[
rts\D	
rts\Dr	
rts\Dra	
rts\Drai	
rts\Drain	
rts\Draina	
rts\Draina;	
rts\Drainag	
rts\Drainage	
rts\Drainage\	
rts\Drainage\N	
rts\Drainage\M	
rts\Drainage\Me	
rts\Drainage\Mer	
rts\Drainage\Merg	
rts\Drainage\Merge	
rts\Drainage\Merge	
rts\Drainage\Merge F	
rts\Drainage\Merge P	
rts\Drainage\Merge Pri	
rts\Drainage\Merge Priv	
rts\Drainage\Merge Priva	
rts\Drainage\Merge Priva	
rts\Drainage\Merge Private	
rts\Drainage\Merge Private	
rts\Drainage\Merge Private \$	
rts\Drainage\Merge Private S	
rts\Drainage\Merge Private Str	
rts\Drainage\Merge Private Sto	
rts\Drainage\Merge Private Ston	
rts\Drainage\Merge Private Storn	
rts\Drainage\Merge Private Storm	
rts\Drainage\Merge Private Storm [
rts\Drainage\Merge Private Storm D	
rts\Drainage\Merge Private Storm Dr	
rts\Drainage\Merge Private Storm Dra	
rts\Drainage\Merge Private Storm Drai	
rts\Drainage\Merge Private Storm Drain	
rts\Drainage\Merge Private Storm Drain.	
rts\Drainage\Merge Private Storm Drain.d	
rts\Drainage\Merge Private Storm Drain.dv	
rts\Drainage\Merge Private Storm Drain.dwi	
rts\Drainage\Merge Private Storm Drain.dwg	
rts\Drainage\Merge Private Storm Drain.dwg	

Total TOC (minutes):

5.47

Autodesk Storm and Santifary Analysis	Shaflow Concentrated Elow Computations Flow Length (ft). Subject(): Subject(): Valority (ft)sec): Computed Flow Lime (minutes):	Subbasin DMA32 Sheet Flow Computations Naning's Roughness: Nonwinth (ft): Suppe (A) 2 Jr. (ft Rainfall (in): Velobus firster): Computer Flow Time (minutes):	Total TOC (minutes):	Channel Flow Computations Manning's Roughness: Flow Length (ft): Channel Slope (%): Cross Section Area (ft*): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):	Shallow Concentrated Flow Computations Flow Length (ft) : Slope (%): Surface Type: Valocity (ft/sec): Computed Flow Time (minutes):	Subbasin DMA31 Sheet Flow Computations Mannind's Roughnees: Flow Length (ft): Slope (%): 2 yr. 24 hr Bainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):
RICIS	Subarea A 183.00 2.50 Parved 3.21 0.95	Subarea A 0.01 14.00 1.75 1.55 0.55	6.61	Subarca A 316.00 2.20 0.13 2.13 2.13 2.2 2.37	Subarea A 212.00 2.40 Pared 3.15 1.12	Subarea A 0.01 90.00 0.60 0.475 0.475 0.475 0.475
•	Subarea B 0.00 0.00 Unpaved 0.00 0.00	Subarea B 0.00 0.00 1.75 0.00 0.00		Subarca B 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 0.00 Unpaved 0.00 0.00	Subarea B 0.00 1.75 0.00 0.00
	Subarea C 0.00 Unpared 0.00 0.00 0.00	Subarea C 0.000 0.00 1.00 1.75 0.00 0.00		Subares 0.00 0.00 0.00 0.00	Subarea C 0.00 Unpared 0.00 0.00	Subarea C 0.00 0.10 0.10 0.175 0.00 0.00

Autodesk Storm and Sanliary Analysis	Supersin Du314 Supersin Du314 Meed Flw Computations for family a Roughness flow Earth (ff.) a Sydee (f) Painfell (in)* 2 yr 2 b Painfell (in)* (compute Flow Time (minuted): Compute Flow Time (minuted):	Total TOC (minutes):	Channel Flow Computations Manning's Roughness: Flow Length (tf): Channel Slope (%): Cross Section Area (ff ²): wetced Perimeter (ff): Velocity (ff/sec): Computed Flow Time (minutes):	Shallow Concentrated Flow Computations Flow Length (ft): Stope (%): Surface Type: Computed Flow Time (minutes):	Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): 2 yr. 24 hr. Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Subbasin DMA33	Total TOC (minutes):	Manning's Roughness: Flow Length (ft): Chaned Slope (%): Cross Section Area (ft ²): Wetted Perimeter (ft): Velocity (ft/sec): Computed Flow Time (minutes):
N.C.S	Subaree A 0.01 1.00 1.75 1.59	3.25	Subarea A 0.01 77.00 1.60 0.13 2.13 1.90 0.68	Subarea A 120.00 Pared 2.03 0.99	Subarea A 0.01 50.00 1.00 1.75 0.52 1.59		2.56	Subarea A 0.01 141.00 0.13 0.13 2.13 2.23 1.06
	Subarea B 0.00 1.75 1.75 0.00 0.00		Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea B 0.00 0.00 Unpaved 0.00 0.00	Subarea B 0.00 0.20 0.20 1.75 0.00 0.00			Subarea 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	Subarce C 0.000 1.05 1.75 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea C 0.00 0.00 Unpaved 0.00 0.00	Subarea C 0.00 0.00 0.00 1.75 0.00 0.00 0.00			Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

Shade fin DMad6 Shade Fine Compute tions	Total TCC (minutes):	Vaning's Roughness: How Length (ft): fname Sige (%): the self elimeter (ft): We ted Felimeter (ft): Velobb (ft/se): Computed Film (minutes):	Shallow Concentrated Flow Computations Flow Length (ft): Slope (%): Surface Type: Velocity (ft/sec): Computed Flow Time (minutes):	Subbasin DMA35 Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): 2 yr. (24 hz Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Total TOC (minutes):	Channel Flow Computations Manning's Roughness: Flow Length (ft): Channel Slope (%): Channel Slope (%): Wetcod Perimeter (ft): Velocity (ft/see): Computed Flow Time (minutes):	Flow Length (ft): Slope (%): Surface Type: Valocity (ft/sec): Computed Plow Time (minutes):
RCAS	2.42	Subarea A 0.01 52.00 0.13 0.13 2.17 2.17 0.42	Subarea A 12.00 Paved 2.11 Paved 2.11 0.83	Subarea A 0.01 100.00 1.75 1.43 1.17	2.60	Subarea A 0.01 49.00 1.60 1.61 2.13 2.13 2.13 2.13 0.43	Subarea A 120.00 2.90 Paved 3.46 0.58
		Subarca B 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 Unpared 0.00 0.00	Subarea B 0.00 0.00 1.75 0.00 0.00		Subarea B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea B 0.00 Unpaved 0.00 0.00
		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea C 0.00 0.02 Unpaved Unpaved 0.00 0.00	Subarea C 0.00 1.00 1.00 1.00 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea C 0.00 0.00 Unpaved 0.00 0.00 0.00

Guide Fire Drage Sheet Fire Computations Autodesk Storm and Santary Analysis	Vaning's Koughness: Plaw Length (ft): thange Slope (%): we ted Pecimeter (ft): Velodiv (ft/sec): Computed Pecimeter (ft): Velodiv (ft/sec): Jotal TOC (minutes):	Subbasin DWA37 Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): 2 yr, 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):	Total TOC (minutes):	Channel Flow Computations Manning's Roughness: Flow Length (Ft): Channel Slope (%): Cross Section Area (ft ²): Wetced Perimeter (Ft): Velocity (ft/sec): Computed Flow Time (minutes):	Shallow Concentrated Flow Computations Flow Length (ft): Slope (%): Surface Type: Velocity (ft/sec): Computed Flow Time (minutes):	Manning's Roughness: Flow Length (It): Slope (%): 2 yr. 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (minutes):
Ricks	Subarca A 0.01 94.00 2.10 0.13 2.13 2.13 2.13 1.59 1.59	Subarea A 0.01 45.02 2.80 1.75 0.77	3.48	Subarea A 0.01 93.00 1.20 2.13 2.13 1.63 1.64 0.94	Subarea A 150.00 Pared 2.65 0.94	Subarea A 0.01 50.00 1.75 0.52 1.59
	Subarca B 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 0.00 0.100 1.70 0.00 0.00		Subarea 0.00 0.00 0.00 0.00 0.00	Subarea B 0.00 Unpeved 0.00 0.00	Subarea B 0.00 0.00 0.00 1.75 0.00 0.00
	Subarea C 0.00 0.00 0.00 0.00 0.00 0.00	Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00		Subarea C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Subarea C 0.00 0.00 Unpaved 0.00 0.00 0.00	Subarea C 0.00 0.00 0.00 1.75 0.00 0.00 0.00

_
÷.
\leq
6
õ
÷
7
<u>о</u>
8
2
9
Ð.
e
ğ
×.
5
g.
9
ğ
5
9
20
ö
q
s
6
3
3
8
ē
ŝ.
ē
ğ
Ť
<u> </u>
S.
Ħ
0
Ť
Ĕ.
2
ų
ല്.
2
Å
ĝ

		3.70	Total TOC (minutes):
0.00	0.00	3.15	Computed Flow Time (minutes):
0.00	0.00	3.14	Wetted Perimeter (ft):
0.00	0.00	1.57	Cross Section Area (ft ²):
0.00	0.00	1.00	Channel Slope (%):
0.00	0.00	887.00	Flow Length (ft):
0.00	0.00	0.02	Manning's Roughness:
Subarea C	Subarea B	Subarea A	
			Channel Flow Computations
0.00	0.00	0.55	Computed Flow Time (minutes):
0.00	0.00	1.45	Velocity (ft/sec):
1.75	1.75	1.75	2 yr, 24 hr Rainfall (in):
0.00	0.00	23.00	Slope (%):
0.00	0.00	48.00	Flow Length (ft):
0.00	0.00	0.02	Manning's Roughness:
Subarea C	Subarea B	Subarea A	

Autodesk Storm a	DVA01 DVA01 DVA02 DVA02 DVA03 DVA03 DVA03 DVA03 DVA03 DVA03 DVA13 DVA3 DVA3 DVA3 DVA3 DVA3 DVA3 DVA3 DVA	Subbasin ID
d Sanlfay Analysis		Accumulated
KGV AV	19/h 29.100 20.100	Rainfall Intensity
Micis 6		Total Runoff
Q	25 14 14 14 14 14 14 14 14 14 14	Peak Runoff
	0.1700000000000000000000000000000000000	Weighted Runoff
		Conc
	b mm ss b mm ss b mm ss c 00 05 s c 00 05 s s c 00 15 s s c 00 15 s s c 00 15 s s c 15 5 s s s c 15 5 s	Time of entration

Autodesk Storm	Stor-10 State - 17 Stor-10 State - 17 Stor-10 Stor-10 State - 17 Stor-10 Stor-10 Stor-10 State - 17 Stor-10 S	Node ID	**************************************	DMA.36 DMA.37 DMA.38
and Sanifary An		Average Depth Attained ft	***** ummary *****	000
	V 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Maximum Depth Attained ft		344
	$\begin{array}{c} 3340\\$	Maximum HGL Attained ft		4.10 4.10 4.10 4.10
		Time of Ma Occurrenc days hh:r		0.24
of Ma		ax Tota ye Floode Volum m acre-i		1.89 0.).35 0.).49 0.
xinum Time	+	1 Tota d Time e Floodec n minutes		700 850 350 0
of Poar		L Retention Time 1 hh:mm:ss		00:05:00

Triter-004 Triter-003 Inter-004 Inter-004 Inter-005 Inter-005 Inter-005	A Harden	**************************************	Stor-01	Jun 79 Jun 79 Jun 80	Jun-75 Jun-75 Jun-76	Jun-71 Jun-72 Jun-73	Jun-68 Jun-69 Jun-70	Jun-65 Jun-66 Jun-67	Jun−22 Jun−25 Jun−64	Jun-19 Jun-20 Jun-21	Jun-17 Jun-18	Jun-13 Jun-14	ປຸນກ-10 ປັນກ-11 ປັນກ-12	Jun-08	Jun-05 Jun-07	ປາກາ-01 ປາກາ-02 ປາກາ-03	ID
any Analysis	Max Gutter Spread during Peak Flow		JUNCTION JUNCTION JUNCTION OUTFALL STORAGE	JUNCTION	JUNCTION	JUNCTION	JUNCTION JUNCTION	JUNCTION JUNCTION JUNCTION	JUNCTION	JUNCTION JUNCTION	JUNCTION	JUNCTION	JUNCTION	JUNCTION	JUNCTION	JUNCTION	Туре
	Max Gutte Water Ele durin Peak Flo f		0.00 0.00 1	00000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	000	0000	0.00	0.00	0.00 L	Inflow cfs
	ris Q 2 H		90.50 90.50	17.59 13.83 13.87	39.77 39.77 40.98	18.01 19.14 36.69	10.98 14.32 16.23	4.25 6.41 9.63	44.69 2.69 1.94	3.79 4.44 49.37	1.14	1.26	0.00 .00	13.86	31.20	49.10 39.21 41.44	cfs
0400000	Max Gutt Nater Dep durj Peak Fj		00000				000	000	000	000		200	000	000	00	0000	Peak Int Occurre days hh
1222 1222 1222 1222 1222 1222 1222 122	ing ft		0.08	0.0000		0.000	0.05	0.05	0:06	0:08	0.07	0.05	0000	0.05	0:16	0:07	flow I nce (
	Time . Maxim Dep Occurren days hh:		7.93	00000		0000	2.46	0.00 0.00 0.00	0.00	0.00	0.00	0.00	000	00.00	0.00		Tlooding Overflow cfs
00776506	l m c F m f l		0				0 0										FL Occu days
			00:07				00:05										rrence hh:mm

LAMA-901 HAR-902 HAR-902 LAMA-903 LAMA-907 JAMA-907 JAMA-907 JAMA-907 JAMA-907 JAMA-907 JAMA-9015 LAMA-905 LAMA-905 LAMA-905 JAMA	Link IP	fin Flow Summary	System	Outfall Node ID	**************************************	Stor-01	Storage Node ID	**************************************	Inlet-54 Inlet-56 Inlet-37 Inlet-39 Inlet-39 Inlet-40 Inlet-40 Inlet-42 Inlet-42 Inlet-45 Inlet-45 Inlet-46 Inlet-46 Inlet-46
nifary Analysis	Element Type	*~ *	6.21	Frequency (%)	******* Summary ******	0.030	Maximum Ponded Volume 1000 ft ³	.*** vary .***	0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 3 - 3 - 2 - 2
	Time of Peak Flow Occurrence days hh:mm		6.87 105	Average P Flow Inf cfs 105		100	Maximum Ponded Volume (%)		0
146.72 14.885	Maximum Leng Velocity Fact Attained ft/sec		. 19	leak leak		0 00:06	Time of Max Ponded Volume days hh:mm		
	yth Peak Flov or during Analysis					0.001	Average <i>i</i> Ponded Volume 1000 ft ³		
4,28.52 4,28.52 4,22.87 12.28 11.43 12.28 12.611 12.385 12.55 1	v Design g Flow Capacity cfs					2	Average Ponded Storz Volume (%)		
0	Ratio of Maximum /Design Flow					120.47	Maximum uge Node Ex Outflow cfs		
0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	Ratio of Maximum Flow S Depth					0.00	Maximum filtration Rate cfm		
	Total Time Jurcharged minutes					0:00:	Time of Ma Exfiltrati Ra hh:mm:		
calculated calculated calculated calculated calculated calculated calculated calculated calculated calculated calculated	Reported Condition					:00 0.000	<pre>% % % % % % % % % % % % % % % % % % %</pre>		

Autodesk Storm and San	LAIN- 90 LÄNK- 90 LÄNK- 96 LÄNK- 96 LÄNK- 96 LÄNK- 96 LÄNK- 96 LÄNK- 99	Link-136 Mank-136 Link-138 Link-139 Link-139 Link-139 Link-149	Link-126 Link-126 Link-126 Link-132 Link-132 Link-132	Link-119 Link-121 Link-121 Link-121 Link-122 Link-123 Link-123	Link-111 Link-112 Link-113 Link-114 Link-115 Link-115 Link-117 Link-117	LARK-102 LARK-103 LARK-104 LARK-105 LARK-106 LARK-106 LARK-109 LARK-109 LARK-109	LARK-030 LARK-032 LARK-032 LARK-033 LARK-035 LARK-035 LARK-035 LARK-100 LARK-100	Link-017 Link-019 Link-020 Link-022 Link-022 Link-023 Link-023 Link-025 Link-025 Link-027 Link-027
lien Analysis	CONDULT CONDULT CONDULT CONDULT CONDULT	CONDULT CONDULT CONDULT CONDULT	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT
	00000000		0000000					00000000000
Mr. AG					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000		00:07 00:07 00:07 00:07 00:07 00:07 00:08 00:07 00:08 00:07 00:08
· C LS	20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	7.93 9.61 9.10 11.39 12.75 12.75	7.42 7.54 7.54 1.5.12 6.84	13.47 18.76 8.31 7.40 6.90 6.75	11.53 12.68 12.68 10.08 12.18 12.18 12.18 12.18	10.93 11.79 11.79 1.179 1.179 1.179 1.17 1.23 1.23 1.23 1.23 1.23 1.11	955389405 2413355307	5.08 11.01 7.25 7.25 13.09 5.84 4.88 4.88 4.88 4.88 3.56
? `	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.000	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.000 1.000 1.000 1.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
	141 141 241 241 241 241 252 252 241 252 252 252 252 252 252 252 252 252 25	1.89 3.61 13.84 15.83 17.59	9360222 300507 3760507	2.78 44.30 0.48 2.20 1.37 1.10	19.11 38.66 38.50 1.25 1.20 39.75 40.96 1.46	10.98 1.56 2.12 15.13 1.4.88 1.89 1.89 1.46	2 6 1 0 2 2 1 0 1 2 2 2 2 1 0 2 2 2 2 2 2 2	3.67 49.71 49.10 5.05 5.05 3.76 3.79 3.79 1.13 1.13
	157.35 39.35 2.39 12.70 12.70 13.28 12.55 12.63 12.63	23. 41. 25. 41. 25. 88 43. 54 88 52. 54 88 51 51 51 51 51 51 51 51 51 51 51 51 51	10.10.12 13.22 21.23 34.05 21.25 21.25 21.26	42.22 153.28 52.33 13.78 9.50 10.58 11.04	64. 94.0 45.10 395.15 88.30 108.25 708.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 798.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	36.79 274.22 14.24 15.122 15.125 42.05	26.09 10.09 7.27 19.27 20.88 10.88	3.43 12.11 61.59 70.92 23.97 19.64 19.64 8.95 8.14
	00000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.18 0.15 0.20 0.20 0.20 0.20 0.20 0.47	0.07 0.29 0.85 0.04 0.23 0.13 0.13	0.30 0.41 0.41 0.45 0.45 0.45	0.04 0.029 1.008 1.008 1.008 0.122 0.122	0.14 0.128 0.128 0.128 0.128 0.124 0.124 0.124 0.124 0.159	1.07 0.80 0.77 0.27 0.19 0.19 0.19 0.19 0.19 0.19 0.19
	0.42 0.42 0.20 0.20 0.21 0.21 0.26 0.41 0.41	0.219	0.22 0.22 0.22 0.21 0.21 0.21 0.21	0.17 0.37 0.71 0.13 0.13 0.22	0.37 0.42 0.44 0.106 0.12 0.47 0.47 0.47	0.13 0.13 0.19 0.19 0.90 0.90 0.94 0.94 0.24 0.33 0.13	0.25 0.20 0.21 0.21 0.40 0.40 0.17 0.17 0.17 0.55	1.00
	0000000000							000000000N
	Calculate Calculate SURCHARGEI Calculate Calculate Calculate Calculate Calculate Calculate Calculate	Calculate Calculate Calculate Calculate Calculate Calculate Calculate	Calculate Calculate Calculate Calculate Calculate Calculate Calculate	Calculate Calculate Calculate Calculate Calculate Calculate Calculate	Calculate Calculate Calculate Calculate Calculate Calculate Calculate Calculate	Calculate Calculate Calculate Calculate Calculate > CAPACIT > CAPACIT > CAPACIT Calculate Calculate	Calculate Calculate Calculate Calculate Calculate Calculate Calculate Calculate Calculate	SURCHARGEN Calculate Calculate Calculate Calculate Calculate Calculate Calculate Calculate Calculate Calculate Calculate

WARNING 116 : Conduit inlet invert elevation defined for Conduit Link-Ol6 is below upstream node invert elevation. Assumed conduit inlet invert elevation equal to upstream node invert elevation.

halysis been on: Fri Feb 19 07:14:01 2021 Analysis ended on: Fri Feb 19 07:14:11 2021 Toral elapsed time: 00:00:10

Autodesk® Storm and Sanitary Analysis 2016 - Version 13.2.147 (Build 0) MITIGATED CONDITION

Merge Proposed Onsite Hydrology (After Detention).SPF H:\1100\1176.30 Merge 56\Engineering\Reports\Drainage\Merge Private Storm Drain.dwg

Pilow Units Cfe Link Routing Method Kinematic Wave storage Node Exciltration. None 62-2017 00:00:00 Starting Date SEP-27-2017 00:00:00 Benoing Date SEP-27-2017 00:00:00 Report Time Step 00:05:00

044

**************** Node Summary ***********

HMP-1A Jun-01 Out-POC'A' HMP-1 Node ID ******** JUNCTION JUNCTION OUTFALL STORAGE Element Type Invert Elevation ft 347.00 341.67 0.00 347.00 Maximum Elev. ft 375.00 369.77 338.75 362.00 Ponded Area ft 2 0.00 0.00 0.00 0.00 External Inflow Yes

tink Summary

Link-00 Link-00 Orifice Weir-HM ink Ation Summary Jun-01 HMP-1A HMP-1 HMP-1 From Node Depth/ Diameter Out-POC'A' Jun-01 HMP-1A HMP-1A To Node CONDUIT CONDUIT ORIFICE WEIR Element Type Width No. of Barrels Length ft 153.0 231.8 Cross Sectional Area ft² 4.1958 2.1566 Slope % 9.62 9.62 Manning's Roughness 0.0150 0.0150

> Design Flow Capacity cfs 178.61 128.05

Autodesk Storm and Sanifary Analysis Full Flow Hydraulic Radius ft 0.88

H:\1100\1176.30 Merge 56\Engineering\Reports\Drainage\Merge Private Storm Drain.dwg

Link-001 CONDUTY 0 04:09 11.82 1.00 17.57 178.61 0.10 0.21 0 Calculated Link-001 CONDUTY 0 04:08 9.34 1.00 17.82 128.05 0.14 0.25 0 Calculated Link-012 CONDUTY 0 04:08 9.34 1.00 4.28 128.05 0.14 0.25 0 Calculated Dirik-0-HMP-1 OBE/CONDUTY 0 04:08 9.34 1.00 4.28 0.00 0 0	Link ID	Element Type	Time of Peak Flow Occurrence days hh:mm	Maximum Velocity Attained ft/sec	Length Factor	Peak Flow during Analysis cfs	Design Flow Capacity cfs	Ratio of Maximum /Design Flow	Ratio of Maximum Flow Depth	Total Time Surcharged minutes	Reported Condition
Weir-HMP-1 WEIR 0 04:08 13.32 0.00	Link-001 Link-002 Orifice-HMP-1 Weir-HMP-1	CONDUIT CONDUIT ORIFICE WEIR	0 04:09 0 04:09 0 04:08 0 04:08	11.82 9.34	1.00 1.00	17.57 17.62 4.28 13.32	178.61 128.05	0.10 0.14	0.21 0.25 0.00	0.0	Calculated Calculated

MARNING 108 : Surcharge elevation defined for Junction Jun-01 is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node HMP-1A.

Analysis began on: Fri Feb 19 07:54:11 2021 Analysis ended on: Fri Feb 19 07:54:11 2021 Total elapsed time: < 1 sec

